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ВВЕДЕНИЕ 

 

В науке и реальной жизни важной задачей является прогнозирование по-

ведения сложных систем на основании их прошлого поведения. Многие задачи, 

возникающие в практических приложениях, не могут быть решены заранее из-

вестными методами или алгоритмами. Это происходит по той причине, что нам 

заранее неизвестны механизмы порождения исходных данных или же известная 

информация недостаточна для построения модели источника, генерирующего 

поступающие данные. Как говорят, мы получаем данные из «черного ящика».  

В этих условиях ничего не остается, кроме изучения доступной последователь-

ности исходных данных и попыток прогнозирования при помощи совершен-

ствования схемы в ходе процесса прогнозирования. Подход, при котором про-

шлые данные или примеры используются для первоначального формирования и 

совершенствования схемы предсказания, называется методом машинного обу-

чения (Machine Learning – ML). Машинное обучение – чрезвычайно широкая и 

динамически развивающаяся область исследований, использующая огромное 

число теоретических и практических методов. Методы машинного обучения – 

это алгоритмы и модели, которые используются для обработки и анализа боль-

ших объемов данных. Они позволяют компьютерным системам получать зна-

ния из данных и применять их для принятия решений и прогнозирования. 

В настоящее время существует несколько программных систем и библио-

тек программ, реализующих алгоритмы машинного обучения. Наиболее попу-

лярным средством является язык программирования Python и ряд библиотек 

(NumPy, pandas, scikit-learn, Matplotlib и др.), использующих его для реализации 

алгоритмов машинного обучения. 

В первой части пособия – теоретической – рассматриваются модели ма-

шинного обучения, основные метрики оценки качествы работы алгоритмов, ме-

тоды подготовки данных, приводятся примеры и необходимые пояснения. Так-

же рассматриваются основные понятия языка Python, необходимые для работы. 

Во второй части – практической – приводятся методические рекомендации по 

решению базовых заданий, а также задания для самоподготовки.  

Для успешного освоения данного курса нужно знать теорию вероятностей 

и математическую статистику, математический анализ, линейную алгебру. 
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ТЕОРЕТИЧЕСКИЙ РАЗДЕЛ 

 

1. Основы языка программирования Python 

 

Python – высокоуровневый язык программирования общего назначения, 

ориентированный на повышение производительности разработчика и читаемо-

сти кода. Язык является полностью объектно-ориентированным. Синтаксис яд-

ра языка Python минималистичен. Стандартная библиотека включает большой 

набор полезных переносимых функций, включая как возможности работы с 

текстом, так и средства написания сетевых приложений.  

Python служит средством для реализации машинного обучения. В Python 

существует множество библиотек и фреймворков, которые позволяют создавать 

и обучать модели машинного обучения. Перечислим некоторые из наиболее 

популярных библиотек Python для машинного обучения.  

1. TensorFlow – это библиотека от Google, которая позволяет создавать и 

обучать модели машинного обучения. TensorFlow предоставляет широкий 

набор инструментов для работы с данными, создания моделей и их оптимиза-

ции. Она также поддерживает распределенное обучение (обучение на несколь-

ких устройствах).  

2. Keras – это высокоуровневый фреймворк для создания нейронных се-

тей. Он позволяет создавать модели машинного обучения с помощью простых 

и понятных API. Keras также поддерживает интеграцию с TensorFlow и други-

ми библиотеками машинного обучения.  

3. PyTorch – это библиотека от Facebook, которая предоставляет удобный 

интерфейс для создания и обучения нейронных сетей. PyTorch также поддер-

живает автоматическое дифференцирование, что позволяет легко оптимизиро-

вать модели.  

4. Scikit-learn – это библиотека для машинного обучения, которая предо-

ставляет широкий набор алгоритмов для классификации, регрессии, кластери-

зации и других задач. Scikit-learn также предоставляет инструменты для работы 

с данными, включая предобработку и визуализацию.  

5. Pandas – это библиотека для работы с данными, которая предоставляет 

инструменты для чтения, записи и манипулирования табличными данными. 

Pandas также поддерживает работу с временными рядами и многомерными 

данными.  

6. NumPy – это библиотека для работы с массивами данных, которая 

предоставляет инструменты для математических операций, линейной алгебры и 

статистики. NumPy также поддерживает работу с многомерными массивами 

данных.  

Заметим, что это не полный список библиотек Python для машинного 

обучения, и выбор конкретной библиотеки зависит от требований к модели и 

уровня опыта пользователя. 
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1.1. Переменные в Python 

 

Переменные в Python предназначены для хранения данных в памяти ком-

пьютера и для проведения над ними различных операций. 

Переменная – это область памяти компьютера, у которой есть имя. Имя 

переменной состоит из трех частей:  

• имя (или идентификатор) – это название, придуманное программистом, 

чтобы обращаться к переменной; 

• значение – это информация, хранящаяся в памяти компьютера, с кото-

рой работает программа; 

• адрес – это номер ячейки памяти, в которой хранится значение пере-

менной. 

Например, переменная name хранит строку "Tom". 

name = "Tom" 

Имя переменной должно начинаться с буквы или знака подчеркивания, 

но не с цифры. Оно может содержать строчные, заглавные буквы, цифры и зна-

ки подчеркивания.  

Можно менять значение переменной в течение работы программы. 

name = "Tom" 
print(name)    # Вывод: Тom 
name = "Bob" 
print(name)    # Вывод: Bob 

 Переменные выполняют две важные функции: делают код понятнее и 

дают возможность многократно использовать введенные данные. 

 

1.2. Типы данных в Python 

 

 В Python существуют разные типы данных, которые можно сгруппиро-

вать следующим образом: 

• числовые данные: int, float, complex (целые числа, числа с плавающей 

точкой, комплексные числа); 

• строковые типы: str (строки); 
• последовательности: list, tuple, range (список, кортеж, диапазон); 

• бинарные типы: bytes, bytearray, memoryview (байты, массивы байтов, 

представление памяти); 

• ассоциативные данные: dict (словари); 
• логический тип: bool (булевый тип); 
• множественные типы: set, frozenset (множество, замороженное множе-

ство). 

Чтобы узнать тип данных, нужно воспользоваться встроенной функцией 

type(). 
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>>> a = 3.5 
>>> type(a) 
<class 'float'> 

Python – язык с динамической типизацией, т. е. значения присваиваются 

переменным не при компиляции, а при выполнении программы. Поэтому объ-

являть переменную заранее не нужно. Можно переменной присвоить значение 

другого типа по мере необходимости. Рассмотрим пример. 

x = 10 
print(type(x)) # <class ' int'> 
 
x = "Hello" 
print(type(x)) # <class ' str'> 
 
x = [1,2,3] 
print(type(x)) # <class ' list'> 

Здесь переменная x сначала содержит целое число и имеет тип int. Затем 

мы присваиваем ей строку, и ее тип изменяется на str. Наконец, мы присваива-

ем ей список, и ее тип становится list. Все это происходит динамически во вре-

мя выполнения программы. 

 

1.3. Строки. Функции и методы строк 

 

Строковый тип данных – один из основных типов данных в Python. Он 

используется для хранения символьной информации: букв, чисел, знаков пре-

пинания и других символов. На практике применяется, например, для записи  

Ф. И. О. или адресов клиентов в базах данных. Для создания строк мы исполь-

зуем парные кавычки ' ' или " ". 

s1 = 'Python' 
s2 = "Pascal" 

В Python существует множество методов для работы со строками. Рас-

смотрим базовые операции над строками. 

Конкатенация (сложение) объединяет строки.  

s1 = 'spam' 
s2 = 'eggs' 
print(s1 + s2) # Вывод: 'spameggs' 

При использовании функции print() по умолчанию каждый новый эле-

мент выводится с новой строки или с пробелом. 

Дублирование строки создает несколько копий строки.  

print('spam' * 3) # Вывод: 'spamspamspam' 

Длина строки (функция len ()) возвращает количество символов в строке.  

print(len('spam') # Вывод: 4 
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Индексация строк. Когда необходимо обратиться к конкретному символу 

в строке, используют квадратные скобки [], в которых указывается индекс (но-

мер) нужного символа в строке.  

Пусть s = 'Python'. Табл. 1 показывает, как работает индексация. 

 
Табл. 1. Индексация строк 

 
 

Примечание. Первый символ строки равен s[0], а не s[1]. В Python индек-

сация начинается с 0. 

В отличие от многих языков программирования в Python есть возмож-

ность работы с отрицательными индексами. Если первый символ строки имеет 

индекс 0, то последнему элементу присваивается индекс –1 (табл. 2). 

 
Табл. 2. Использование отрицательных индексов 
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Частая ошибка – обращение по несуществующему индексу в строке. 

Например, если s = 'Python' и мы попытаемся обратиться к s[17], то получим 

ошибку. 

 
Ошибка возникает, поскольку строка содержит всего шесть символов. 

Рассмотрим функции строк.  

1. Следующие функции осуществляют поиск подстроки в строке: 

• S.find(str, [start], [end]) возвращает номер первого вхождения или –1; 

• S.rfind(str, [start], [end]) возвращает номер последнего вхождения или –1; 

• S.index(str, [start], [end]) возвращает номер первого вхождения или 

вызывает ValueError; 

• S.rindex(str, [start], [end]) возвращает номер последнего вхождения 

или вызывает ValueError. 

2. S.replace(шаблон, замена [, maxcount]) заменяет шаблон на замену, а 

, maxcount ограничивает количество замен. 

3. S.split(символ) осуществляет разбиение строки по разделителю. 

4. S.isdigit() выясняет, состоит ли строка из цифр. 

5. S.isalpha() выясняет, состоит ли строка из букв. 

6. S.isalnum() выясняет, состоит ли строка из цифр или букв. 

7. S.islower() выясняет, состоит ли строка из символов в нижнем регистре. 

8. S.isupper() выясняет, состоит ли строка из символов в верхнем реги-

стре. 

9. S.isspace() выясняет, состоит ли строка только из пробельных симво-

лов. 

F-строки в Python, или «форматированные строковые литералы», пред-

ставляют собой новый способ форматирования строк. Они обозначаются лите-

рой f перед кавычками. F-строки позволяют вставлять выражения внутрь стро-

ковых литералов, используя фигурные скобки {}. Эти выражения оцениваются 

во время выполнения и заменяются на их значения. Рассмотрим пример. 

name = "Дмитрий" 
age = 25 
print (f"Меня зовут {name}. Мне {аgе} лет.") 

В примере {age} и {name} внутри F-строки заменяются на значения пере-

менных age и name соответственно. F-строки делают текст более читаемым и 

работают быстрее, чем другие способы форматирования. Также они поддержи-

вают расширенное форматирование чисел. 

 

1.4. Операторы в Python 

 

Оператор в Python – это специальная конструкция для операций над дан-

ными и управления логикой программы.  Рассмотрим основные виды операто-

ров и их функциональность. 
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1. Арифметические операторы (служат для выполнения математических 

операций): 

•  +  (сложение); 

•  -  (вычитание); 

•  * (умножение); 

•  /  (деление); 

•  //  (целочисленное деление); 

•  %  (остаток от деления); 

•  **  (возведение в степень). 

2. Операторы сравнения или реляционные операторы (используются для 

сравнения значений): 

•  == (равно); 

•  != (не равно); 

•  < (меньше); 

•  > (больше); 

•  <= (меньше или равно); 

•  >= (больше или равно). 

3. Логические операторы (позволяют комбинировать условия): 

•  and (логическое И); 

•  or (логическое ИЛИ); 

•  not (логическое НЕ). 

4. Операторы присваивания (используются для присвоения значений пе-

ременным): 

•  = (присваивание); 

•  +=, -= и др. (составные операторы присваивания). 

5. Побитовые операторы (работают с битами чисел): 

•  & (побитовое И); 

•  | (побитовое ИЛИ); 

•  ^ (побитовое исключающее ИЛИ); 

•  ~ (побитовое НЕ); 

•  << (побитовый сдвиг влево); 

•  >> (побитовый сдвиг вправо). 

6. Операторы членства (проверяют, принадлежит ли элемент к последова-

тельности): 

•  in (принадлежит); 

•  not in (не принадлежит). 

7. Операторы тождественности (сравнивают объекты на идентичность): 

•  is (идентичен); 

•  is not (не идентичен). 

Операторы помогают нам создавать сложные выражения и управлять по-

током выполнения программы. 

Рассмотрим примеры. 
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1. Арифметические операторы: 

 
x = 10 
y = 3 
 
print(x + y) # сложение: 13 
print(x - y) # вычитание: 7 
print(x * y) # умножение: 30 
print(x / y) # деление: 3.33333333333335 
print(x % y) # остаток от деления: 1 
print(x // y) # деление нацело: 3 
print(x ** y) # возведение в степень: 1000 

 

2. Операторы сравнения: 

 
x = 10 
y = 3 
 
print(x == y) # равно: False 
print(x != y) # не равно: True 
print(x > y) # больше: True 
print(x < y) # меньше: False 
print(x >= y) # больше или равно: True 
print(x <= y) # меньше или равно: False 

 

3. Логические операторы: 

 
x = 5 
print(x > 3 and x < 10) # Вернет True, потому что 5 больше 3 и 5 меньше 10 

 
x = 5 
print(x > 3 and x < 10) # Вернет True, потому что 5 больше 3 и 5 меньше 10 

 
x = 5 
print(not(x > 3 and x < 10)) # Вернет False, потому что not используется для инвертирования истинного условия 

 

4. Операторы присваивания: 

 
x = 10 
 
print(x) # 10 
x += 5 
 
print(x) # 15 
x -= 2 
print(x) # 13 
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5. Побитовые операторы: 

 
x = 10   # 1010 в двоичной системе 
y = 4   # 0100 в двоичной системе 
 
print(x & y) # битовый оператор И: 0 
print(x | y) # битовый оператор OR: 14 
print(~x) # битовый оператор НЕТ: -11 
print(x ^ y) # битовый оператор XOR: 14 
print(x >> y) # правый сдвиг: 2 
print(x << y) # левый сдвиг: 40 

 

6. Операторы членства: 

 
x = [1,2,3,4,5] 
print(3 in x) # Вернет True, потому что 3 присутствует в списке x 
 
x = [1,2,3,4,5] 
print(6 in x) # Вернет True, потому что 6 отсутствует в списке x 

 

7. Операторы тождественности: 

 
x = [1,2,3] 
y = x 
print(y in x) # Вернет True, потому что y и x указывают на один и тот же объект 

 
x = [1,2,3] 
y = [1,2,3] 
print(y in not x) # Вернет True, потому что y и x указывают на разные объекты 

 

1.5. Условный оператор if в Python 

 

Оператор if в Python – это конструкция, которая позволяет выполнить 

один из двух блоков кода в зависимости от того, выполняется условие (выра-

жение после if) как истинное или ложное. Если условие истинно (True), то вы-

полняется блок кода под if, если же условие ложно (False), то блок кода под 

else. 

 
Примечания: 1. После условия необходимо поставить знак двоеточие :. 

2. Работая с условной конструкцией, важно знать, что Python интерпрети-

рует ненулевые значения как True. None и 0 интерпретируются как False. 

Чтобы оставить блок пустым, нужно воспользоваться ключевым 

словом pass.  
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Программа сможет обрабатывать более двух событий без использования 

вложенного оператора if. Для этого нам понадобится инструкция elif. Само сло-

во elif образовано от else if, что переводится как «иначе если».  

Примечание. После else условие никогда не ставится. После elif  обяза-

тельно нужно поставить логическое выражение. 
 

 
 

1.6. Циклы while и for в Python 
 

Цикл while предназначен для неоднократного исполнения определенной 

последовательности действий до тех пор, пока заданное условие остается ис-

тинным. Поэтому этот цикл называют условным. После ключевого слова 

while пишется условие (логическое выражение, которое принимает значение 

True или False). После условия обязательно ставится знак двоеточия : и затем с 

новой строки одна под другой на одном уровне отступа перечисляются ин-

струкции, которые будут выполняться в цикле. 

Рассмотрим пример цикла while: 

 
n = int(input()) 
while n ≠ 0: 
 print(n + 5) 
 n = int(input()) 

 

Цикл выполняется, пока пользователь не введет 0.  

В Python существуют два ключевых слова, с помощью которых можно 

остановить итерацию цикла преждевременно:  

1. Ключевое слово break прерывает цикл и передает управление в конец 

цикла. 

 
a = 1  
while a < 5 
 a += 1 
 if a == 3: 
  break 
print(a) # 2 
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2. Ключевое слово continue прерывает текущую итерацию и передает 

управление в начало цикла, после чего условие снова проверяется. Если оно ис-

тинно, то исполняется следующая итерация. 

 
a = 1  
 
while a < 5: 
 a += 1 
 if a == a 
  continue 
 print(a) #2,4,5 

 

В отличие от цикла while цикл for используется в тех случаях, когда за-

ранее известно количество итераций, совершаемых в цикле. Число исполнений 

цикла for определяется функцией range().  

Рассмотрим использование цикла for с функцией range(). 

 

 
 

Существует два варианта применения функции range() в цикле for:  

1. Повторение какого-то действия определенное количество раз.  

 

 
 

2. Обход какой-то заданной последовательности. Мы это реализовывали, 

когда в цикле выводили i, т. е. проходили последовательность чисел от 0 до 3. 

Если нужно пройти другую последовательность, например все трехзначные 

числа, то необходимо написать следующий код: 
 

 
 

С помощью функции range() можно сформировать конечную арифмети-

ческую прогрессию. Заметим, что все последовательности начинаются с нуля и 

не включают переданное число. Поэтому если нужно, чтобы последователь-

ность заканчивалась числом 5, то необходимо вызвать range(6). Если указать 

нуль или отрицательное значение, то получим пустую последовательность. Это 

связано с тем, что по умолчанию функция range() формирует возрастающую 

арифметическую прогрессию, начинающуюся с нуля, с шагом один. А от нуля 

до отрицательного числа, прибавляя единицу, пройти не получится. 
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В функцию range() можно также передавать второй параметр. В таком 

случае первое число говорит о том, откуда будет начинаться отсчет, а второе – 

где он будет заканчиваться (не включительно). Рассмотрим пример. 

 

 
 

Повлиять на возрастание или убывание последовательности можно при 

помощи третьего параметра. Он влияет на шаг арифметической последователь-

ности, т. е. на разницу между элементами. 

