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Abstract The ferroelectric field-effect transistor (FeFET) with an amorphous indium–gallium–zinc oxide (α-IGZO) channel

and an atomic-layer-deposited 2 nm HfO2 interfacial layer (IL) was designed and fabricated to optimize both memory window

(MW) and reliability. Compared with the FeFET without IL, the FeFET with 2 nm HfO2 IL achieved an enhanced MW of

1.1 V at a reliable operating voltage with ultrafast current-voltage operation and an approximately 1000 times improvement

in endurance with an available MW of ∼0.85 V after exerting pulses over 107 cycles while maintaining retention of over 10

years. This work proposes an effective strategy to enhance MW and reliability for future nonvolatile memory applications.
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1 Introduction

Recently, ferroelectric field-effect transistors (FeFETs) based on metal oxide channel materials, such
as amorphous indium–gallium–zinc oxide (α-IGZO) [1], indium oxide (In2O3) [2], and tungsten (W)-
doped In2O3 [3], have been considered promising candidates for prospective applications in monolithic
3D integration toward large-scale memory, motivated in part by the low power consumption, high writing
speed, complementary metal–oxide–semiconductor technology compatibility, and outstanding scalability
of HfO2-based FeFET [4–6]. However, the application of FeFETs is still restricted by their narrow
memory window (MW) and poor endurance, which are not only associated with the ferroelectric (FE)
layer itself but also linked to the interface between the channel and the gate insulator [7]. Significant
efforts and progress have been made to optimize the memory properties of FeFETs, such as interfacial
layer (IL) thickness reduction via oxygen scavenging in Si-based FeFET [8] and IL-free gate stacks in
α-IGZO FeFET [9]. However, a large gate voltage drop across the low-k IL and an inferior MW in the
IL-free gate structure are unexpectedly obtained. The memory performance of FeFETs was improved
by introducing Al2O3 IL [7] and Al2O3/ZrO2 stack IL [10]. By inserting Al2O3 IL and scaling down the
In2O3 channel length, Lin et al. [2] obtained and reported an optimized MW, which is measured by the
ultrafast current-voltage (UFIV) operation. Comparatively, the combination of the metal sacrificial layer
and high-k IL in oxide FeFET could be an effective method for device property enhancement [11]. In
this work, α-IGZO FeFETs with a 2 nm HfO2 IL were constructed. The fabricated FeFET with HfO2 IL
exhibited a competitive MW of ∼1.1 V and enhanced program and erase speeds. Subsequently, excellent
reliability with continuous loading over 107 cycles and extrapolated retention of >10 years were achieved.
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Figure 1 (Color online) (a) Process flow, (b) schematic, (c) cross-sectional TEM, and (d) HAADF and EDS mapping images of

the fabricated FeFET with 2 nm HfO2 IL. The distribution mapping of the elements In, Ga, Zn, O, Hf, Zr, and C is presented

below. AFM images of (e) annealed HZO film, (f) HfO2 IL, (g) IGZO on annealed HZO, and (h) IGZO on HfO2 IL with the

scanning size of 5 µm × 5 µm.

2 Device fabrication

The process flows of the fabrication of FeFETs with and without HfO2 IL are shown in Figure 1(a). First, a
50 nm W thin film was deposited onto the SiO2/p-Si substrate using physical vapor deposition, followed
by photolithography and SF6/CHF3 inductively coupled plasma dry etching for gate isolation. Next,
12 nm Hf0.5Zr0.5O2 (HZO) was prepared by atomic layer deposition (ALD) at 280◦C with Hf[N(CH3)2]4,
Zr[N(CH3)2]4, and O2 as Hf, Zr, and oxygen precursors, respectively. The W was then deposited on the
thin film as the capping layer because it effectively induces HZO crystallization [12]. Thereafter, the thin
films went through rapid thermal annealing at 500◦C for 30 s in N2 atmosphere for crystallization, and
the W capping layer was removed by wet etching with H2O2:H2O = 1:2 and a trace amount of NH4OH.
Afterward, 2 nm HfO2 was grown by ALD at 250◦C as IL, and a control device without HfO2 IL was also
prepared. Subsequently, 8 nm α-IGZO was constructed by radio frequency magnetron sputtering at room
temperature, and the active channel layer was patterned by photolithography and wet etching (diluted
HCl). Finally, photolithography and electron beam evaporation were adopted to pattern and form the
source and drain contacts of Ti (10 nm)/Au (50 nm). The surface roughness of the FE dielectric layer and
semiconductor channel layer was measured using atomic force microscopy (AFM). The microstructure
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Figure 2 (Color online) (a) P -V and dynamic I-V loops of the FE capacitor based on the MFIM structure without and with