 

 
 

С помощью функции range() можно: 

• найти сумму арифметической прогрессии. Например, посчитать сумму 

чисел от 1 до 100. Для этого можно воспользоваться функцией sum() и передать 

ей на вход последовательность чисел от 1 до 100: 
sum(range(1, 101)) # получим 5050 

• посчитать количество чисел в последовательности при помощи функ-

ции len(). Например, нужно найти количество чисел от 5 до 15 (не включитель-

но) при шаге в 5: 
len(range(5, 15, 5)) # получим 2 

•  использовать в конструкции множественного присвоения.  
a, b, c = range(5,16, 5) # получим, что a = 5, b = 10, c = 15 

•  результат функции сохранить в переменную: 
r = range(1, 7) 
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Для этой переменной можно узнать количество элементов: 
len(r) # получим 6 

или обратиться к ее элементу по индексу: 
r[1] # получим 2 

Примечание. Индексация начинается с 0, поэтому, чтобы получить 1, 

необходимо указать r[0]. Если использовать r[1], то на выходе получится 2. 

 

1.7. Структуры данных 

 

Структуры данных необходимы для организации и хранения данных. Ос-

новные часто используемые структуры данных в Python: cписок, кортеж, сло-

варь. 

 

Cписок 

 

Список – это структура данных, которая хранит последовательность,  

т. е. упорядоченный набор элементов.  

Правила объявления списка: 

• список создается с помощью квадратных скобок []; 

• элементы списка нужно разделять запятыми; 

• правила синтаксиса, характерные для определенных типов данных, 

нужно соблюдать внутри списка. Так, если у строки должны быть кавычки, то 

их нужно использовать и внутри списка, а для чисел и значений булева типа их 

не нужно использовать. 

Пример объявления и вывода: 
1 list = [3,5,67,8,1] 
2 print(list, end='\n\n') 
3 print(type(list)) 

 

Индексация происходит аналогично строкам 
1    list = [3,5,67,8,1] 
2    print(list[0], list[-1]) 

 

Основные операции: 
list = [3,5,67,8,1] 
list.append (22) # добавить в конец 22 
list.insert(0,23) # добавить 23 перед индексом 0 
list.remove (22) # удалить 22 
list.pop(0) # удалить и вернуть элемент 
list.reverse() # развернуть список 
list.count(22) # количество вхождений элемента 22 
len(list) # количество всех значений 
max(list) # получить максимальное значение 
min(list) # получить минимальное значение 
sum(list) # получить сумму всех значений 
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Кортеж 

 

Кортеж похож на список, но имеет одно важное отличие – он неизменяем. 

Кортеж целесообразно использовать, когда наверняка известно, что набор дан-

ных не изменится в процессе работы программы. Кортеж может состоять из 

данных разных типов и использовать индексы, которые определяют конкрет-

ный порядок элементов. 

В отличие от списков кортежи создаются с помощью круглых скобок. 
1 p_tup = ("Лондон", "Пекин", 44, True) 
2 print(p_tup, p_tup[-1]) 
 

Вывод: 

('Лондон', 'Пекин', 44, True) True 

 

Словарь 

 

Словарь состоит из пар «ключ – значение», которые разделяются запяты-

ми. По аналогии со списком его можно называть последовательностью данных. 

В отличие от списков и кортежей у словарей нет определенного порядка. 

Такая структура нацелена на увеличение производительности и предполагает 

доступ к значению по ключу. В качестве ключей используются только неизме-

няемые объекты, а в качестве значений можно использовать как неизменяемые 

объекты, так и изменяемые. 

Объявляются словари при помощи фигурных скобок {}. Ключ и значение 

разделяются двоеточием, а пары «ключ – значение» отделяются запятыми друг 

от друга. 
1        p_ages = ("Андрей": 32, "Виктор": 29, "Максим": 22) 
2        print(p_ages["Максим"] # вывод значения по ключу 
3        print(list(p_ages.keys()) [list(p_ages.values()).index(29)]) # вывод ключа по значению 
 

Вывод: 

22 
Виктор 

 

Приведем некоторые из методов и функций словарей: 

• .keys() используется для получения кортежей с ключами словаря; 

• .values() используется для получения кортежей со значениями каждого 

ключа словаря; 

• .items() используется для создания кортежей с ключами и значениями; 

• .get() используется для получения значения по ключу. 

Примечание. Ключи в словаре могут быть только строками, целыми чис-

лами или числами с плавающей точкой. Значения могут быть любого типа. 
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2. Основные понятия анализа данных и машинного обучения 

 

Машинное обучение (МО) представляет собой методы, позволяющие 

настраивать алгоритмы для решения конкретных задач путем обучения на ос-

нове данных, при помощи которых необходимо вывести новые знания, а также 

получить новые взаимосвязи в них (часто неявные) или доказать, что их нет.  

Какие цели можно достичь? 

 1. На основе полученных зависимостей можно построить прогноз для за-

данной величины. Например, по данным об урожае картофеля за 10 лет в дан-

ном регионе прогнозировать урожайность в следующем году. 

2. Классифицировать объекты на основе данных о них. Например, имея 

данные о применении различных методик обучения, классифицировать мето-

дику обучения как эффективную или неэффективную. 

3. Визуализация данных помогает выбрать стратегию анализа данных. 

Иногда визуализация данных сама является целью исследования. 

4. Поиск новых зависимостей в данных помогает прийти к новым знани-

ям о предмете исследования. 

Решение задачи машинного обучения состоит из нескольких этапов. 

1. Получение данных. Нужно собрать данные, на которых впоследствии 

модель будет обучаться. 

2. Исследовательский анализ данных. Данные могут содержать неточ-

ности и шумы, поэтому, прежде чем переходить к созданию модели машинного 

обучения, нужно специальным образом подготовить эти данные. На этом этапе 

данные исследуются на предмет скрытых закономерностей. 

3. Подготовка факторов. В машинном обучении характеристики объек-

та, которые используются для его описания, принято называть факторами. 

Не все факторы могут быть полезны при построении модели машинного обуче-

ния, на этом этапе отбирают нужные факторы. 

4. Создание модели МО. Нужно выбрать модель, которая лучше всего 

подходит для решения поставленной задачи, а затем обучить ее на какой-то ча-

сти обучающей выборки и проверить, насколько хорошо модель ведет себя 

на другой части обучающей выборки. Если модель ведет себя неоптимально, 

то можно поменять какие-то ее параметры и повторить процесс обучения. 

5. Оценка качества. Нужно оценить итоговое качество работы модели 

на тестовой выборке – на данных, которые модель еще не получала. 

В машинном обучении выделяют два основных подхода: обучение с учи-

телем (Supervised Learning) и обучение без учителя (Unsupervised Learning). 

Обучение с учителем – это один из видов машинного обучения, при котором 

модель обучается на основе предоставленных ей данных, содержащих правиль-

ные ответы (метки). Таким образом, модель должна научиться предсказывать 

правильный ответ для новых данных, которых она не получала ранее. Обучение 

без учителя – это подход, при котором система обучается на основе неразме-

ченных данных, т. е. без предоставления правильных ответов (меток). Задача 
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модели заключается в том, чтобы самостоятельно выявить закономерности и 

структуру в данных.  

Основными являются следующие виды задач машинного обучения: 

• задачи классификации; 

• задачи регрессии; 

• задачи ранжирования. 

Задача классификации: входные данные требуется отнести к определен-

ному классу (например, изображения разделить на кошек и собак, распознать 

произнесенное слово, по медицинским данным поставить диагноз и т. д.). Клас-

сификация может быть бинарной (разделение данных на два класса) и много-

классовой (разделение данных на несколько классов). 

Задача регрессии: нужно сделать прогноз в виде чисел на основе входных 

данных (например, оценка курса валют по предыдущим показаниям, прогноз 

объема продаж товара определенного вида, построение прогноза некоторой 

функции по измеренным эмпирическим данным и т. д.). В отличие от класси-

фикации, где выходные данные дискретны, регрессия выдает непрерывные 

числовые значения. 

Задачи ранжирования относятся к задачам, где необходимо упорядочить 

элементы набора данных по их значимости или релевантности. Например, в по-

исковой системе задача ранжирования заключается в определении порядка 

отображения результатов поиска, чтобы пользователи видели наиболее реле-

вантные результаты в начале списка. Эта задача также актуальна в рекоменда-

тельных системах, где нужно упорядочить предложенные элементы для поль-

зователя по степени их вероятной полезности или интересности. Результатом 

выполнения задачи ранжирования является ранжированный список элементов в 

соответствии с их значением или релевантностью для конкретной задачи. 

Обычно для решения всех этих задач применяют алгоритмы машинного 

обучения. Это связано с тем, что входные данные обычно имеют сложную 

структуру, требующую разработки нетривиальных критериев для их обработки. 

Человеку зачастую сложно самостоятельно создать эти критерии, поэтому 

необходимо использовать метод обучения на основе обучающей выборки. 

Обучающая выборка представляет собой исходные данные, полученные 

из результатов измерений. Это могут быть изображения, звуковые сигналы, 

данные о росте, весе, возрасте человека и др. Все эти данные представлены в 

виде числовых значений: 
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Далее можно объединить все эти наборы в матрицу: 
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Матрица X состоит из l векторов, каждый из которых содержит n коорди-

нат. Добавим выходные данные –  целевые значения (target): 
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В задачах классификации выходные данные могут принимать одно из 

следующих значений: 

•  1; 1y − +  – при бинарной классификации; 

•  My ...;;2;1  – при многоклассовой классификации (классы не пере-

секаются); 

•  M
y 1;0  – при многоклассовой классификации с пересекающимися 

классами (в данном случае M – это размерность пространства). 

В задачах регрессии каждый вход связан с одним или несколькими веще-

ственными числами: 

• Ry  – одномерная задача регрессии; 

• 
mRy  – m-мерная задача регрессии. 

В задачах ранжирования Y  – некоторое упорядоченное множество значе-

ний. 

Размеченные данные представляют собой совокупность данных 

( ) l

iii
l yxX

1
;

=
= ,  которая может использоваться в качестве обучающей выбор-

ки, поскольку каждому входному вектору (наблюдению) ix  соответствует зна-

чение или вектор iy .  

Алгоритм обучения )( lXa  – функция перехода из пространства 
lX  в 

пространство Y. Алгоритм может ошибиться и дать неверный ответ. Поэтому 

необходимо иметь инструмент оценки качества алгоритма. Таким инструмен-

том является функционал ошибки. Функционал ошибки ),( lXaQ  – ошибка ал-

горитма а на выборке 
lX . 
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Рассмотрим функционал ошибки 

 

1

1
( , ) ( , ) ,

l
l

i

i

Q a X L a x
l =

= 
 

 

зависящий от модели ( )a x  и вида функции потерь ( , )L a x . Задача состоит в 

том, чтобы выбрать наилучшую модель, т. е. чтобы функционал принимал 

наименьшее значение на обучающей выборке: 

 

( ) argmin ( , )l l

a A
X Q a X


= , 

 

где ( )lX  – найденная модель на этапе обучения по всем возможным моде-

лям a A ; arg min – определяет значение аргумента, при котором функция при-

нимает наименьшее значение. 

В случае параметрических моделей ( ) ( , )a x g x =  это выражение может 

быть записано относительно вектора параметров  : 

 

( ) argmin ( , )l lX Q a X


 = . 

 

После обучения принимаем ( )la X=  и используем найденную зависи-

мость при практической реализации. 

Рассмотрим метод наименьших квадратов (в качестве функции потерь 

рассматривается квадратичная функция). Здесь данные формируются по закону 

 

, 1,2, ...,= + + =i i iy kx b i  

 

где i  – гауссовский шум с нулевым средним.  

Для такой задачи оптимальная модель имеет вид линейной функции: 

 

( ) .a x kx b= +
 

 

Далее определим неизвестные параметры bk, . Для этого составим 

функцию двух переменных  и  найдем, при каких значениях bk,  эта функция 

принимает минимальное значение:  

 

2

1

1
( , ) [ ( ) ( )] min .

l
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= − →
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Получим следующую систему уравнений:  
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Решая ее, делаем вывод: функция bxkxa +=)(  наилучшим обра-

зом приближает экспериментальные точки. 

 

3. Переобучение модели 
 

Модель обучается на данных, где она изучает зависимости между вход-

ными признаками и выходными значениями. В результате обучения может по-

лучиться модель, которая очень хорошо описывает именно ту выборку, на ко-

торой она обучалась. Она может начать запоминать шумы и специфические 

особенности этого набора данных вместо того, чтобы обобщать общие законо-

мерности. Стоит дать модели новый объект, не входящий в обучающую выбор-

ку, она даст ответ с большой ошибкой. Этот факт свидетельствует о переобуче-

нии модели (рис. 1). 

 Например, если задача состоит в предсказании роста человека по его 

возрасту, переобученная модель может точно предсказывать рост для людей из 

обучающего набора, но давать неточные прогнозы для людей с разным ростом. 

Хорошо обученная модель делает менее точные, но более обобщенные прогно-

зы, которые ближе к реальности для всех людей, независимо от их характери-

стик.  
 

 
Рис. 1. Недообученная (слева), обученная (в центре), переобученная (справа) модели 

 

Существуют признаки переобученности модели: 

• малая ошибка на обучающей выборке и большая на реальном объекте; 

• аномально большие веса модели. 

Рассмотрим методы борьбы с переобучением.  
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3.1. Отложенная выборка 

 

Имеющуюся выборку разбивают на две неравные части – обучающую 

выборку (около 70 % объектов) и тестовую (около 30 % объектов). Обучение 

модели проводится на обучающей выборке, а проверка ее качества – на тесто-

вой. Возникает проблема разбиения выборки: если к обучающей части отнести 

первые 70 % выборки, то может получиться так, что некоторые уникальные 

объекты не попадут в обучающую выборку и модель не обучится на них. Сле-

довательно, когда модель их встретит в тестовой части, она даст большую 

ошибку. Чтобы этого избежать, можно выбирать в тестовую выборку случай-

ные объекты из выборки, а оставшиеся считать обучающей выборкой.  

 

3.2. Кросс-валидация 

 

Перекрестная проверка (или кросс-валидация) – это такой подход в раз-

делении выборки, при котором все объекты попадут в обучающую часть вы-

борки. Выборку делят на k равных частей – фолдов. Поэтому этот метод часто 

называют k-fold-перекрестной проверкой. Далее модель обучают k раз, причем 

каждый раз выделяется одна часть как тестовая, а остальные части используют-

ся для обучения модели. Таким образом, каждая часть данных используется как 

часть тестового набора данных и как часть обучающего набора данных.  

В результате модель обучается k раз, и, следовательно, вычисляется k раз 

ошибка модели. Итоговой ошибкой модели становится средняя ошибка по всем 

оценкам. Достоинство этого метода – невозможность пропустить объект мимо 

обучающей выборки, недостаток – нужно много раз обучать модель. 

Заметим, что проводить любую предобработку данных, включая настрой-

ку гиперпараметров модели, нужно на обучающем наборе данных внутри цикла 

кросс-валидации, чтобы избежать утечки информации и оптимистических оце-

нок качества модели. 

Выбор оптимального значения параметра k в кросс-валидации имеет ре-

шающее значение для точности оценки качества модели. Неправильно выбран-

ное значение k может привести к оценкам модели с высокой дисперсией или 

предвзятостью. 

Рассмотрим три основных подхода к выбору значения k. 

1. Представительный подход. Значение k выбирается так, чтобы каждая 

группа (обучающая/тестовая часть) данных была статистически репрезентатив-

ной для более широкого набора данных. Это обеспечивает адекватность оценки 

качества модели. 

2. Фиксированное значение k.  Значение выбирается на основе экспери-

ментов и обычно обеспечивает низкую предвзятость и небольшую дисперсию 

оценки качества модели. 

3. Фиксированное значение k = n, где n – размер всего набора данных. Это 

дает возможность каждой тестовой части быть использованной в наборе дан-
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ных. Такой подход обычно используется в случае, когда данных очень много и 

вычислительные ресурсы позволяют осуществить его. 

Рассмотрим пример. Имеется набор данных, состоящий из шести наблю-

дений: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]. Используем метод кросс-валидации с пара-

метром k = 3. Это предполагает разделение данных на три группы, содержащие 

по два наблюдения в каждой. 

Процесс кросс-валидации выглядит следующим образом: 

1. Производится перемешивание данных и их последующее разделение на 

три группы: 

• Группа 1: [0.5, 0.2]; 

• Группа 2: [0.1, 0.3]; 

• Группа 3: [0.4, 0.6]. 

2. Проводится обучение и тестирование трех моделей по следующей схеме: 

• Модель 1: обучается на данных из Групп 1 и 2, после чего произво-

дится ее оценка на данных из Группы 3; 

• Модель 2: обучается на данных из Групп 2 и 3, а затем оценивается 

на данных из Группы 1; 

• Модель 3: обучается на данных из Групп 1 и 3 с последующей оцен-

кой на данных из Группы 2. 

3. После проведения оценки каждой модели собираются и анализируются 

их оценки качества с целью принятия решения о качестве алгоритма машинно-

го обучения. 

Автоматизировать этот процесс можно с помощью метода KFold() (биб-

лиотека scikit-learn). Он принимает на вход количество групп, на которые нуж-

но разделить датасет, флаг, указывающий, нужно ли перетасовать данные перед 

разделением, и числовую затравку для псевдослучайного генератора чисел, ис-

пользуемого до перетасовки датасета. 

Например, создадим экземпляр, который разделит набор данных на три 

группы, предварительно перемешав их, и использует значение 1 в качестве за-

травки для генератора псевдослучайных чисел: 
kfold = KFold(3, shuffle=True, random_state=1) 

Затем можно вызвать функцию split() на объекте kfold, передавая ей на 

вход выборку данных. При каждом вызове split() будут возвращаться индексы 

обучающей и тестовой выборок. Возвращаемые массивы содержат индексы ис-

ходного датасета, указывая на соответствующие образцы в каждой группе на 

каждой итерации. 

Например, мы можем получить разделение индексов для выборки дан-

ных, используя созданный экземпляр kfold, следующим образом: 

 
# перечисление выборок датасета 
for train, test in kfold.split(data): 

print('train: %s, test: %s' % (train, test)) 
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#scikit-learn k-fold кросс-валидация 
from numpy import arrayform 
sklearn.model_selection import KFold 
 
# датасет 
data = array ([0.1, 0.2, 0.3, 0.4, 0.5, 0.6]) 
 
# подготовьте кросс-валидацию 
kfold = KFold(3, True, 1) 
 
# перечисление выборок датасета 
for train, test in kfold.split(data): 

print('train: %s, test: %s' % (data[train], data [test])) 

 

В приведенном примере выводятся конкретные наблюдения, которые бы-

ли выбраны для каждого обучающего и тестового наборов данных. Индексы 

используются непосредственно в исходном массиве данных для доступа к зна-

чениям наблюдений: 
train: [0.1, 0.4, 0.5, 0.6], test: [0.2, 0.3] 

train: [0.2, 0.3, 0.4, 0.6], test: [0.1, 0.5] 

train: [0.1, 0.2, 0.3, 0.5], test: [0.4, 0.6] 

Перекрестная проверка может быть использована непосредственно для 

разделения набора данных перед моделированием. Это полезно в случае круп-

ных наборов данных. Также реализация перекрестной проверки в библиотеке 

scikit-learn предоставляется как компонентная операция в рамках более общих 

методов, таких как поиск по сетке гиперпараметров и оценка моделей на наборе 

данных. 

 

3.3. Регуляризация 

 

Еще один способ борьбы с переобучением модели – регуляризация. При 

переобучении ошибка на обучающей выборке слишком маленькая. Чтобы из-

бежать данной ситуации, можно добавить к функционалу ошибки некоторое 

слагаемое и затем найти минимум уже общей суммы:  

 

( , ) min,+ →Q a X    

 

где λ – коэффициент регуляризатора; ω  – веса модели.  

В этом и заключается регуляризация. В алгоритмах машинного обучения 

используются два типа регуляризатора: 

 1. L1-регуляризатор – Lasso (Least Absolute Shrinkage and Selection Operator): 

 

1

.
=

=
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L1-регуляризатор добавляет в функцию потерь штраф, равный сумме аб-

солютных значений коэффициентов модели, и штрафует за сложность модели, 

т. е. за высокие значения весов. L1-регуляризатор можно применять для отбора 

признаков, поскольку он может обнулить веса малозначимых параметров моде-

ли. Это позволит исключить неинформативные признаки, что в свою очередь 

снизит сложность модели и улучшит ее обобщающую способность.  

Заметим, что при использовании L1-регуляризатора могут возникать не-

которые проблемы. Основная проблема заключается в том, что L1-

регуляризация создает острые углы или разрывы около нуля, где производная 

функции потерь не определена. Это затрудняет вычисление градиента функции 

потерь, что может привести к неэффективной работе метода градиентного 

спуска. 

Также важен выбор оптимального значения коэффициента регуляризации λ. 

Если значение λ слишком мало, то веса могут оставаться большими, и это при-

ведет к переобучению модели. Если же значение λ слишком велико, то веса 

станут слишком маленькими, что приведет к недообучению модели. 

2. L2-регуляризатор – Ridge: 

 

2 2

1

.
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=
d

i

i

   

 

Этот регуляризатор не обнуляет веса, а только снижает их значения. 

Можно сказать, что L2-регуляризатор не штрафует, а скорее сглаживает пики, 

добавляя сумму квадратов весов для уменьшения их влияния. Он «выпрямляет» 

функцию активации, приближая ее к линейной форме, тем самым предотвра-

щает переобучение.  

Рассмотрим выражение 

 

min),(
2
→+  XQ , 

 

где λ – коэффициент регуляризации, позволяющий менять квадраты нормы ве-

сов.  

 Если значение λ велико, то второе слагаемое в функции потерь становит-

ся большим, что приводит к увеличению общей ошибки модели. Это происхо-

дит из-за того, что большое значение λ приводит к большому количеству штра-

фов, что делает модель недообученной. С другой стороны, если значение λ 

слишком маленькое, второе слагаемое также становится маленьким, а это мо-

жет привести к тому, что модель будет делать очень большие переобученные 

веса. Поэтому для наилучшей регуляризации необходимо выбирать коэффици-

ент исходя из метрик качества модели. 
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Пример кода L1-регуляризации 
 

Приведем код, демонстрирующий использование L1-регуляризации. Сге-

нерируем данные, где входные переменные будут представлены широкой мат-

рицей, зависимая переменная будет зависеть только от нескольких факторов, 

остальные факторы будут представлять собой шум. Затем применим L1-

регуляризацию, чтобы найти разреженные весовые коэффициенты, которые 

определяют полезные измерения X. 

Импортируем библиотеки NumPy и Matplotlib: 
import numpy as np 

import matplotlib.pyplot as plt 

Определим сигмоидную функцию: 
def sigmoid(z): 

return 1 / (1 + np.exp(-z)) 

Установим N = 50 и D = 50, чтобы это была широкая матрица. Значе-

ния X установим равномерно распределенными в диапазоне от –5 до +5: 
N = 50 

D = 50 

X = (np.random.random((N,D)) – 0.5)*10 

Истинные значения весовых коэффициентов, определяемые переменной 

true_w, установим равными 1; 0,5 и –0,5, так что только первые три размерно-

сти имеют значение, остальные же 47 размерностей установим равными нулю, 

никак не влияющими на результат: 
true_w = np.array([1, 0.5, -0.5] + [0]*(D-3)) 

Теперь определим Y. Это будет сигмоида от X плюс некоторый случай-

ный шум: 
Y = np.round(sigmoid(X.dot(true_w) + np.random.randn(N)*0.5)) 

Коэффициент обучения установим равным 0,001, штраф при L1-

регуляризации установим равным 2, количество итераций – 5000. Кроме того, 

рассчитаем значение функции затрат: 
costs[] 

w = np.random.randn(D) / np.sqrt(D) 

learning_rate = 0.001 

l1 = 2.0 

for t in xrange(5000): 

Yhat = sigmoid(X.dot(w)) 

delta = Yhat – Y 

w = w – learning_rate*(X.T.dot(delta) + l1*np.sign(w)) 

cost = -(Y*np.log(Yhat) + (1-Y)*np.log(1 – Yhat)). mean() + l1*np.abs(w).mean() 

costs.append(cost) 

plt.plot(costs) 

plt.show() 

Выведем графики истинных весовых коэффициентов и вычисленных ве-

совых коэффициентов: 
plt.plot(true_w, label=’true w’) 

plt.plot(w, label=’w map’) 

plt.legend() 

plt.show() 
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Результат работы программы представлен на рис. 2. 

 

 
Рис. 2. Результат L1-регуляризации (L = 2) 

 

Как видно из рис. 2, функция стоимости быстро сходится. Полученные 

значения весовых коэффициентов довольно хороши, но они не совпадают пол-

ностью с истинными значениями. 

Запустим программу еще раз, установив штраф L1-регуляризатора рав-

ным 10: 
l1 = 10.0 

Получим новую функцию затрат и весовые коэффициенты (рис. 3). 

 

      
Рис. 3. Результат L1-регуляризации (L = 10) 

 

Коэффициенты во втором случае намного ближе к нулю, поскольку сдви-

нуты в эту область регуляризацией. Следовательно, нужно выставлять меньший 

штраф регуляризации, чтобы достичь положительного результата.  

 

Пример кода L2-регуляризации 

 

Подключим библиотеки NumPy и Matplotlib.pyplot: 
import numpy as np 

import matplotlib.pyplot as plt 

Запишем функцию в виде полинома: 
x=np.arange(0,10.1,0.1) 

y=np.array([-a**4+100*a**2+a for a in x]) 
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Укажем размер признакого пространства (степень полинома N – 1). 
x_train, y_train = x[::2], y[::2] 

N=13 

Первоначально выставим коэффициент λ равным 0. Далее мы его будем 

менять до того значения, которое полностью будет соответствовать графику: 
L=0 

Формируем матрицу входных векторов: 
X = np.array([[a**n for n in range(N)] for a in x]) 

Запишем матрицу I из выражения 

 

( )
1

T T
* .

−

=    ω X X I X Y  

 
IL = np.array([[L if i==j else 0 for j in range(N)] for i in range(N)]) 

#print(IL) 

Первый коэффициент не регуляризуем: 
IL[0][0] = 0 

В матрице X оставляем только четные элементы: 
X_train = X[::2] 

Определяем вектор Y: 
Y = y_train 

Вычисляем вектор коэффициентов исходя из формулы ( *): 
A= np.linalg.inv(X_train.T @ X_train+IL) 

w= Y @ X_train @ A 

print(w) 

Отображаем график: 
yy = [np.dot(w,x) for x in X] 

 Прогноз модели: 
plt.plot(x,yy) 

Истинное поведение модели: 
plt.plot(x,y) 

plt.grid(True) 

plt.show() 

Запускаем программу с L = 0 (рис. 4). 
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Рис. 4. Результат L2-регуляризации (L = 0) 

 

Теперь поставим L = 10 (рис. 5). 

 

 
Рис. 5. Результат L2-регуляризации (L = 10) 

 

Из рис. 5 видно, что прогноз достаточно похож на поведение реальной 

модели. 

 

4. Метрики для оценки качества модели 

 

Рассмотрим основные метрики для различных задач машинного обуче-

ния. 

В задачах классификации модель должна предсказать категориальную 

метку для данного набора признаков. Приведем основные метрики, используе-

мые для оценки качества модели классификации. 
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Аccuracy (доля правильных ответов) 
 

Доля правильных ответов аccuracy(a, X) – наиболее популярная метрика 

качества классификационных моделей. Она указывает долю правильно класси-

фицированных объектов от общего числа объектов, т. е. тех ответов алгоритма, 

которые совпали с истинными значениями в обучающей или тестовой части 

выборки: 
 

1

1
( , ) [ ( ) ].

n

i i

i

accuracy a X a x y
n =

= =
 

 

Например, если есть 100 объектов и модель правильно классифицировала 

95 из них, то точность составит 0,95, или 95 %. 

Заметим, что если в выборке много объектов класса 0 и мало объектов 

класса 1, то модель будет хорошо определять объекты класса 0, а с объектами 

класса 1 будет ошибаться. И если поменять разметку классов на обратную, то 

доля правильных ответов резко снизится.  
 

Матрица ошибок 
 

Ошибки классификации бывают двух типов: False Negative (FN) и False 

Positive (FP) (табл. 3). 
 

Табл. 3. Ошибки классификации 

Предсказание 
Факт 

  

   

   

 

FN (False Negative) – количество объектов, которые на самом деле отно-

сятся к классу –1, но алгоритм отнес их к классу 1.  

FP (False Positive) – количество объектов, которые на самом деле являют-

ся классом 1, но алгоритм их отнес к классу –1.  

Матрица ошибок содержит и правильные ответы, которые также делятся 

на две группы: TP (True Positive) и TN (True Negative).  

TP – количество объектов класса 1, которые нашла модель.  

TN – количество объектов класса –1 или 0, которые нашла модель. 

Матрица ошибок дает информацию не только о том, сколько ошибок де-

лает алгоритм, но и позволяет понять, насколько он точен и как полно находит 

заданный класс. С этой целью вводятся понятия «точность» (precision) и «пол-

нота» (recall). Точность показывает, насколько можно доверять классификато-

ру. Классификатор с высокой точностью поместит в класс 1 только объекты 

этого класса.  
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Precision (точность) – это доля истинно положительных примеров среди 

всех примеров, классифицированных как положительные. То есть если модель 

предсказала, что 10 примеров положительны и из них только 9 действительно 

положительны, то точность составит 0,9, или 90 %. 

Вычисляется точность по формуле 

 

( , ) .=
+

TP
precision a X

TP FP
 

 

Точность – это отношение количества правильно отнесенных к опреде-

ленному классу объектов к количеству всех объектов этого класса в выборке. 

Recall (полнота) – это доля истинно положительных примеров среди 

всех реальных положительных примеров. То есть если в реальности у нас 20 

положительных примеров и модель правильно определила только 15 из них, то 

полнота составит 0,75, или 75 %. 

Полнота показывает, как хорошо классификатор находит объекты задан-

ного класса. Классификатор с высокой полнотой найдет все объекты класса 1 в 

выборке, но при этом прихватит в класс 1 и много объектов из класса –1. 

Вычисляется полнота по формуле 

 

( , ) .=
+

TP
recall a X

TP FN
 

 

Полнота – это отношение количества правильно отнесенных к опреде-

ленному классу объектов к количеству всех объектов, отнесенных классифика-

тором к этому классу. 

Настроить алгоритм на высокие и точность, и полноту, как правило, не-

возможно. Необходимо что-то выбирать. Выбор определяется конкретной зада-

чей, в которой нужно понять, что важнее – найти все объекты класса или найти 

объекты только одного класса. Компромиссом между этими мерами является 

метрика F1-score. 

 

F1-score (F-мера) 

 

F1-score вычисляется по формуле 
 

2
.

 
=

+

precision recall
F

precision recall
 

 

F1-score – это среднее гармоническое между точностью и полнотой. Эта 

метрика полезна в случаях несбалансированных классов, когда один класс 

представлен значительно большим количеством элементов, чем другой. 
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AUC-ROC-кривая 

 

Еще одной популярной метрикой качества классификации является  

AUC-ROC-кривая (Area Under the Receiver Operating Characteristic Curve). 

AUC-ROC-кривая строится в координатах TPR и FPR соответственно: 

 

FNTP

TP
TPR

+
= ,  

TNFP

FP
FPR

+
= . 

 

Вид AUC-ROC-кривой представлен на рис. 6. 

 

 
Рис. 6. AUC-ROC-кривая 

 

Качество классификатора оценивается площадью под AUC-ROC-кривой: 

чем она ближе к единице, тем лучше классификатор. График ROC-AUC-кривой 

для идеального классификатора представлен на рис. 7.  

 

 
Рис. 7. AUC-ROC-кривая идеального классификатора 

 

Метрика AUC-ROC измеряет качество ранжирования предсказаний моде-

ли, учитывая различные пороговые значения классификации.  Значение AUC-

ROC 1.0 соответствует идеальной модели классификации, в то время как значе-

ние 0.5 соответствует случайной модели. 
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В задачах регрессии модель должна предсказать непрерывное значение 

на основе данного набора признаков.  

Ниже приведены основные метрики, используемые для оценки качества 

модели регрессии. 

 

Mean Squared Error 

 

Mean Squared Error (MSE, среднеквадратичная ошибка) – это среднее 

значение квадратов разности между истинными и предсказанными значениями: 

 

 
=

−=
n

i
ii yxa

n
Xa

1

2
)(

1
),MSE( , 

 

где n – количество наблюдений, по которым строится модель и количество про-

гнозов. 

MSE применяется в тех случаях, когда требуется подчеркнуть большие 

ошибки и выбрать модель, которая дает меньше именно больших ошибок. Чем 

меньше MSE, тем лучше модель. График среднеквадратичной ошибки прини-

мает вид параболы (рис. 8).  Среднеквадратичная ошибка – гладкая непрерыв-

ная функция, поэтому она может быть использована для дифференцирования. 

 

 
Рис. 8. График среднеквадратичной ошибки 

 

Недостатком использования MSE является то, что если на одном или не-

скольких неудачных примерах, возможно, содержащих аномальные значе-

ния, будет допущена значительная ошибка, то возведение в квадрат приведет к 

ложному выводу, что вся модель работает плохо. 

https://wiki.loginom.ru/articles/outlier.html
https://wiki.loginom.ru/articles/outlier.html
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Root Mean Squared Error 

 

Root Mean Squared Error (RMSE, корень из среднеквадратичной ошиб-

ки) – это квадратный корень из MSE: 

 

( )  
=
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n

i
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n
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1

2
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1
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RMSE более интерпретируем, поскольку ошибка измеряется в тех же 

единицах, что и исходный целевой признак.  

 

Mean Absolute Error 

 

Mean Absolute Error (MAE, средняя абсолютная ошибка) – это среднее 

значение абсолютных разностей между истинными и предсказанными значени-

ями: 
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Чем меньше MAE, тем лучше модель. Как видно из рис. 9, абсолютную 

ошибку нельзя дифференцировать. 

 

 
Рис. 9. График абсолютной ошибки 
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R-squared (R-квадрат) 

 

R-squared (коэффициент детерминации) – это доля дисперсии целевого 

признака, объясненная моделью 

 

2

2 1

1

[ ( ) ]

( , ) 1 ,

( )

d

i i

i

d

i

i

a x y

R a X

y y

=

=

−

= −

−




 

 

где y  – среднее значение ответов на выборке. 

R-squared всегда находится между 0 и 1. Значение 0 указывает, что мо-

дель не объясняет вариацию целевого признака, с другой стороны, значение 1 

указывает на то, что модель идеально объясняет данные. 

В задачах ранжирования модель должна предсказать порядок элемен-

тов, а не конкретные классы или значения.  Например, рекомендация фильмов 

пользователю на основе его предпочтений является задачей ранжирования.  

В задаче ранжирования каждый объект описывается вектором значений харак-

теристических признаков. Задача состоит в том, чтобы отсортировать объекты 

по некоторому критерию. 

Ниже приведены основные метрики, используемые для оценки качества 

модели ранжирования: 

• Precision at K (точность на K) – это доля релевантных элементов среди 

первых K позиций ранжирования; 

• Normalized Discounted Cumulative Gain (NDCG, нормализованный дис-

контированный кумулятивный выигрыш). Эта метрика учитывает порядок ре-

левантных элементов в ранжировании, придавая больший вес более релевант-

ным элементам; 

• Mean Average Precision (MAP, средняя средняя точность) – это среднее 

значение средней точности по всем запросам. Средняя точность для каждого 

запроса –  это среднее значение точности на K после каждого релевантного 

элемента в ранжировании. 

 

5. Понижение размерности 

 

Часто наборы данных характеризуются большим количеством признаков, 

насчитывающих сотни параметров. Понижение размерности сводится к умень-

шению числа параметров модели. При этом значимые признаки, т. е. признаки, 

которые имеют влияние на функционал ошибки модели (а именно уменьшают 

его), должны быть оставлены. Удаление избыточных признаков способствует 

лучшему пониманию данных, ускоряет процесс настройки модели, повышает ее 

точность и улучшает интерпретацию.  
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Рассмотрим один из подходов к решению задачи понижения размерности – 

отбор признаков. Существует три основных метода отбора признаков:  

•  методы фильтров (filter methods); 

•  методы вложения (embedded methods); 

•  методы обертывания (wrapper methods). 