2 nm HfO2 IL under a reliable operating voltage. (b) Ps and Vc of the MFIM structure. (c) Schematic of the UFIV measurements.

(d) Id-Vg of α-IGZOFeFETs with different gate stacks under the UFIV test method. The Id-Vg and Ig-Vg curves of the FeFETs

based on the DC measurements are shown in the inset in (d) as basic information. (e) MW of α-IGZO FeFETs without and with

2 nm HfO2 IL at Vds of 0.1 V.

and element analyses of the fabricated FeFETs were characterized by transmission electron microscopy
(TEM), high-angle annular dark field (HAADF), and energy-dispersive X-ray spectroscopy (EDS). The
electrical performance was measured using a semiconductor device analyzer (Agilent B1500A). The fer-
roelectricity of the devices was measured using a field-effect test system (Precision Premier II).

3 Results and discussion

Figure 1(b) shows the schematic view of the FeFET. Two different FeFET structures were fabricated. One
sample without IL was designed as the control device, and the other sample with 2 nm HfO2 IL was used
as the experimental device. Figure 1(c) presents the cross-sectional high-resolution TEM images of the
FeFET with HfO2 IL, confirming its clear structure and good interfacial property. Figure 1(d) depicts the
HAADF image of the FeFET and the EDS distribution mapping diagrams of all of the elements, showing
the distributed elements In, Ga, Zn, O, Hf, Zr, and C in the fabricated FeFET. Notably, the FeFET
with HfO2 IL exhibits sharp interfaces both structurally and chemically without obvious interdiffusion.
In addition, the difference in the position and thickness of the elements Hf and Zr verifies the presence
of 2 nm HfO2 IL. Figures 1(e)–(h) show the AFM images of annealed HZO film, HfO2 IL, IGZO on
annealed HZO, and IGZO on HfO2 IL, where the surface roughness values were 1.16, 1.17, 1.58, and
1.44 nm, respectively.
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Figure 3 (Color online) Dependence of Id on the (a) program time, (b) program voltage, (c) erase time, and (d) erase voltage of

FeFETs with and without HfO2 IL.