Выбор конкретного метода зависит от задачи и имеющихся данных.  

 

Методы фильтров (filter methods) 

 

Методы фильтров заключаются в отборе параметров по заданному усло-

вию. Например, удаление из модели сильно коррелирующих между собой при-

знаков. Эти методы применяются до обучения модели. К ним относятся: 

• визуальный анализ (например, удаление признака, у которого един-

ственное значение или пропущено большинство значений); 

• оценка признаков с помощью статистического критерия (дисперсии, 

корреляции, X2 и др.); 

• экспертная оценка (например, удаление признаков с некорректными 

значениями или признаков, которые не подходят по смыслу). 

Используя библиотеку pandas-profiling, можно оценить пригодность при-

знаков, т. е. провести разведочный анализ данных. Также можно применить 

библиотеку feature-selector, которая отбирает признаки по следующим пара-

метрам: коэффициент корреляции (если у признаков коэффициент корреляции 

больше порогового, то такие признаки удаляются), вариативность (признаки, 

состоящие из одного значения, удаляются), количество пропущенных значений 

(удаляются те признаки, у которых процент пропущенных значений больше 

порогового). 

В библиотеке scikit-learn реализованы более сложные методы отбора при-

знаков. Например, VarianceThreshold отбирает признаки, у которых дисперсия 

меньше заданного значения. SelectKBest и SelectPercentile оценивают взаимо-

связь признаков с целевой переменной, используя статистические тесты. Они 

позволяют отобрать заданное количество признаков (SelectKBest) и долю 

наилучших по заданному критерию признаков (SelectPercentile). В качестве 

статистических тестов используются F-тест, Х2 и взаимная информация. 

 F-тест оценивает степень линейной зависимости между признаками и 

целевой переменной, следовательно, он лучше всего подходит для линейных 

моделей. В scikit-learn он реализован как f_regression и f_classif для задач ре-

грессии и классификации соответственно. 

Статистический тест X2 применяется в задачах классификации и оценива-

ет зависимость между признаками и классами целевой пременной. Этот тип те-

стов требует неотрицательных и правильно масштабированных признаков. 

Взаимная информация показывает, насколько четко определена целевая 

переменная, если известны значения признака. Этот тип тестов позволяет нахо-

дить нелинейные зависимости. Реализован в scikit-learn для регрессии и клас-

сификации как mutual_info_regression и mutual_info_classif соответственно. 
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Методы вложения (embedded methods) 

 

Методы вложения производят отбор признаков во время построения мо-

дели, применяя, например, регуляризаторы. Регуляризация Lasso (L1-

регулязатор) – один из методов вложения.  

L1-регулязатор добавляет штраф (penalty) к различным параметрам моде-

ли во избежание чрезмерной подгонки. При регуляризации линейной модели 

штраф применяется к весовым коэффициентам. L1-регулязатор может обнулить 

веса малозначимых параметров модели. 

 

Методы обертывания (wrapper methods) 

 

Особенностью методов обертывания является поиск всех возможных 

подмножеств признаков, оценка их качества путем «прогонки» через модель. 

Эти методы представлены тремя алгоритмами: полный перебор, «жадный» ал-

горитм и Add-Del.  

В случае полного перебора ошибка считается на всех возможных комби-

нациях параметров. Выбирается та комбинация, которая дает минимальную 

ошибку. Этот метод долгий по времени и затратный по ресурсам. 

В случае «жадного» алгоритма берется признак, который дает минималь-

ную ошибку модели, после к нему добавляют по одному признаку (рис. 10). Ес-

ли функционал ошибки уменьшается, то признаки продолжают добавлять, ина-

че добавление признаков прекращают. 

 

 
Рис. 10. Пример работы «жадного» алгоритма 

 

С помощью коэффициента детерминации 
2R  оценивается точность моде-

ли, и, как видно из рис. 10, после 10 параметров точность модели практически 

не меняется. 

Алгоритм Add-Del является модернизацией «жадного» алгоритма. В нем 

параметр, который увеличивает функционал ошибки после его добавления в 

модель, удаляется из набора параметров, а в «жадном» алгоритме новые пара-
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метры только добавляются. Результат работы алгоритма Add-Del на тех же 

данных, что и у «жадного» алгоритма, показан на рис. 11. 

 

 
Рис. 11. Пример работы алгоритма Add-Del 

 

6. Метод градиентного спуска 
 

Метод градиентного спуска – это алгоритм оптимизации, который ис-

пользуется для минимизации ошибок в модели машинного обучения, т. е. ме-

тод, который находит минимальное значение функции потерь (рис. 12). Возь-

мем 0  – начальную точку градиентного спуска, каждая следующая точка бу-

дет выбираться по правилу 

( )1 ,k k kJ   + = −   

где   – размер шага;   – градиент.  

Процесс повторяется много раз, пока алгоритм не сможет предсказать от-

вет настолько хорошо, насколько это возможно. 

 

 
Рис. 12. Функция потерь 
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Функция потерь предназначена для отслеживания ошибки с каждым ша-

гом обучения, в то время как производная функции потерь относительно одного 

веса – это то, куда нужно сместить вес, чтобы минимизировать функцию потерь 

для этого примера обучения.  

Рассмотрим пример. Необходимо научить модель предсказывать рост че-

ловека по длине его стопы. Есть набор данных с длиной стопы и ростом чело-

века. Программа начинается со случайного предположения о взаимосвязи меж-

ду данными параметрами: = +y x b , где у – рост; х – длина стопы;   – весовой 

коэффициент   (допустим, она предполагает, что при каждом увеличении длины 

на 1 сантиметр рост увеличивается на 0,3 метра).  Далее для определения функ-

ции ошибки возьмем среднеквадратичную ошибку: 

 


=

+−=
N

i
ii bwxy

N 1

2))((
1

MSE . 

 

Для обновления параметров   и b найдем частные производные: 
MSE


 

и 
b

MSE
. Параметры обновляются по следующим формулам: 

MSE
= − 


  


new , 

b
bbnew




−=

MSE
 , где –   скорость обучения. Продол-

жаем обновлять параметры до тех пор, пока ошибка не станет достаточно ма-

лой или пока не достигнем определенного количества итераций. 

 
import numpy as np 
 
# Данные (пример) 
foot_length = np.array([22, 24, 26, 28, 30]) height= np.array([150, 160, 170, 180, 190]) 
 
# Инициализация параметров 
w = 0.3 
b = 0 
learning_rate = 0.01 
num_iterations = 1000 
 
# Функция для вычисления MSE 
def compute_mse(y_true, y_pred): return np.mean((y_true y_pred) ** 2) 

 
# Градиентный спуск 
for i in range(num_iterations): 
 
# Предсказание 
y_pred w foot_length + b 

 
# Вычисление градиентов 
dw2 np.mean(foot_length (heighty_pred)) 
db2 np.mean(height (heighty_pred)) 
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# Обновление параметров 
w learning_rate dw 
b = learning_rate * db 
 
# Печать ошибки каждые 100 итераций 
 
if i % 100 == 0: 
mse = compute_mse(height, y_pred) 
print(f"Итерация (і): MSE {mse}, {w}, b {b}") 
 
# Результаты 
print(f"Окончательные параметры: и {w}, b = {b}") 

 

7. Логистическая регрессия 

 

Машинное обучение использует теорию вероятности для предсказания и 

классификации. Можно обучать алгоритмы с помощью статистических законо-

мерностей. Одной из таких относительно простых возможностей является ис-

пользование теоремы Байеса. Пусть P(A) – априорная вероятность события A; 

P(B) – априорная вероятность события B; P(B | A) – условная вероятность 

наступления события B при истинности события A. Тогда условная вероятность 

гипотезы А при наступлении события В вычисляется по формуле Байеса: 

 
( | ) ( )

( | )
( )

P B A P A
P A B

P B


= . 

 

В отличие от обычной регрессии, где предсказываются значения число-

вой переменной, результатом работы логистического регрессора является веро-

ятность того, что объект принадлежит определенному классу. Следовательно, 

результат логистической регрессии всегда принадлежит отрезку [0, 1].  

Основная идея логистической регрессии заключается в том, что про-

странство исходных значений может быть разделено линейной границей на две 

соответствующих классам области. В случае двух измерений линейная граница – 

это просто прямая линия, в случае трех измерений – это плоскость. Если точки 

исходных данных удовлетворяют этому требованию, то их можно назвать ли-

нейно разделяемыми (рис. 13). 
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Рис. 13. Плоскость, разделяющая элементы пространства на два класса 

 

Граница задается в зависимости от имеющихся исходных данных и обу-

чающего алгоритма.  

 

Метод максимального правдоподобия (MLE) 

 

Рассмотрим широко используемый метод оценивания параметров в мате-

матической статистике – метод максимального правдоподобия. Если есть плот-

ность (вероятность) распределения p(y | θ), известная с точностью до парамет-

ра θ, то для его оценки надо максимизировать функцию правдоподобия – про-

изведение значений вероятностей в элементах нашей выборки (предполагаем, 

что они независимые и распределены по p(y | *), где * – неизвестное нам истин-

ное значение параметра θ): 

 

1 2

1

( | ) ( , ,..., | ) ( | )
=

= =
m

m i

i

p y p y y y p y   . 

 

Точка, в которой правдоподобие достигает максимального значения, 

называется оценкой максимального правдоподобия (MLE, Maximum Likelihood 

Estimation). Заметим, что θ может быть вектором (рис. 14). 

 

 
Рис. 14. Оценка максимального правдоподобия 
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Рассмотрим задачу бинарной классификации. Пусть банк выдает кредиты 

заемщикам. Данные (кроме персональных), которые необходимо предоставить 

банку, представлены на рис. 15. 

 

 
Рис. 15. Начальная выборка данных  

 

В данном примере для одинаковых объектов целевое значение может ме-

няться: кредит иногда возвращают, а иногда нет. Рассмотрим линейную модель 
 

( , ) sign( , )=a x x  . 

 

Данная модель для одного и того же вектора x возвращает 1 (кредит воз-

вращают) или –1 (кредит не возвращают). Но детерминированная модель (без 

случайностей) не обладает таким свойством. Мы будет иметь либо все время 1, 

либо все время –1. В такой ситуации будем возвращать не номер класса 1  

или –1, а вероятность появления прогнозируемого класса. Тогда используем ве-

роятностный подход для описания данной задачи: 
 

( | , )P y x  . 

 

Данная условная вероятность показывает вероятность появления прогно-

зируемого класса модели a(x, ω)  при предъявлении конкретного объекта x и 

вектора весов ω. Например, для объекта  Tx 2,1,1,10000=  вероятность равна 

 

3
( 1| , ) 0,5

6
P y x = + = = . 

 

А противоположную вероятность (для класса –1) можно вычислить так: 

 
( 1| , ) 1 ( 1| , ) 1 0,5 0,5P y x P y x = − = − = + = − = . 

 

Будем искать вектор весов  ω, опираясь на выражение вероятности  

P(y | x, ω). Используем метод максимального правдоподобия: 
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( )* arg max ,= P y x


  , 

 

т. е. выберем такое * , при котором вероятность достигает максимального зна-

чения. 

В данном случае мы имеем не одно наблюдение, а целую обучающую 

выборку, описываемую многомерной величиной: 

 

2 1 21 2 1( , , ..., | , , ), , ...,..., ,n nnP y y y x x x    . 

 

Для задачи оптимизации нужно конкретизировать это выражение. В ма-

шинном обучении делают предположение, что все объекты {xi, yi} обучающей 

выборки независимы между собой. Тогда многомерную формулу можно пред-

ставить как произведение отдельных вероятностей: 

 

11 2 2 2

1

1( , , ..., | , , .. (, , ..., ). ) ,, , |
=

=
l

in nn i

i

P y y y x x x P y x    . 

 

Такое упрощение многомерного распределения соответствует задаче, из-

вестной под названием наивный байесовский классификатор (Naive Bayes 

classifier). 

В формулу будем подставлять конкретные значения {yi} и {xi}, а менять 

(подбирать) можем только вектор коэффициентов ω. Следовательно, получаем 

функцию, зависящую только от вектора ω: 

 

1

) ( | .( , )
=

=
l

i i

i

P y xL    

 

Такая функция получила название функции правдоподобия. Для поиска 

наилучших значений вектора ω по всей обучающей выборке максимизируем ее: 

 

( )arg max= L  . 

Чтобы не искать максимум от произведения величин, переходим 

к логарифму правдоподобия (log-likelihood, log-loss): 

 

( ) ( )log log , max.= →L P y x   

 

Такое преобразование можно применить, т. к. логарифмическая функция 

монотонно возрастающая, следовательно, никак не повлияет на положение точ-

ки максимума функции. 
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Ранее при решении задач классификации мы вводили функционал, ап-

проксимирующий эмпирический риск некоторой выбранной функцией потерь: 

 

1

( , ) ( , ) min.
=

= →
l

l
i i

i

Q a X L x


  

 

Из преобразований видно сходство этих двух критериев качества. Только 

в одном случае мы максимизируем, а в другом – минимизируем. Но это легко 

свести к единой задаче минимизации и записать следующее равенство: 

 

1 1

( , ) ( , .o) l g ( | , ) min
==

= − →= 
l

l
i

l

i i

i

i

i

P yQ a X L x x


   

 

Отсюда следует важный, ключевой вывод: вероятностный взгляд на зада-

чи машинного обучения и взгляд через определение моделей с функциями по-

терь – это фактически одно и то же. Мы совершенно спокойно можем перехо-

дить из модельной плоскости в вероятностную и обратно при решении любых 

задач машинного обучения. 

Если теперь в качестве функции потерь выбрать логарифмическую 

 

( ) log(1 )−= + ML M e , 

 

то сходство обеих сумм станет еще больше, где 

 

, T
i i i iiM yyx x =  =    

 

есть отступ для i-го образца, показывающий, насколько далеко он находится от 

разделяющей гиперплоскости. Для корректного вычисления отступа для обоих 

классов целевые выходы должны быть y ∊ {–1; 1}. Также из формулы отступа 

автоматически вытекает линейная формула для определения разделяющей ги-

перплоскости: 

 

( ) xxg = , . 

 

В результате мы имеем 

 

1 1

( , ) log(1 ) log ( | , ) min.
−

= =

= + = − → i

l l
Ml

i i

i i

Q a X e P y x


  
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Откуда следует, что 

 

( ) ( )log 1 log ,−+ = −Me P y x   

 

или в виде 

 

i i

1
( , ) , 1, 2, ...,

1
−

= =
+ iM

P y x i l
e

 . 

 

Таким образом, логарифмическая функция потерь приводит нас к доста-

точно простой формуле построения оценок вероятностей для прогнозируемого 

класса. Функция 

 
1

( )
1 iM

M
e


−

=
+

 

 

называется сигмоидальной или логистической. Отсюда и пошло название тако-

го класса задач – логистическая регрессия. 

На рис. 16 приведен график логистической регрессии. 

 

 
Рис. 16. График логистической регрессии 

 

Из рис. 16 хорошо видно, что чем дальше от разделяющей гиперплоско-

сти находится правильно спрогнозированный класс (M > 0), тем выше значение 

вероятности (уверенности) классификатора, что прогноз верен. И наоборот, ес-

ли знак отступа отрицательный (M < 0), значит, произошла ошибка классифи-

кации, и вероятность будет меньше 0,5. Если же образ оказался точно на разде-

ляющей гиперплоскости, то на выходе увидим значение 0,5, т. е. классификатор 

не уверен, к какому классу отнести текущий вектор х . 

В библиотеке scikit-learn есть несколько реализаций наивного байесов-

ского классификатора, отличающихся предположениями о распределении при-

знаков при заданном классе. 
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8. Дерево принятия решений и случайный лес 

 

Рассмотрим еще одну модель для решения задач классификации и регрес-

сии – дерево принятия решений (решающее дерево, decision tree). Эта модель 

позволяет решать не только задачу бинарной классификации, но и задачу муль-

тиклассовой классификации.  

Рассмотрим пример дерева принятия решений для задачи классификации 

(рис. 17). 
 

 
Рис. 17. Пример дерева принятия решений 

 

Дерево принятия решений представляет собой направленный иерархиче-

ский граф. В каждой вершине дерева (на рис. 17 вершины изображены прямо-

угольниками) проверяется условие, по которому идет разделение выборки. Ес-

ли неравенство выполнено, то переходим по правому ребру, а если 

не выполнено – по левому. Для новой вершины снова проверяем условие и т. д. 

В каждом листе (на рис. 17 листья изображены кругами) содержится тот класс, 

к которому отнесен объект после ответа на вопросы – результат предсказания.  

Глубиной дерева называется количество вершин в самом длинном пути 

(листья не учитываются), связывающем корень дерева и его лист.  Кор-

нем дерева называется самая первая вершина. 

У дерева принятия решений есть геометрическая интерпретация. Каждо-

му вопросу вида «значение фактора ixx  » соответствует 

полупространство ixx   . Поэтому каждому пути от корня дерева 

до конкретного листа соответствует некоторая область многомерного про-

странства, ограниченная гиперплоскостями. Для всех объектов в этой области 

дерево принятия решений дает одно и то же предсказание, записанное в соот-

ветствующем листе. 

На рис. 18 приведена визуализация процесса построения решающих по-

верхностей, порождаемых деревом принятия решений. 

На рис. 19 приведен пример классификации с помощью дерева принятия 

решений. Все объекты выборки разделены на три класса: синий, желтый и 

красный. 
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Рис. 18. Решающие поверхности Рис. 19. Классификация деревом  

принятия решений 
 

Сначала провели разделение на синий и желтый классы, после этого жел-

тый класс разделили на красный и желтый классы. Для этого потребовалось де-

рево глубиной 2. Заметим, что некоторые объекты желтого класса попали в 

красный класс (см. рис. 19). Если продолжить разделение выборки по классам, 

применяя новые признаки, т. е. увеличивая количество вершин в дереве приня-

тия решений, то можно добиться того, что модель будет идеально работать 

на обучающей выборке. С одной стороны, это хорошо, потому что позволяет 

дереву принятия решений «видеть» нелинейные зависимости. С другой сторо-

ны, это означает, что дерево принятия решений склонно к переобучению,  

т. е. в результате обучения параметры подбираются таким образом, что точ-

ность модели на обучающей выборке будет больше, чем на валидационной. 

Это может быть связано, в частности, с тем, что в процессе обучения модель 

подстроилась под выбросы. 

Упражнение 1. Дан набор объектов, каждый из которых описывается 

факторами x1, x2, x3 (табл. 4), и дано дерево принятия решений (рис. 20). 

 
Табл. 4. Значения факторов 

   
–3 2 5 

10 10 1 

–5 –8 3 
 

 

 



49 

 

 
Рис. 20. Дерево принятия решений 

 

Сопоставьте каждый из объектов с классом, который для него предсказы-

вает дерево принятия решений (табл. 5). Может оказаться так, что какому-то 

классу не принадлежит ни одного объекта. В этом случае оставьте класс без со-

поставления. 

 
Табл. 5. Объекты и классы для упражнения 1 

Ответ Объект Ответ Класс 

1 [−3; 2; 5] A 1 

2 [10; 10; 1] Б 2 

3 [−5; −8; 3] В 3 

 

Ответ: 1В, 2В, 3А. 

Упражнение 2. Сопоставьте каждое из приведенных ниже деревьев при-

нятия решений (рис. 21) с его представлением в виде разбиения плоскости 

на отдельные области (рис. 22), используя табл. 6. На графиках число внутри 

каждой области соответствует классу, который дерево принятия решений пред-

сказывает для попавших в нее объектов. 

 

Дерево принятия решений 1 

 
 

Дерево принятия решений 2 

 

Рис. 21. Деревья принятия решений  

для упражнения 2 
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Дерево принятия решений 3 

 

Дерево принятия решений 4 

 

Рис. 21, лист 2 

 

Представление на плоскости 1 

 

Представление на плоскости 2 

 

Представление на плоскости 3 

 

Представление на плоскости 4 

 

Рис. 22. Представления деревьев принятия решений на плоскости для упражнения 2 

 
Табл. 6. Сопоставление дерева принятия решений и его представления на плоскости 

Ответ Дерево принятия решений Ответ Представление на плоскости 

1 Дерево принятия решений 1 A Представление на плоскости 1 

2 Дерево принятия решений 2 Б Представление на плоскости 2 

3 Дерево принятия решений 3 В Представление на плоскости 3 

4 Дерево принятия решений 4 Г Представление на плоскости 4 

 

Ответ: 1Б, 2В, 3A, 4Г. 
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8.1. Алгоритм построения дерева принятия решений 
 

Построение дерева принятия решений идет путем разделения выборки на 

части по вводимым факторам. Допустим, необходимо построить очередную 

вершину дерева. На вход вершине подается набор данных X  из обучающей 

выборки. Выбираем порог c по критерию ошибки Q для фактора i, минимизи-

руя критерий ошибки: 
 

min),,( →cixQ . 

 

В каждой вершине проверяется справедливость неравенства xi ≥ c. Факто-

ры i и значения порога перебираем так, чтобы значение функции Q(x, i, c) было 

минимальным. Набор данных X делится на два поднабора lX  и rX – для перво-

го поднабора неравенство в вершине не выполняется, а для второго выполняет-

ся. Далее аналогично построим левую и правую вершины, в качестве обучаю-

щей выборки для них будут использованы lX  и rX . 

В какой момент нужно остановить процесс ветвления? То есть когда вме-

сто того, чтобы формировать новую вершину, мы будем формировать лист? 

Существуют разные критерии: 

• все данные, которые пришли на вход, относятся к одному классу; 

• ограничение по максимальной глубине дерева (максимальная глубина 

является гиперпараметром модели). В качестве предсказания в этом листе вы-

берем класс, элементов которого больше всего в выборке, которая пришла 

на вход; 

• ограничение на минимальное количество объектов в листе; 

• ограничение на максимальное количество листьев в дереве. 
 

Критерий информативности 
 

Чтобы оценить качество работы алгоритма дерева принятий решений, ис-

пользуют критерий информативности, который показывает, насколько хорошо 

решающее дерево компонует объекты в своих листьях.  

Выбор оптимального разбиения определяется критерием ошибки 

),,( cixQ : 

 

)()(),,( r
r

l
l XH

X

X
XH

X

X
cixQ += , 

 

где lXX , , rX  – количество объектов в выборках X, lX , rX  соответственно; 

)(XH   – критерий информативности.  

Чем меньше значение функции Q, тем более качественным получается 

разбиение. В случае задач классификации используется критерий информатив-

ности Джини. Вычисляется критерий Джини по формуле 
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 




−=
kc

cc ppXH
...,.2,1

)1()( , 

 

где cp  – это доля объектов, которые принадлежат классу c в выборке X: 

1
[ ].



= =c i

i X

p y c
X

 

Можно также использовать энтропийный критерий информативности 

(энтропию): 
 


=

−=
k

c
cc ppXH

1

ln)( . 

 

Энтропия в дереве принятия решений означает однородность. Если дан-

ные полностью однородны, то энтропия равна нулю. Если данные разделены    

1 : 1, то энтропия равна 1. Энтропия измеряется в диапазоне от 0 до 1.  

Рассмотрим пример. Пусть выборка содержит 100 объектов, принадле-

жащих классу 0 или классу 1. Если 30 объектов принадлежат классу 0, тогда 

10

3
0 =p . Оставшиеся 70 объектов принадлежат классу 1, тогда 

10

7
1 =p . Энтро-

пия приблизительно равна 0,88, т. е. имеем высокий уровень энтропии, или 

беспорядка. 

Величина, обратная энтропии, – прирост информации. Чем выше прирост 

информации, тем меньше энтропия, а следовательно, меньше неучтенных дан-

ных и лучше результат.  

 

Стрижка деревьев 

 

При стрижке дерева строится переобученное дерево максимальной глу-

бины, например когда в каждом листе содержится по одному объекту. Затем 

оптимизируется его структура, т. е. убираются лишние листья на основе раз-

личных критериев, с целью улучшения обобщающей способности. 

 

8.2. Случайный лес 

 

Объединение нескольких деревьев, обученных на имеющихся данных, 

дает возможность получить на тестовых данных качество выше, чем могла по-

казать каждая из этих моделей отдельно. Одной из разновидностей композиции 

решающих деревьев является случайный лес.  

В качестве результата работы случайного леса, состоящего из нескольких 

деревьев принятия решений, берут усредненное значение, которое предсказы-

вают отдельные деревья. Тогда некорректная работа деревьев на отдельных вы-
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бросах скомпенсируется, а на данных, отражающих общую зависимость, слу-

чайный лес будет работать корректно, поскольку отдельные деревья также 

в среднем работали корректно на этих данных. Деревья нужно сделать макси-

мально непохожими друг на друга. Этого можно добиться одним из следующих 

способов: 

• каждое дерево обучается на своей выборке; 

•  в каждой вершине каждого дерева добавляется случайность при выбо-

ре фактора и порогового значения. 

Большое количество разных обучающих выборок можно получить 

с помощью подхода бутстрап. Его идея в том, чтобы на основе исходной обу-

чающей выборки размером n сгенерировать другую обучающую выборку раз-

мером n, которая называется бутстрап-выборкой. Пронумеруем объекты 

в обучающей выборке от 1 до n и будем генерировать новые выборки 

по следующему правилу: на каждую из n позиций в бутстрап-выборке будем 

помещать случайный объект из тестовой выборки. За счет того, что объекты вы-

бираются случайно и независимо, в бутстрап-выборку может попасть несколько 

одинаковых объектов из исходной выборки. Для построения случайного леса 

принято генерировать много бустрап-выборок, например порядка 10 000. 

Чтобы добавить случайность в построение каждого дерева, нужно 

в каждой вершине дерева перебирать не все факторы для построения оптималь-

ного вопроса, а выбирать случайный набор факторов и перебирать только 

их значения. 

Алгоритм построения случайного леса: 

1. Генерируем N бутстрап-выборок на основе обучающей выборки. 

2. На каждой бутстрап-выборке строим свое дерево принятия решений. 

Для каждого дерева выполнены два условия: 

• минимальное число элементов в листе равно L; 

• в каждой вершине используется K случайных факторов. 

Чтобы сделать предсказание с помощью случайного леса для задачи ре-

грессии, нужно усреднить предсказания всех деревьев для конкретного объекта. 

Для задачи классификации нужно отнести объект к тому классу, за который де-

ревья «отдали» больше всего голосов. 

Гиперпараметры случайного леса – числа N, L, K: 

• N – количество деревьев, которые используются для предсказания. 

При увеличении количества используемых деревьев модель не переобучается. 

Но важно понимать, что чем больше деревьев в случайном лесе, тем сложнее 

обучать модель; 

• L – минимальное количество таких объектов обучающей выборки, ко-

торые могут попасть в лист дерева. Этот параметр принято брать небольшим, 

например 3. Нужно, чтобы каждое дерево хорошо решало поставленную задачу 

на своей обучающей выборке; 

• K – размер случайного подмножества всего множества факторов. 

Его принято выбирать исходя из задачи. Для задачи регрессии можно поло-
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жить 3=K m , где m – число всех факторов. Для задачи классификации можно 

положить mK = . Это только рекомендации, и если есть возможность экспе-

риментировать с гиперпараметрами, то стоит это сделать. 

 

8.3. Bagging 

 

Рассмотрим методы обучения композиции алгоритмов. В методе бэггинг 

(bagging) алгоритмы обучаются на сгенерированных бутстрапом выборках: 

каждый алгоритм на своей выборке. Каждое решающее дерево строится до 

конца, т. е. пока в листе не окажется единственный объект или минимальное 

количество объектов. Признак, по которому идет разделение в выборки на каж-

дом шаге построения дерева, выбирается случайно. Далее усредняются прогно-

зы каждого дерева. 

 

8.4. Boosting 

 

В методе бустинг (boosting) деревья обучаются последовательно, причем 

каждый последующий алгоритм учитывает ошибки предыдущего. Алгоритм 

бустинга выполняет следующие шаги для обучения: 

1. Создает первое дерево принятия решений (базовый алгоритм). 

2. Обучает его на всей выборке. 

3. Делает предсказание. 

4. Вычисляет ошибку. 

5. Создает следующее дерево принятия решений и обучает его на ошиб-

ках, полученных на предыдущем шаге, и на том же наборе параметров. 

6. Суммирует предсказания полученных моделей (деревьев). 

7. Повторяет шаги 4–6, пока сумма предсказаний не перестанет меняться 

или ошибка не станет меньше определенного порога. 

 Алгоритм бустинга учитывает вклад каждой модели в зависимости от ее 

точности, т. е. у каждой модели композиции есть свой вес. Модель с лучшими 

прогнозами будет иметь влияние на окончательное решение. 

 

9. Метод опорных векторов (SVM) 

 

9.1. Метод опорных векторов для линейно разделимого случая 

 

Рассмотрим задачу бинарной классификации образов с учетом концепции 

разделяющей гиперплоскости. Будем считать, что мы оперируем двумерным 

признаковым пространством. Тогда каждый образ класса может быть 

представлен точкой на плоскости. Предположим, что образы обучающей 

выборки распределены так, как показано на рис. 23. 
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Рис. 23. Различные разделяющие линии для одинаковой выборки 

 

Для данного случая можно построить несколько разнообразных линий 

разделения (гиперплоскостей), каждая из которых способна правильно отделять 

один класс от другого. Возникает вопрос о предпочтительности какого-либо из 

вариантов разделения. В рамках машинного обучения мы должны учитывать, 

что модель, обученная на конкретной выборке, должна успешно обрабатывать 

другие произвольные наборы данных из того же распределения. Следовательно, 

модель должна обладать хорошими обобщающими способностями и не должна 

быть слишком специфичной для конкретного набора данных. Рассматривая 

предложенные линии разделения с этой точки зрения, увидим, что более 

предпочтительной кажется синяя линия. Это объясняется тем, что красная и 

зеленая линии предполагают дополнительные ограничения относительно 

распределения образов обоих классов. Красная линия предполагает 

горизонтальное распределение образов, а зеленая – вертикальное (рис. 24). 
 

 
Рис. 24. Предположения линий вне обучающей выборки 

 

В свою очередь, синяя линия, сохраняя исходное распределение в 

большей степени, также формулирует свои предположения. Однако она 

ориентирована на визуальное сохранение исходного распределения. Эта 

концепция разделения гиперплоскостей, которая ориентирована исключительно 

на обучающую выборку и, по возможности, не делает дополнительных 

предположений о распределении образов в классах, легла в основу метода 

опорных векторов (Support Vector Machine – SVM). 
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Формализуем это интуитивное соображение на математическом уровне. 

Ответим на вопрос о том, какая же разделяющая гиперплоскость делает 

минимальные предположения о распределении классов и, следовательно, 

обеспечивает лучшую обобщающую способность алгоритма классификации.  

С точки зрения SVM оптимальная разделяющая гиперплоскость – это та, 

которая образует наиболее широкую полосу между объектами двух классов. 

При этом сама гиперплоскость точно проходит посередине этой полосы (рис. 25). 
 

 
Рис. 25. Различные разделяющие гиперплоскости 

 

Ширина полосы является критическим фактором, поскольку чем шире 

полоса, тем более надежно классификатор сможет разделять образы разных 

классов. Для того чтобы сформулировать эту идею в математических терминах, 

необходимо сначала определить модель классификатора, которая фактически 

определяет уравнение гиперплоскости в пространстве признаков. Выберем 

наиболее простую линейную модель: 

 

( )( ) sign ( ) sign ( , ) signTa x x b x b x b  = − = − =  − . 

 

Это уравнение может быть представлено различными способами, но все 

они описывают линейную комбинацию вектора параметров   с образом x , 

дополненную смещением b . В результате работы модель возвращает значения 

 
( ) { 1; 1}a x  − + . 

 

Сначала предположим, что обучающая выборка состоит из линейно 

разделимых образов, а затем расширим этот случай на линейно неразделимый.  

Ширина полосы будет зависеть от расположения граничных векторов x  в 

пространстве признаков (рис. 26). 
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Рис. 26. Общее описание разделяющей гиперплоскости 

 

Пусть любые два образа, принадлежащие разным классам, находятся 

близко к разделяющей границе, т. е. лежат на границе полосы (рис. 27). Тогда 

ширину полосы можно вычислить как проекцию вектора x  на вектор  : 

 

, ( ) cos
T

x x x x x x    −  =  − =  − + −+ − + − . 

 

+  

Рис. 27. Граничные элементы выборки 

 

Итак, ширина полосы, умноженная на длину вектора коэффициентов  , 

дает нам конечный результат:  

 




 −+

−+

−
=−=

xx
xxL

,
cos . 

 

Эту величину нужно максимизировать: 

 

max
,

→
−

= −+



 xx
L . 
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Для удобства в методе опорных векторов в знаменателе запишем не 

длину вектора  , а квадрат его нормы: 

 

 = T2
. 

 

Таким образом, получим выражение для максимизации ширины полосы: 

 

max
,

→
−

= −+



 xx
L . 

 

Такая замена не влияет на суть задачи, но упрощает вычисления, т. к. не 

нужно проводить операцию извлечения квадратного корня при решении 

оптимизационной задачи. 

В задачах бинарной классификации вводится понятие отступа (margin): 

 

( ) libxyxayM iiiii ...,,2,1,,)( =−==  . 

 
Эта величина характеризует расстояние от разделяющей гиперплоскости 

до выбранного образа. Причем 

 

0 при верной классификации;

    0 при неверной классификации






i

i

M

M
 

 
Так как рассматривается случай линейно разделимых образов, то 

заведомо существуют значения ω и b, такие, что 

 

( ) libxyM iii ...,,2,1,0, =−=  . 

 
Можно нормировать значения отступа так, чтобы соблюдалась 

следующая логика: 

 

( ) 1;  ( ) 1M x M xi i= =+ − . 

 

Тогда ширина полосы будет определяться выражением 

 

max
2

2
→=


L . 

 

. 
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Следовательно, для линейно разделимых образов мы получаем 

следующую задачу минимизации: 

 









=

→

....,,2,1,1),(

;min
2

1

,,

2

libM i

b




  

 

Итак, задача заключается в том, чтобы найти значения ω и b, 

минимизирующие квадратичную норму весов. В то же время эти значения 

должны быть такими, чтобы все отступы были больше единицы, за 

исключением тех образов, которые лежат непосредственно на границах полосы, 

где отступ должен быть равен единице. 

 

9.2. Метод опорных векторов для линейно неразделимого случая 

 

В общем случае образы в обучающих выборках редко бывают линейно 

разделимыми. Поэтому при линейно неразделимой выборке мы не можем найти 

параметры ω и b, которые удовлетворяли бы линейным ограничениям на 

отступы: 

 

( , ) 1,    1, 2, ..., .M b i li   =  

 
Для решения этой проблемы был продложен подход, разрешающий 

классификатору допускать ошибки на некоторую величину (slack variables): 

 

0,    1, 2, ..., =i li  

 
для каждого i-го образа: 

 

libM ii ...,,2,1,1),( =−  . 

 
Величины slack variables можно рассматривать как некоторый штраф за 

нарушение исходного неравенства. Очевидно, если все slack variables стремятся 

к бесконечности, то можно взять любые веса, в том числе 0, и оптимизационная 

задача будет решена. Однако это не соответствует требуемым целям. 

Разрешается ошибаться, но величина этой ошибки должна быть как можно 

меньше. Таким образом, нужно найти такие значения ω и b, чтобы 
 

0,    1, 2, ..., .→ =i li  
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Это условие нужно учесть в алгоритме минимизации, записав его 

следующим образом: 
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где C – гиперпараметр, определяющий степень минимизации величин i . 

В результате математических преобразований исходная система 

становится эквивалентной безусловной задаче минимизации: 
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Функция потерь здесь имеет следующий вид (зеленый график) и 

называется hinge loss (рис. 28). 