Figure 2(a) displays the polarization-voltage (P -V ) and dynamic current-voltage (I-V ) characteristics
at reliable voltage ranges of FE capacitors without and with 2 nm HfO2 IL. Compared with the control
device, larger spontaneous polarization (Ps) and coercive voltage (Vc) were observed in the capacitor with
HfO2 IL, as shown in Figure 2(b). Although the HfO2 IL could induce undesired voltage distribution, it
substantially increases the reliable voltage range and enhances Ps under a higher operating voltage (Vop).
Notably, large Ps and Vc values could improve the memory properties of FeFET [11,13]. Accordingly, the
MW of the FeFETs was measured using the UFIV method, which is reported to suppress charge trapping
during voltage sweep [2, 7]. Figure 2(c) presents the detailed waveforms and parameters obtained from
the UFIV operation. The measurement step and pulse width of gate voltage (Vg) are 50 mV and 30 ms,
respectively. Similarly, the drain voltage (Vd) is applied with an amplitude of 100 mV and a pulse width
of 30 ms. Figure 2 shows the Id-Vg curves obtained from the UFIV measurements at Vd = 0.1 V for
FeFETs with and without HfO2 IL. The inset in Figure 2(d) shows the Id-Vg and Ig-Vg curves obtained
from the DC measurements. A stable FE-type counterclockwise hysteresis is observed for all FeFETs,
with MW up to 1.1 V by integrating 2 nm HfO2 IL. These results reflect a positive correlation between
the MW of FeFET and Ps and 2Vc, which is consistent with previous reports [2,7]. Furthermore, the DC
measurements shown in the inset in Figure 2(d) reveal similar MW enhancement and negative differential-
resistance-type behavior in the Id-Vg and Ig-Vg curves [14]. Here, the FeFETs with and without HfO2 IL
show comparable on-state current of ∼10−6 A, and the decrease in the on-state current in the FeFET
without HfO2 IL could be associated with its increased surface roughness [15]. Figure 2(e) depicts the
MW of the FeFETs as a function of the operating voltage, showing that the incorporation of HfO2 IL
resulted in an enhanced MW and increased breakdown voltage. The improved MW is primarily attributed
to the optimization of the electric-field distribution within the gate stack and the effective suppression of
electron trapping through the utilization of HfO2 IL [16].

Furthermore, the cumulative programming and erasing characteristics of FeFETs with and without
HfO2 IL were explored by applying Vg pulses with incremental amplitudes or widths. Following each Vg

pulse, Id was measured at a Vd of 0.1 V and a Vg of 0 V. As the program time and voltage increase, the
FE domains progressively switch from the erased state to the programmed state, as shown in Figures 3(a)
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Figure 4 (Color online) Pulse sequence for (a) endurance and (b) retention testing used. Evolution of Vth with program and

erase cycling for the device (c) without and (d) with HfO2 IL. Retention characterization of the device (e) without and (f) with

HfO2 IL.

and (b). By contrast, as the erase voltage or pulse width increases, the FE domains begin to switch from
the programmed to the erased state, leading to a reduction in Id. Compared with the FeFET without IL,
the FeFET with 2 nm HfO2 IL exhibits an enhanced current MW and shorter program and erase times.
Notably, the erasing speed is significantly slower than the programming speed, which is mainly related to
the n-type oxide semiconductor that hardly generates holes under the external electric field. As a result,
the accumulation of holes at the channel/insulator interface could not occur rapidly, directly hindering
the effective electric field on the FE layer [17, 18].

To further examine the influence of HfO2 IL on the memory properties of α-IGZO FeFET, the en-
durance and retention characteristics of FeFETs without and with HfO2 IL were measured and analyzed.
The pulse sequence for reliability and retention testing used is shown in Figures 4(a) and (b), respectively.
The pulse widths of the program and erase processes are 10 µs and 50 ms to ensure complete program-
ming and erasing. Figures 4(c) and (d) display the cycling characteristics of FeFET by loading fatigue
cycles. Compared with the control device, the FeFET with HfO2 IL shows better reliability, lighter
degradation of MW, and even no breakdown until an endurance of ∼107 cycles. The enhanced reliability
is believed to be associated with the improved cycles-to-breakdown, resulting from the suppression of
defect generation during cycling due to the insertion of HfO2 IL [19]. Figures 4(e) and (f) present the
retention characterization of the FeFETs. Notably, the FeFETs exhibit a stable Id after programming
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and erasing, and the retention of >10 years is obtained by linear extrapolation.

4 Conclusion

In summary, we have designed and fabricated an α-IGZO FeFET with atomic-layer-deposited HfO2 IL
with enhanced MW and reliability. By integrating 2 nm HfO2 IL between α-IGZOand HZO dielectrics,
a larger MW of ∼1.1 V is achieved compared with the FeFET without IL. Moreover, a superior MW
of ∼0.85 V is still maintained after the endurance of ∼107 cycles, and the extrapolated retention of
>10 years is projected. These findings provide an alternative method to boost the MW and reliability of
FeFETs via interfacial engineering.
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