 

 
Рис. 28. Сравнение функций потерь 

 

Для сравнения здесь приведена логарифмическая функция потерь. Суть 

заключается в том, что SVM фактически представляет собой решение 

оптимизационной задачи при использовании функции потерь hinge. Эта 

функция начинает «наказывать», если минимальный отступ для объекта 

становится меньше единицы, и не «наказывает» (нулевой штраф), если отступ 

больше или равен 1. Следовательно, для функции потерь hinge ширина полосы 

между образами двух классов имеет важное значение. В этом отличие от 

логистической функции потерь, которая стремится максимально раздвинуть 

образы классов относительно разделяющей гиперплоскости. 
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Также из метода опорных векторов очень хорошо виден геометрический 

смысл L2-регуляризатора. Фактически этот регуляризатор отвечает за 

максимизацию ширины полосы между соседними образами двух разных 

классов, что в итоге приводит к улучшению обобщающих способностей 

полученного классификатора. 

 

9.3. Реализация метода опорных векторов (SVM) 

 

Для реализации метода опорных векторов используем условие Каруша –

Куна – Таккера с поиском седловой точки функции Лагранжа. Коэффициенты 

ω могут быть вычислены по формуле 
 


=

=
l

i
iii xy

1

 , 

 
где { }i  (i = 1, …, l) – некоторые коэффициенты, которые вычисляются по ходу 

решения данной оптимизационной задачи.  

Оптимальный вектор ω представляется в виде линейной комбинации 

наблюдений из обучающей выборки. Обычно нулевых значений λ достаточно 

много, оставшиеся используются при расчете коэффициентов. Такие 

наблюдения (векторы) получили название опорных. Отсюда и пошло название 

метод опорных векторов. 

Значения коэффициентов λ можно интерпретировать следующим 

образом: 
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Первые называются периферийными объектами, следующие – опорными 

граничными объектами, последние – опорными ошибочными объектами (рис. 29). 
 

 
Рис. 29. Разграничение опорных векторов по степени значимости 
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9.4. Реализация SVM на Python 

 

Представленный ниже код реализует использование метода опорных 

векторов (SVM) для классификации двух классов данных в двумерном 

пространстве признаков с учетом, что данные линейно разделимы. Программа 

начинается с импорта необходимых библиотек: numpy для работы с массивами 

данных, matplotlib.pyplot для визуализации данных и построения графиков, 

sklearn.svm для использования метода опорных векторов. 

Затем программа создает обучающие данные, задавая массив Х, 

содержащий координаты точек в двумерном пространстве, и массив y, 

содержащий метки классов для каждой точки. После этого выполняется 

обучение модели SVM с помощью классификатора svm.SVC с линейным 

ядром, который обучается на обучающих данных с помощью метода fit. 

Полученные параметры разделяющей гиперплоскости – коэффициенты 

гиперплоскости и смещение – извлекаются из атрибутов coef_ и intercept_ 

модели. Затем данные и разделяющая гиперплоскость визуализируются на 

графике: данные отображаются с использованием функции scatter, разделяю-

щая гиперплоскость строится с помощью функции plot, а опорные векторы 

выделяются на графике кружками. График отображается с помощью функции 

show. 
 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn import svm 

 

X = np.array([[1, 2], [2, 3], [3, 3], [2, 1], [3, 2], 

              [8, 9], [9, 10], [10, 10], [9, 8], [10, 9]]) 

y = np.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) 

 

clf = svm.SVC(kernel='linear') 

clf.fit(X, y) 

w = clf.coef_[0] 

b = clf.intercept_[0] 

 

plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired) 

 

x_axis = np.linspace(0, 12) 

y_axis = -w[0] / w[1] * x_axis - b / w[1] 

plt.plot(x_axis, y_axis, 'k-') 

 

plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], 

           s=100, facecolors='none', edgecolors='k') 

plt.show() 
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Результаты выполнения программы представлены на рис. 30. 

 

 
Рис. 30. Графическое изображение линейно разделимой выборки 

 

Следующий пример предполагает, что данные линейно неразделимы. Код 

приведен ниже. Сначала создается случайная выборка данных, состоящая из 

100 точек, где первые 50 точек принадлежат к классу 0, а остальные 50 – к 

классу 1. Данные распределены вдоль двух гауссиан с некоторым смещением. 

Модель SVM с линейным ядром обучается на этих данных. Разделяющая 

гиперплоскость визуализируется на графике, а также отображаются опорные 

векторы, которые являются точками данных, ближайшими к разделяющей 

гиперплоскости. 

На графике точки обозначены с использованием цветовой схемы 

plt.cm.Paired: точки класса 0 отображаются синим цветом, а точки класса 1 – 

красным (рис. 31). Разделяющая гиперплоскость изображается линией, а 

опорные векторы – черными ободками. 

 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn import svm 

 

np.random.seed(0) 

X = np.random.randn(100, 2) * 2 

X[:50] += 3 

y = np.concatenate([np.zeros(50), np.ones(50)]) 

 

clf = svm.SVC(kernel='linear') 

clf.fit(X, y) 

 

w = clf.coef_[0] 

b = clf.intercept_[0] 
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plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired) 

 

x_axis = np.linspace(-4, 8) 

y_axis = -w[0] / w[1] * x_axis - b / w[1] 

plt.plot(x_axis, y_axis, 'k-') 

 

plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], 

            s=100, facecolors='none', edgecolors='k') 

 

plt.show() 

 

 
Рис. 31. Графическое изображение линейно неразделимой выборки 

 

9.5. SVM с нелинейными ядрами 

 

Вернемся к общей формуле модели линейного классификатора: 

 

1

( ) sign ,
=

 
= − 

 

h

i i i
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a x y x x b . 

Линейные преобразования в исходном признаковом пространстве можно 

заменять и другими. Например, возвести скалярное произведение в квадрат: 

 

( ) hixxxx T
ii ...,,2,1,,

22
== . 

 
Для указанного преобразования и некоторого ряда других 

преобразований решение системы остается неизменным. 

На рис. 32 изображены разделяющие гиперплоскости для разных типов 

ядер. 
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Рис. 32. Разделяющие гиперплоскости для разных типов ядер 

 

Здесь linear – обычное скалярное произведение, poly – полиномиальное 

ядро, rbf – радиальные ядра, а также ядро вида th. Перечисленные ядра можно 

представить следующим образом: 
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На основе ядра вида th получается аналог двухслойной нейронной сети с 

сигмоидальными функциями активации. 

 

9.6. Способы синтеза ядер 

 

Существует несколько простых правил синтеза ядер для метода опорных 

векторов. К основным можно отнести следующие подходы: 

•  ( , ') , 'K x x x x=  – скалярное произведение; 

•  ( , ') 1K x x =  – константа; 

•  1 2( , ') ( , ') ( , ')K x x K x x K x x=   – произведение ядер (подходящих для 

SVM); 

•  RXxxxxK →= :,)(),(),(   – применение функции;  

•  
1 1 2 2 1 2( , ') ( , ') ( , '),    , 0K x x K x x K x x   = +   – сумма ядер. 

На практике обычно используется ограниченный набор ядер для метода 

опорных векторов (SVM): линейные, полиномиальные, радиальные и 

гиперболический тангенс. Эти ядра встроены в библиотеку scikit-learn и обычно 

их достаточно для большинства задач. Важно отметить, что для каждого типа 

ядра вычислительная схема SVM немного изменяется. Именно поэтому нельзя 

создать универсальный функционал для произвольных ядер без использования 

субградиентных методов. 
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9.7. Преимущества и недостатки SVM 

 

Преимущества SVM: 

• решает задачу квадратичного программирования, которая имеет 

единственное оптимальное решение; 

• позволяет выявить опорные векторы, включая выбросы, 

присутствующие в обучающей выборке. Иногда SVM применяется для 

обнаружения выбросов; 

• в отличие от нейронных сетей SVM позволяет определить необходимое 

число опорных векторов, аналогичное числу нейронов скрытого слоя. 

Недостатки SVM: 

• нет общих методов оптимизации для произвольных ядер; 

• нет встроенного механизма выбора наиболее информативных 

признаков, аналогичного L1-регуляризации; 

• необходимо настраивать параметр C для каждой задачи. 

Тем не менее SVM считается одним из лучших методов классификации 

среди линейных классификаторов. Благодаря максимизации ширины полосы 

между классами этот метод обычно демонстрирует лучшие обобщающие 

способности на реальных данных. SVM также относительно легко адаптировать 

для работы с нелинейными данными, используя различные ядра, его 

возможности могут быть расширены с использованием L1-регуляризации. 

 

10. Нейронныe сети 

 

10.1. Принципы действия нейронной сети 

 

Нейронная сеть – это математическая модель, ее программное или аппа-

ратное воплощение, построенная по принципу организации и функционирова-

ния биологических нейронных сетей. Здесь реализованы идеи моделирования 

мыслительных или поведенческих явлений в сетях из связанных между собой 

простых элементов. Существует несколько видов нейронных сетей:  

• искусственные нейронные сети (Artificial Neural Networks, ANN). Ис-

пользуются для решения широкого спектра задач, в том числе задач распозна-

вания образов и классификации. ANN применяются, например, для анализа ме-

дицинских изображений (рентгеновских снимков, сканов компьютерной томо-

графии и т. д.); 

• сверточные нейронные сети (Convolutional Neural Networks, CNN). Они 

оптимизированы для обработки изображений и видео. CNN используют специ-

альные фильтры, чтобы выяснить, что изображено на картинке и какие детали 

существенны. Применяются, например, для распознавания лиц при разблоки-

ровке смартфонов; 

• рекуррентные нейронные сети (Recurrent Neural Networks, RNN). Ис-

пользуются для работы с последовательными данными: текстами, временными 
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рядами, аудио. RNN можно применять, например, для автоматического анализа 

тональности текстов в соцмедиа. 

В настоящее время существенно расширяется перечень задач, решаемых с 

помощью нейронных сетей, и этот перечень неисчерпаем. 

При построении нейронных сетей были учтены важные особенности их 

естественных аналогов. А именно: ошибка в срабатывании отдельного нейрона 

остается незаметной в общей массе взаимодействующих клеток. Следователь-

но, нейронная сеть является устойчивой системой, в которой отдельные сбои не 

оказывают существенного влияния на результаты ее функционирования. Также 

важной особенностью является высокая скорость функционирования нейрон-

ной сети. Достигается она благодаря параллельной обработке информации 

огромным количеством нейронов, соединенных многочисленными связями.  

Искусственные нейронные сети обучаются на основе опыта, обобщают  

прецеденты для новых случаев и извлекают существенные свойства из сведе-

ний, содержащих излишние данные, т. е. они обладают свойствами обучения, 

обобщения и абстрагирования. Нейронная сеть способна менять свое поведение 

в зависимости от внешней среды. После получения входных сигналов вместе с 

требуемыми выходами они самонастраиваются с целью обеспечить ожидаемую 

реакцию, т. е. обучаются. Результат, полученный после обучения, может быть в 

некоторой степени нечувствителен к небольшим изменениям входных сигна-

лов. Сеть делает обобщение автоматически благодаря своей стуктуре. И если на 

вход нейронной сети поступает несколько искаженных вариантов образов, то 

сеть сама может создать на выходе новый для нее идеальный образ. 

Нейронная сеть обучается следующим образом: ей предъявляются объек-

ты с указанием их принадлежности определенному образу или классу, и сеть 

должна приобрести способность реагировать одинаково на все объекты одного 

образа или класса и по-разному реагировать на объекты различных образов или 

классов. После обучения следует процесс распознавания новых объектов, ха-

рактеризующий действия уже обученной системы. По мере накопления опыта 

нейронная сеть может повышать точность результатов и адаптироваться к про-

исходящим изменениям. 

 

10.2. Нейронная сеть в виде перцептрона 

 

Перцептрон – это нейронная сеть прямого распространения сигнала  

(без обратных связей), в которой входной сигнал преобразуется в выходной, 

проходя последовательно через один или несколько слоев.  

Слой – это один или несколько нейронов, на входы которых подается 

один и тот же общий сигнал. В рамках одного слоя данные обрабатываются па-

раллельно, а в масштабах всей сети – последовательно, от слоя к слою. Нейро-

ны текущего слоя передают результаты своей работы на входы нейронам сле-

дующего слоя.  В конце стоит один искусственный нейрон, который агрегирует 

поступающую на него информацию и возвращает одно итоговое значение. 
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На рис. 33 приведена нейронная сеть в виде многослойного перцептрона, 

состоящего из трех слоев. В первом слое этого перцептрона находится один ис-

кусственный нейрон, во втором слое – два нейрона, в третьем – один нейрон. 

Первый слой называется входным или сенсорным, внутренние слои называются 

скрытыми или ассоциативными, последний слой называется выходным или ре-

зультативным.  

 

 
 

Рис. 33. Нейронная сеть в виде многослойного перцептрона 

 

В основе работы искусственной нейронной сети лежит искусственный 

нейрон. В рамках сети нейроны связаны между собой по принципу, аналогич-

ному связям биологической нейронной сети. 

Перцептрон – это модель машинного обучения, которая является праро-

дителем современных методов глубокого обучения. Модель перцептрона была 

вдохновлена моделью из реальной жизни, в частности строением реального фи-

зического нейрона (рис. 34).  

 

 
Рис. 34. Физический нейрон 

 

В 1943 г. американские кибернетики и нейробиологи Уоррен Мак-Каллок 

и Уолтер Питтс предложили математическую модель, которая повторяла строе-

ние физического нейрона. Эта модель получила название «искусственный 

нейрон» (рис. 35). 
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Рис. 35. Искусственный нейрон 

 

Искусственный нейрон принимает на вход сигнал по нескольким каналам 

(по аналогии с физическим нейроном они называются дендритами) от произ-

вольного числа других нейронов. Связи, по которым выходные сигналы одних 

нейронов поступают на вход других, называют синапсами, как и в естественной 

нейронной сети. На вход дендрит с номером i получает значение фактора xi. 

Каждому дендриту соответствует вес ωi. 

Процесс обработки искусственным нейроном входящих сигналов выгля-

дит так: нужно взять каждый входящий сигнал xi , домножить на соответству-

ющий вес ωi и сложить: 

 

1
ˆ ( ) ( ).

=
= − +

n

i ii
y f z f x b   

 

В этой формуле к взвешенной сумме входящих в нейрон сигналов добав-

лена константа b, которая нужна для математической корректности этого вы-

ражения. На основе полученной суммы нейрон должен принять решение, пере-

давать свой сигнал дальше или нет. Если нейрон передает сигнал дальше, гово-

рят, что нейрон прошел активацию. 

Взвешенная сумма z передается заданной для этого нейрона функции f, 

которая называется функцией активации. В качестве результата работы нейрона 

возвращается значение 
 

1

ˆ ( ) ( ) .
=

= − +
n

i i

i

y f z f x b  

 

Если ŷ  = 1, будем говорить, что нейрон прошел активацию, если ŷ  = – 1 – 

что не прошел. Чтобы нейрон мог работать по этому правилу, достаточно взять 

функцию  
 

1

ˆ ( ) ( ) .
=

= − +
n

i i

i

y f z f x b  

 

Перцептрон – обучающаяся модель, построенная на основе искусственно-

го нейрона. Обучать перцептрон можно за счет изменения его параметров, 

например его весов.  
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Рассмотрим принцип, согласно которому можно обучить перцептрон ре-

шать задачу классификации (табл. 7). Данные представляют собой набор объек-

тов (например, объекты – точки на плоскости с двумя координатами), каждый 

из которых классифицирован – отнесен либо к классу 1 (его обычно называют 

положительным классом), либо к классу −1 (его называют отрицательным). 

 
Табл. 7. Данные для задачи классификации 

x1 x2 y 

0,20 0,19 1 

0,33 0,37 −1 

... ... ... 

0,81 0,77 −1 

 

Преположим, что есть искусственный нейрон с двумя входами. Для каж-

дой точки по очереди можно подать одну ее координату на один вход нейрона, 

а другую координату – на другой вход нейрона. В результате своей работы та-

кой нейрон выдаст предсказание для точки: либо +1, либо –1, т. е. вычисляет 

значение ŷ . Будем считать, если он выдал +1, то точка принадлежит положи-

тельному классу, если –1, то к отрицательному. И, соответственно, для каждой 

из точек можем понять, насколько нейрон ошибся. То есть мы знаем реальные 

значения класса – y – и мы знаем предсказанные значения класса – ŷ  (рис. 36). 
 

 
Рис. 36. Искусственный нейрон с двумя входами 

 

Зная разницу между реальными значениями и предсказанными, можно 

изменить параметры нейрона для того, чтобы он научился лучше классифици-

ровать какой-то конкретный объект. 

Возможны следующие четыре комбинации соотношения ŷ  и y (табл. 8), 

для каждой из них предусмотрена соответствующая настройка параметров пер-

цептрона. 
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Табл. 8. Настройка параметров перцептрона для задачи классификации 

ŷ  y Настройка параметров 

1 1  Не нужно менять параметры 

−1 −1  Не нужно менять параметры 

−1 1  Нужно увеличить 
1=


n

i i

i

x  

1 −1  Нужно уменьшить 
1=


n

i i

i

x  

 

Будем смотреть на результат классификации нейроном какого-то кон-

кретного объекта, но помним, что в обучающей выборке объектов много.  

Рассмотрим различные ситуации. Если нейрон предсказал для какого-то 

конкретного объекта положительный (отрицательный) класс, и этот объект 

действительно принадлежит положительному (отрицательному) классу. В этом 

случае нейрон не ошибся, и у него хорошие веса. Если объект принадлежит по-

ложительному классу, а нейрон предсказал, что отрицательному, то в этой си-

туации нужно как-то изменить веса нейрона. При этом вспомним, что если 

нейрон предсказал отрицательный класс, это значит, что аргументом в функ-

цию активации нейрона было передано какое-то отрицательное число, и, соот-

ветственно, это число должно быть положительным, чтобы нейрон предсказал 

не –1, а +1. Что для этого нужно сделать? Нужно каким-то образом увеличить 

значение аргумента функции активации, т. е. увеличить взвешенную сумму 

сигналов, которые пришли в нейрон. Другая ситуация: если предсказан класс +1, 

а объект принадлежит отрицательному классу. Это ошибка в классификации. 

Надо поменять параметры: нужно уменьшить аргумент функции активации, 

чтобы вывести его из положтельной области в отрицательную.  

Чтобы пересчитать веса перцептрона в соответствии с этими правилами, 

пользуются следующей формулой: 
 

ˆ( ) .
i

'
i iy y x = + −  

 

Эта формула применяется для весов всех дендритов. Если классификация 

объекта прошла правильно, веса не поменяются, в противном случае все веса 

i   заменятся на новые веса 
i

' . Важно отметить, что объектов в выборке много, 

поэтому при пересчете весов нет задачи четко подогнать итоговый сигнал ŷ  под 

верный ответ y, достаточно немного сместить 
1=


n

i i

i

x  в нужную сторону. 

Обычно в формулу пересчета весов добавляют параметр λ – константу 

скорости обучения: 

ˆ( ) .
i

'
i iy y x  = + −  
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За счет нее можно регулировать, насколько много информации каждый 

объект обучающей выборки будет вносить в изменение весов. Увеличение зна-

чения параметра может привести к тому, что перцептрон обучится быстрее 

и при этом все еще будет решать задачу достаточно точно. Однако увеличение 

значения параметра может привести и к потере точности. Поэтому выбирать 

константу нужно аккуратно: обычно ее берут λ = 0,1 или λ = 0,01. 

Помимо весов дендритов можно обучать и константу b, которая добавля-

ется к взвешенной сумме входящих в перцептрон сигналов. Для этого 

в перцептрон добавляют искусственный дендрит с весом ωb, а в данные – ис-

кусственно созданный фактор xb, равный единице для всех объектов. Взвешен-

ная сумма будет выглядеть так: 
 

1

.
=

= +
n

i i b b

i

z x x   

 

Теперь смысл константы b закодирован весом ωb. Это по-прежнему кон-

станта, она одинакова для всех данных, как и b, но ее можно обучать наравне 

с другими весами. 

Одной итерацией обучения перцептрона называется следующая последо-

вательность действий.  Для каждого объекта из обучающей выборки нужно: 

1. Вычислить предсказание перцептрона. 

2. Сравнить предсказание с реальным значением предсказываемой вели-

чины. 

3. Обновить веса, если предсказание не совпало с реальностью. 

Чтобы получить хорошее качество предсказания классов объектов, может 

потребоваться несколько итераций. Чтобы понять, в какой момент прекратить 

обучение перцептрона, нужны четкие критерии. Процесс обучения останавли-

вается, если выполнено одно из двух условий: 

1. Завершилось достаточно много итераций обучения (например, 1000). 

2. Значение показателя качества перцептрона стало больше (или меньше, 

в зависимости от показателя) порогового значения. 
 

10.3. Пример обучения перцептрона 
 

Рассмотрим пример обучения перцептрона с двумя обычными дендрита-

ми (с весами ω1 и ω2) и одним искусственным дендритом (с весом ωb), соответ-

ствующим константе b, которая добавляется к взвешенной сумме входящих 

в нейрон сигналов. Функция активации в примере используется стандартная: 
 

1, 0,
( ) sign

1, 0.


= = 

− 

x
f x x

x
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Перцептрон обучается на наборе данных, состоящем из четырех объектов 

(табл. 9). 

 
Табл. 9. Набор данных для обучения перцептрона 

Точки 
1x  2x  bx  y 

1A  1 –1 1 1 

2A  –1 –1 1 –1 

3A  –3 1 1 –1 

4A  –1 2 1 1 

 

В данные уже добавлен дополнительный столбец, чтобы свободный член 

взвешенной суммы можно было обучать. Данные удобно изобразить в виде то-

чек на плоскости (рис. 37). Ось абсцисс – это x1, ось ординат – x2. 

 

 
Рис. 37. Изображение объектов на плоскости 

 

Зададим начальные параметры перцептрона: 

 

1 2

1
0; 0; 0; .

2
= = = =b    

 

Проведем первую итерацию обучения: будем последовательно идти 

от точки 1A  к точке 4A .  

Рассмотрим точку 1A  и посчитаем результат предсказания перцептрона 

для нее. При этом по умолчанию веса у перцептрона все равны нулю, константа 

скорости обучения равна 
2

1
.  

 

1 1 1 2 2: 0 1 0 ( 1) 0 1 0 .+ + =  +  − +  =b bA x x x    
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Теперь найдем значение функции активации от найденного значения 0: 

 

1 1 2 2( ) (0) 1.+ + = = −b bf x x x f    

 

Это значение не совпадает с реальным (точка 1A  принадлежит положи-

тельному классу), поэтому веса перцептрона нужно пересчитать по формуле 

 

ˆ( ) .
i

'
i iy y x  = + −  

 

Пересчет весов выглядит так: 

 

1 11

1
ˆ( ) 0 [1 ( 1)] 1 1;

2

' y y x  = + − = + − −  =  

2 2 2

1
ˆ( ) 0 [1 ( 1)] ( 1) 1;

2

' y y x = + − = + − −  − = −  

1
ˆ( ) 0 [1 ( 1)] 1 1.

2

'
b b by y x  = + − = + − −  =  

 

Теперь, используя веса, которые мы получили в результате обучения 

нейрона на первой точке, посмотрим на результат предсказания нейрона для 

второй точки. Результат предсказания перцептрона для точки )1;1(2 −−A : 

 

1 1 2 2( ) (1 ( 1) ( 1) ( 1) 1 1) (1) 1.+ + =  − + −  − +  = = +b bf x x x f f    

 

Это значение не совпадает с реальным, поэтому веса перцептрона снова 

нужно пересчитать: 

 

1 11

1
ˆ( ) 1 ( 1 1) ( 1) 2;

2

' y y x = + − = + − −  − =

2 2 2

1
ˆ( ) 1 ( 1 1) ( 1) 0;

2

' y y x  = + − = − + − −  − =  

1
ˆ( ) 1 ( 1 1) 1 0.

2

'
b b by y x  = + − = + − −  =  

 

Повторим процесс для точек 3A  и 4A . После этого завершится первая 

итерация обучения перцептрона. Веса перцептрона после пересчета для то-

чек 3A  и 4A  будут   

 

1 21; 2; 1.= = =b    
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Аналогично проведем вторую итерацию. По ее итогу перцептрон обучит-

ся решать задачу классификации представленного набора точек, итоговые веса 

будут 1 22, 1, 2.= = =  b  

Важно, что к концу второй итерации перестали меняться веса перцептро-

на. Это значит, что все объекты, что есть в обучающей выборке классифициру-

ются правильно. Это признак того, что обучение можно остановить (веса не 

меняются, и лучшего результата уже не получить).  

У перцептрона есть важная геометрическая интерпретация. Перцеп-

трон передает функции активации взвешенную сумму координат каждой точки, 

а функция сравнивает эту сумму с нулем. Пограничное значение 0 достигается 

для точек на прямой, которая задается уравнением 1 1 2 2 0+ + =  b bx x x . 

То есть перцептрон строит на плоскости прямую и проверяет, в какой полу-

плоскости относительно нее лежит каждая точка. Точки с одной стороны 

от прямой перцептрон классифицирует как объекты положительного класса, 

а с другой – как объекты отрицательного класса. 

Для четырех точек из примера перцептрон построит прямую, задаваемую 

уравнением 022 21 =++ xx  (рис. 38). 

 

 
Рис. 38. Геометрическая интерпретация перцептрона 

 

10.4. SVM как двухслойная нейронная сеть 

 

SVM можно представить в виде следующей вычислительной структуры. 

Так как выход модели при произвольных ядрах вычисляется по формуле 
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то имеем сеть, представленную на рис. 39. 
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Рис. 39. Двухслойная нейронная сеть 

 

На скрытом слое вычисляются свертки входного вектора x с опорными 

векторами 1, ..., hx x  с учетом выбранного ядра ( , ')K x x . Затем все эти 

значения умножаются на весовые коэффициенты hh y...,,y  11 , суммируются и 

пропускаются через знаковую функцию активации. SVM определяет 

необходимое число нейронов скрытого слоя и значения весовых 

коэффициентов. 

 

ПРАКТИЧЕСКИЙ РАЗДЕЛ 

 

Примеры 

 

Пример 1. Расчет коэффициентов разделяющей линии и вычисление 

отступа для объектов разных классов. 

1. Используя данные графика (рис. 40), вычислите коэффициенты  

 

 T,, 210  =  

 

разделяющей линии, которая определяется выражением 
 

002211 =++  xx . 

 

 

Рис. 40. Графическое изображение объектов 
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2. Вычислите отступы для зеленых и синих точек. Зеленые точки 

относятся к классу +1, синие точки относятся к классу –1. Отступ вычисляется 

по формуле 
 

4321 ,,,i,x,yM iii ==  , 

 

где  1; 1iy  − +  – метка класса объекта ix . 

Координаты вектора ω должны удовлетворять условию: отступ для точек, 

расположенных дальше от разделяющей линии, должен быть положительным, а 

для точек, расположенных близко к разделяющей линии, – отрицательным  

(см. рис. 40). 

Решение. Приведем код на языке Python: 

 

 

 

 
 

 

 

 

 

, 
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Пример 2. Задача бинарной классификации (метод градиентного спуска). 

Даны обучающие выборки: 

 

x_train = [[4.9, 3.3], [5.6, 4.5], [6.4, 4.3], [6.7, 5.7], [6.3, 5.0], [5.2, 3.9], [5.5, 3.7], 

[5.6, 3.6], [5.5, 3.8], [6.1, 4.7], [7.4, 6.1], [6.0, 5.1], [5.5, 4.4], [5.9, 5.1], [6.5, 5.8], 

[6.5, 4.6], [6.7, 4.4], [6.3, 5.6], [5.9, 4.8], [6.0, 4.5], [5.6, 4.1], [5.6, 4.9], [4.9, 4.5], 

[6.2, 4.5], [6.1, 4.7], [6.1, 4.9], [6.2, 5.4], [5.7, 4.2], [6.1, 5.6], [5.8, 4.0], [6.6, 4.6], 

[5.6, 4.2], [7.2, 6.1], [7.7, 6.7], [5.6, 3.9], [7.7, 6.9], [6.0, 4.0], [6.1, 4.0], [7.6, 6.6], 

[5.1, 3.0], [6.3, 6.0], [6.7, 5.7], [6.8, 5.9], [6.4, 5.5], [7.0, 4.7], [5.8, 5.1], [5.8, 5.1], 

[6.4, 5.3], [6.3, 4.9], [6.4, 5.3], [5.7, 3.5], [7.2, 5.8], [6.4, 5.6], [5.7, 4.5], [6.0, 4.5], 

[7.7, 6.1], [6.2, 4.3], [7.1, 5.9], [7.3, 6.3], [5.0, 3.3], [6.3, 5.1], [5.8, 3.9], [6.4, 4.5], 

[6.3, 5.6], [6.8, 5.5], [6.9, 5.4], [5.5, 4.0], [5.7, 4.1], [6.5, 5.5], [6.3, 4.7], [5.0, 3.5], 

[6.7, 5.8], [6.9, 4.9], [7.7, 6.7], [5.8, 4.1], [6.4, 5.6], [6.7, 5.2], [6.7, 4.7], [5.4, 4.5], 

[6.8, 4.8], [5.7, 4.2], [5.5, 4.0], [6.3, 4.9], [6.5, 5.2], [5.8, 5.1], [6.0, 4.8], [6.2, 4.8], 

[6.5, 5.1], [7.9, 6.4], [6.7, 5.0], [6.7, 5.6], [6.0, 5.0], [6.1, 4.6], [5.7, 5.0], [7.2, 6.0], 

[6.3, 4.4], [5.9, 4.2], [6.9, 5.1], [6.6, 4.4], [6.9, 5.7]] 

 

y_train = [-1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1,  

-1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1,  

-1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 

1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1]  

 

Модель линейного алгоритма, называемая линейным классификатором, 

должна иметь вид  
 

( )( ) sign , ,=a x x  

 

где  0 1 2, ,=   
T

– вектор весовых коэффициентов модели (определяют 

положение разделяющей линии);  Tx,x,x 211= – вектор, составленный 

из значений факторов объекта и единицы; 
1, 0

sign( )
1, 0

− 
= 

+ 

v
v

v
   –   знаковая 

функция.  

Метки классов принимают значения  11,Y − . Необходимо обучить 

модель )(xa , т. е. найти значения весовых коэффициентов  

 

0

1

2

 
 

=  
 
 



 

  
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с помощью алгоритма градиентного спуска (программы, написанной на языке 

Python), который должен минимизировать эмпирический риск: 

 

 
l

l

1

( ) ( ) min,i i

i

Q X y a x


=

=  →  

 

где [•] – нотация Айверсона.  

Если условие в скобках истинно, то нотация Айверсона  возвращает 1, 

если условие в скобках ложно, то 0. То есть эмпирический риск Q(Xl) 

показывает число неверных классификаций. 

Так как градиентный алгоритм может минимизировать только гладкие, 

дифференцируемые функции, то величину Q(Xl) следует сверху ограничить 

именно таким функционалом: 

 

( )( )l l

1

( ) ( ) , min,
=

 = →
l

i i

i

Q X Q X L a x y


 

 

где L(a(xi), yi) = L(Mi) – выбранная функция потерь (здесь iii x,yM =  –

отступ). 

Функция потерь ( ) ( )21 MMQ −=  квадратичная, ее частные производные 

имеют вид   

 

( ) ( ) yxyx
MQ TT −−=







12 . 

 

В качестве начальных значений весовых коэффициентов можно взять 

следующие: 

 

ω0 = 0; ω1 = 0; ω2 = 1. 

 

Шаг в градиентном алгоритме для коэффициента ω0 целесообразно 

выбрать побольше, а для коэффициентов ω1, ω2 – поменьше. 

Решение. Приведем код на языке Python. Графически решение 

представлено на рис. 41. 
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Рис. 41. Решение задачи бинарной классификации методом градиентного спуска 

 

Пример 3. Задача классификации (метод опорных векторов).  

Реализуйте на языке Python (с применением пакета scikit-learn) линейный 

вариант метода опорных векторов для данных обучающей выборки из примера 2. 

Вычислите количество и долю неверных классификаций для данной 

обучающей выборки. Отобразите на плоскости объекты обучающей выборки и 

разделяющую линию, полученную в результате обучения (точки, 

изображающие объекты разных классов, должны иметь разные маркеры и 

цвет).  

Решение. Приведем код на языке Python. Графически решение представ-

лено на рис. 42. 
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Рис. 42. Решение задачи бинарной классификации методом опорных векторов 
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Пример 4. Задача классификации (наивный байесовский классификатор). 

Реализуйте на языке Python наивный байесовский классификатор на 

основе данных обучающей выборки из примера 2. Будем считать, что признаки 

независимы и распределены по гауссовскому закону (нормальной плотности 

распределения вероятностей). Посчитайте количество и долю неверных 

классификаций для данной обучающей выборки. Отобразите на плоскости 

объекты обучающей выборки (точки, изображающие объекты разных классов, 

должны иметь разные маркеры и цвет).  

Решение. Приведем код на языке Python. Графически решение представ-

лено на рис. 43. 
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Рис. 43. Решение задачи классификации (наивный байесовский классификатор) 

 

Пример 5. Исследование работы L2-регуляризатора в задачах регрессии. 

Дана функция  

 

( ) xxxxy ++−= 24 100 ,       10100 ,;;x . 

 

1. Аппроксимируйте функцию y(x) с помощью линейной модели 

 

( ) 
=

+=
13

1
0

i

i
i xxa  , 

 

т. е. полиномом 13-й степени. Здесь ωi (i = 0, 1, 2, …, 13) – весовые 

коэффициенты, которые требуется найти с помощью градиентного алгоритма 

по обучающему набору данных.  

2. Обучающую выборку составьте из всех четных индексов сгене- 

рированных значений функции 

 

( )( )
l

l
2

2 2: ,
  

= 
  

i i i
X x y f x . 

 

То есть сначала формируется первое значение x0 с целевым значением 

( )00 xfy = , затем второе ( )222 xfy,x =  и так до конца диапазона. 

3. Вычислите значения весовых коэффициентов ωi (i = 0, 1, 2, …, 13) для 

квадратичной функции потерь (в задачах регрессии обычно используют именно 

такую функцию потерь), минимизирующую эмпирический риск: 

 

( ) ( )( )
=

→−=
l

i
ii

l minxayXQ
1

2

2

1


. 
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Весовые коэффициенты вычисляются по формуле 

 

( ) YXXX TT
* =

−1
 , 

 

где X – входные векторы обучающей выборки; Y – вектор (или матрица) целевых 

значений обучающей выборки: 

 



















=



















=

lnll

n

n

l x...xx

............

x...xx

x...xx

x

...

x

x

X

21

22221

11211

2

1

, 



















=

ly

...

y

y

Y
2

1

. 

 

4. Вычислите прогнозы функции с помощью полученной модели a(x) для 

всего диапазона значений. В отсчетах, не участвующих в выборке, значения 

модели должны сильно расходиться с целевыми. 

5. Вычислите коэффициенты вектора ω с L2-регуляризатором по 

формуле 

 

( ) YXIXX TT
* +=

−1
 , 

 

где λ > 0 – коэффициент регуляризации; nnI    –  единичная матрица. 

6. Для новой модели a(x) повторите вычисление прогнозов функции для 

всего диапазона значений. 

Решение. Приведем код на языке Python. Графически решение представ-

лено на рис. 44. 
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Рис. 44. Пример работы 2L  

 

Задания для самостоятельного решения 

 

Задание 1. Основы языка программирования Python. 

Вариант 1. 1. Выведите на экран все простые числа в заданном диапазоне 

(диапазон вводится с клавиатуры).  2. С клавиатуры вводится текст. Определи-

те, сколько в нем гласных, а сколько – согласных.  Посчитайте количество слов 

в тексте.   

Вариант 2. 1. Выведите на экран 1001 простое число.  2. Вводится строка, 

содержащая буквы, целые неотрицательные числа и иные символы. Все числа, 

которые встречаются в строке, отдельно выведите на экран.  

Вариант 3. 1. Определите, сколько в числе четных цифр, а сколько – не-

четных. Число вводится с клавиатуры. 2. В кортеже целых чисел найдите мак-

симальный и минимальный элементы.  

Вариант 4. 1. Вычислите сумму цифр введенного натурального числа. 

2. Преобразуйте текст в кортеж слов с удалением знаков препинания.  

Вариант 5. 1. Найдите произведение элементов списка с нечетными но-

мерами. Найдите наибольший элемент списка. 2. С клавиатуры вводится текст. 

Определите, сколько в нем гласных, а сколько – согласных. 

Вариант 6. 1. Создайте кортеж из 10 случайных чисел. Найдите его мак-

симальный и минимальный элементы. 2. С клавиатуры вводится строка. Посчи-

тайте количество слов, которые имеют нечетное количество букв. 

Вариант 7. 1. Найдите сумму нечетных цифр введенного натурального 

числа. 2. С клавиатуры вводится строка. Посчитайте количество слов, которые 

имеют нечетное количество букв. 

Вариант 8. 1. Выведите на экран все делители числа. Число вводится с 

клавиатуры. 2. С клавиатуры вводится строка. Посчитайте количество слов, ко-

торые имеют четное количество букв. 
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Вариант 9. 1. Дан список чисел. Посчитайте, сколько в нем пар элемен-

тов, равных друг другу. 2. С клавиатуры вводится строка. Выведите на экран 

самое длинное слово. 

Вариант 10. 1. Дан список целых чисел. Выведите на экран кортеж уни-

кальных элементов списка в обратном порядке.  2. Найдите сумму нечетных 

цифр введенного натурального числа. 

 

Задание 2. Расчет коэффициентов разделяющей линии и вычисление 

отступа (margin) для объектов разных классов.  

1. Используя данные графиков (табл. 10), вычислите коэффициенты  

 

 T,, 210  =  

 

разделяющей линии, которая определяется выражением 

 

002211 =++  xx . 

 

2. Вычислите отступы для зеленых и синих точек. Зеленые точки 

относятся к классу +1, синие точки относятся к классу –1. Отступ вычисляется 

по формуле 

 

4321 ,,,i,x,yM iii ==  , 

 

где  1; 1iy  − +  – метка класса объекта ix ; ix, – скалярное произведение 

векторов ω и xi. Координаты вектора ω должны удовлетворять условию: отступ 

для точек, расположенных дальше от разделяющей линии, должен быть 

положительным, а для точек, расположенных близко к разделяющей линии, – 

отрицательным.  

 
Табл. 10. Графики разделяющих линий  

Вариант Графики Вариант Графики 

1 

 

6 
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Окончание табл. 10 

Вариант Графики Вариант Графики 

2 

 

7 

 

3 

 

8 

 

4 

 

9 

 
5 

 

10 

 

 

Содержание отчета 

 

1. Титульный лист с названием лабораторной работы, номером своего 

варианта, фамилией студента и номером группы.  

2. Расчеты для весов разделяющей линии.  

3. Расчеты для отступов.  

4. Выводы по полученным результатам. 
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Ниже приведены обучающие выборки, необходимые для выполнения 

заданий 3–6 (по вариантам). 

 

Вариант 1 

 
data_x = [(5.8, 2.7), (6.7, 3.1), (5.7, 2.9), (5.5, 2.4), (4.8, 3.4), (5.4, 

3.4), (4.8, 3.0), (5.5, 2.5), (5.3, 3.7), (7.0, 3.2), (5.6, 2.9), (4.9, 3.1), 

(4.8,3.0), (5.0, 2.3), (5.2, 3.4), (5.1, 3.8), (5.0, 3.0), (5.0, 3.3), (4.6, 

3.1), (5.5,2.6), (5.0, 3.5), (6.7, 3.0), (6.0, 2.2), (4.8, 3.1), (6.4, 2.9), 

(5.6, 3.0), (4.4,3.0), (4.9, 2.4), (5.6, 3.0), (5.0, 3.6), (5.1, 3.3), (5.8, 

4.0), (5.5, 2.4), (5.2,2.7), (5.1, 3.8), (5.1, 3.5), (5.5, 4.2), (4.9, 3.1), 

(5.9, 3.2), (5.7, 2.6), (4.7,3.2), (5.4, 3.9), (5.8, 2.6), (5.1, 3.4), (6.4, 

3.2), (5.8, 2.7), (5.6, 2.7), (5.7,2.8), (5.4, 3.0), (5.0, 3.2), (4.6, 3.4), 

(6.0, 2.7), (6.6, 3.0), (4.9, 3.0), (4.9,3.6), (4.4, 3.2), (5.4, 3.4), (6.0, 

3.4), (5.9, 3.0), (6.1, 2.8), (5.1, 3.7), (5.5,3.5), (6.1, 3.0), (6.2, 2.2), 

(5.7, 3.0), (5.2, 3.5), (5.4, 3.7), (4.6, 3.2), (5.2,4.1), (5.0, 2.0), (6.8, 

2.8), (5.0, 3.5), (6.7, 3.1), (6.3, 3.3), (6.0, 2.9), (4.7,3.2), (6.6, 2.9), 

(5.6, 2.5), (4.4, 2.9), (6.2, 2.9), (6.1, 2.9), (4.3, 3.0), (6.9,3.1), (5.7, 

3.8), (5.4, 3.9), (6.1, 2.8), (4.6, 3.6), (5.5, 2.3), (4.8, 3.4), (6.5,2.8), 

(6.3, 2.5), (5.1, 3.8), (5.7, 4.4), (5.0, 3.4), (4.5, 2.3), (5.7, 2.8), 

(5.1,2.5), (5.1, 3.5), (6.3, 2.3), (5.0, 3.4)] 

 

data_y = [1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 

-1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1,  

-1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1,   

-1, -1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 

1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1] 

 

Вариант 2 

 
data_x = [(4.9, 3.3), (5.6, 4.5), (6.4, 4.3), (6.7, 5.7), (6.3, 5.0), (5.2, 

3.9), (5.5, 3.7), (5.6, 3.6), (5.5, 3.8), (6.1, 4.7), (7.4, 6.1), (6.0, 5.1), 

(5.5,4.4), (5.9, 5.1), (6.5, 5.8), (6.5, 4.6), (6.7, 4.4), (6.3, 5.6), (5.9, 

4.8), (6.0,4.5), (5.6, 4.1), (5.6, 4.9), (4.9, 4.5), (6.2, 4.5), (6.1, 4.7), 

(6.1, 4.9), (6.2,5.4), (5.7, 4.2), (6.1, 5.6), (5.8, 4.0), (6.6, 4.6), (5.6, 

4.2), (7.2, 6.1), (7.7,6.7), (5.6, 3.9), (7.7, 6.9), (6.0, 4.0), (6.1, 4.0), 

(7.6, 6.6), (5.1, 3.0), (6.3,6.0), (6.7, 5.7), (6.8, 5.9), (6.4, 5.5), (7.0, 

4.7), (5.8, 5.1), (5.8, 5.1), (6.4,5.3), (6.3, 4.9), (6.4, 5.3), (5.7, 3.5), 

(7.2, 5.8), (6.4, 5.6), (5.7, 4.5), (6.0,4.5), (7.7, 6.1), (6.2, 4.3), (7.1, 

5.9), (7.3, 6.3), (5.0, 3.3), (6.3, 5.1), (5.8,3.9), (6.4, 4.5), (6.3, 5.6), 

(6.8, 5.5), (6.9, 5.4), (5.5, 4.0), (5.7, 4.1), (6.5,5.5), (6.3, 4.7), (5.0, 

3.5), (6.7, 5.8), (6.9, 4.9), (7.7, 6.7), (5.8, 4.1), (6.4,5.6), (6.7, 5.2), 

(6.7, 4.7), (5.4, 4.5), (6.8, 4.8), (5.7, 4.2), (5.5, 4.0), (6.3,4.9), (6.5, 

5.2), (5.8, 5.1), (6.0, 4.8), (6.2, 4.8), (6.5, 5.1), (7.9, 6.4), (6.7,5.0), 

(6.7, 5.6), (6.0, 5.0), (6.1, 4.6), (5.7, 5.0), (7.2, 6.0), (6.3, 4.4), 

(5.9,4.2), (6.9, 5.1), (6.6, 4.4), (6.9, 5.7)] 

 

data_y = [-1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1,  

-1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 

1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1,  

-1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1,  

-1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1] 

 

Вариант 3 

 
data_x = [(7.2, 2.5), (6.4, 2.2), (6.3, 1.5), (7.7, 2.2), (6.2, 1.8), (5.7, 

1.3), (7.1, 2.1), (5.8, 2.4), (5.2, 1.4), (5.9, 1.5), (7.0, 1.4), (6.8, 2.1), 
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(7.2, 1.6), (6.7, 2.4), (6.0, 1.5), (5.1, 1.1), (6.6, 1.3), (6.1, 1.4), (6.7, 

2.1), (6.4, 1.8), (5.6, 1.3), (6.9, 2.3), (6.4, 1.9), (6.9, 2.3), (6.5, 2.2), 

(6.0,1.5), (5.6, 1.1), (5.6, 1.5), (6.0, 1.0), (6.0, 1.8), (6.7, 2.5), (7.7, 

2.3), (5.5,1.1), (5.8, 1.0), (6.9, 2.1), (6.6, 1.4), (6.3, 1.6), (6.1, 1.4), 

(5.0, 1.0), (7.7,2.0), (4.9, 1.7), (7.2, 1.8), (6.8, 1.4), (6.1, 1.2), (5.8, 

1.9), (6.3, 2.5), (5.7,2.0), (6.5, 1.8), (7.6, 2.1), (6.3, 1.5), (6.7, 1.4), 

(6.4, 2.3), (6.2, 2.3), (6.3,1.9), (5.5, 1.3), (7.9, 2.0), (6.7, 1.8), (6.4, 

1.3), (6.5, 2.0), (6.5, 1.5), (6.9,1.5), (5.6, 1.3), (5.8, 1.2), (6.7, 2.3), 

(6.0, 1.6), (5.7, 1.2), (5.7, 1.0), (5.5,1.0), (6.1, 1.4), (6.3, 1.8), (5.7, 

1.3), (6.1, 1.3), (5.5, 1.3), (6.3, 1.3), (5.9,1.8), (7.7, 2.3), (6.5, 2.0), 

(5.6, 2.0), (6.7, 1.7), (5.7, 1.3), (5.5, 1.2), (5.0,1.0), (5.8, 1.9), (6.2, 

1.3), (6.2, 1.5), (6.3, 2.4), (6.4, 1.5), (7.4, 1.9), (6.8,2.3), (5.6, 1.3), 

(5.8, 1.2), (7.3, 1.8), (6.7, 1.5), (6.3, 1.8), (6.0, 1.6), (6.4,2.1), (6.1, 

1.8), (5.9, 1.8), (5.4, 1.5), (4.9, 1.0)] 

 

data_y = [1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 

1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 

1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, 

-1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1,  

-1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1] 

 

Вариант 4 

 
data_x = [(5.3, 2.3), (5.7, 2.5), (4.0, 1.0), (5.6, 2.4), (4.5, 1.5), (5.4, 2.3),  

(4.8, 1.8), (4.5, 1.5), (5.1, 1.5), (6.1, 2.3), (5.1, 1.9), (4.0, 1.2), 

(5.2,2.0), (3.9, 1.4), (4.2, 1.2), (4.7, 1.5), (4.8, 1.8), (3.6, 1.3), (4.6, 1.4), 

(4.5,1.7),(3.0, 1.1), (4.3, 1.3), (4.5, 1.3), (5.5, 2.1), (3.5, 1.0), (5.6, 2.2), 

(4.2, 1.5), (5.8, 1.8), (5.5, 1.8), (5.7, 2.3), (6.4, 2.0), (5.0, 1.7), (6.7,2.0), 

(4.0, 1.3), (4.4, 1.4), (4.5, 1.5), (5.6, 2.4), (5.8, 1.6), (4.6, 1.3), 

(4.1,1.3), (5.1, 2.3), (5.2, 2.3), (5.6, 1.4), (5.1, 1.8), (4.9, 1.5), (6.7, 

2.2), (4.4,1.3), (3.9, 1.1), (6.3, 1.8), (6.0, 1.8), (4.5, 1.6), (6.6, 2.1), 

(4.1, 1.3), (4.5,1.5), (6.1, 2.5), (4.1, 1.0), (4.4, 1.2), (5.4, 2.1),      

(5.0, 1.5), (5.0, 2.0), (4.9,1.5), (5.9, 2.1), (4.3, 1.3), (4.0, 1.3), (4.9, 2.0), 

(4.9, 1.8), (4.0, 1.3), (5.5,1.8), (3.7, 1.0), (6.9, 2.3), (5.7, 2.1), (5.3, 

1.9), (4.4, 1.4), (5.6, 1.8), (3.3,1.0), (4.8, 1.8), (6.0, 2.5), (5.9, 2.3), 

(4.9, 1.8), (3.3, 1.0), (3.9, 1.2), (5.6,2.1), (5.8, 2.2), (3.8, 1.1), (3.5, 1.0), 

(4.5, 1.5), (5.1, 1.9), (4.7, 1.4), (5.1,1.6), (5.1, 2.0), (4.8, 1.4),      

(5.0, 1.9), (5.1, 2.4), (4.6, 1.5), (6.1, 1.9), (4.7,1.6),(4.7, 1.4), (4.7, 

1.2), (4.2, 1.3), (4.2, 1.3)] 

 

data_y = [1, 1, -1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1,  

-1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 

1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 

-1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 

1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1] 

 

Вариант 5 

 
data_x = [(5.8, 1.2), (5.6, 1.5), (6.5, 1.5), (6.1, 1.3), (6.4, 1.3), (7.7, 

2.0), (6.0, 1.8), (5.6, 1.3), (6.0, 1.6), (5.8, 1.9), (5.7, 2.0), (6.3, 1.5), 

(6.2,1.8), (7.7, 2.3), (5.8, 1.2), (6.3, 1.8), (6.0, 1.0), (6.2, 1.3), (5.7, 

1.3), (6.3,1.9), (6.7, 2.5), (5.5, 1.2), (4.9, 1.0), (6.1, 1.4), (6.0, 1.6), 

(7.2, 2.5), (7.3,1.8), (6.6, 1.4), (5.6, 2.0), (5.5, 1.0), (6.4, 2.2), (5.6, 

1.3), (6.6, 1.3), (6.9,2.1), (6.8, 2.1), (5.7, 1.3), (7.0, 1.4), (6.1, 1.4), 

(6.1, 1.8), (6.7, 1.7), (6.0,1.5), (6.5, 1.8), (6.4, 1.5), (6.9, 1.5), (5.6, 

1.3), (6.7, 1.4), (5.8, 1.9), (6.3,1.3), (6.7, 2.1), (6.2, 2.3), (6.3, 2.4), 

(6.7, 1.8), (6.4, 2.3), (6.2, 1.5), (6.1,1.4), (7.1, 2.1), (5.7, 1.0), (6.8, 

1.4), (6.8, 2.3), (5.1, 1.1), (4.9, 1.7), (5.9,1.8), (7.4, 1.9), (6.5, 2.0), 

(6.7, 1.5), (6.5, 2.0), (5.8, 1.0), (6.4, 2.1), (7.6,2.1), (5.8, 2.4), (7.7, 

2.2), (6.3, 1.5), (5.0, 1.0), (6.3, 1.6), (7.7, 2.3), (6.4,1.9), (6.5, 2.2), 
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(5.7, 1.2), (6.9, 2.3), (5.7, 1.3), (6.1, 1.2), (5.4, 1.5), (5.2,1.4), (6.7, 

2.3), (7.9, 2.0), (5.6, 1.1), (7.2, 1.8), (5.5, 1.3), (7.2, 1.6), (6.3,2.5), 

(6.3, 1.8), (6.7, 2.4), (5.0, 1.0), (6.4, 1.8), (6.9, 2.3), (5.5, 1.3), 

(5.5,1.1), (5.9, 1.5), (6.0, 1.5), (5.9, 1.8)] 

 

data_y = [-1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 

1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 

-1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 

1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 

1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1] 

 

Вариант 6 

 
data_x = [(2.6, 1.0), (3.0, 2.3), (3.4, 1.6), (3.0, 1.5), (2.7, 1.0), (3.8, 

2.0), (3.0, 1.8), (2.8, 2.1), (2.9, 1.3), (3.0, 1.8), (3.2, 1.5), (2.7, 1.8), 

(3.0,1.4), (3.3, 2.5), (2.7, 1.9), (2.6, 1.2), (3.1, 1.4), (2.7, 1.9), (3.1, 

2.4), (3.0,1.5), (2.8, 1.4), (3.1, 1.5), (2.5, 1.8), (2.8, 1.3), (2.8, 1.8), 

(2.2, 1.5), (3.3,2.5), (3.2, 1.8), (3.6, 2.5), (3.0, 1.7), (2.3, 1.3), (2.8, 

1.3), (2.5, 1.5), (3.0,2.1), (2.0, 1.0), (2.8, 2.2), (3.0, 1.6), (3.1, 2.1), 

(3.2, 2.3), (2.5, 1.7), (2.5,1.1), (3.2, 2.3), (2.8, 1.2), (2.9, 1.5), (2.6, 

1.4), (2.2, 1.0), (3.3, 2.1), (2.4,1.1), (3.4, 2.4), (3.0, 1.2), (2.8, 1.5), 

(3.2, 1.4), (3.8, 2.2), (2.8, 2.4), (3.0,1.8), (3.0, 1.5), (3.0, 1.4), (3.0, 

2.1), (2.4, 1.0), (3.4, 2.3), (2.7, 1.4), (2.3,1.0), (2.9, 1.3), (3.3, 1.6), 

(2.7, 1.3), (2.6, 1.2), (2.4, 1.0), (3.2, 2.0), (3.1,1.5), (3.0, 1.8), (2.8, 

1.9), (2.7, 1.9), (2.8, 1.5), (3.2, 1.8), (3.1, 1.8), (2.5,1.1), (2.2, 1.5), 

(2.9, 1.4), (3.0, 2.1), (2.9, 1.3), (2.8, 2.0), (2.5, 2.0), (3.0,2.2), (3.2, 

2.3), (3.1, 2.3), (2.8, 1.3), (2.5, 1.9), (3.0, 2.3), (2.9, 1.3), (2.9,1.8), 

(3.0, 2.0), (2.9, 1.8), (2.7, 1.2), (2.5, 1.3), (3.0, 1.3), (2.6, 2.3), 

(2.8,2.0), (2.9, 1.3), (2.7, 1.6), (2.3, 1.3)] 

 

data_y = [-1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1,  

-1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1,  

-1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1,  

-1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 

1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1] 

 

Вариант 7 

 
data_x = [(3.0, 1.3), (3.4, 1.6), (3.4, 0.4), (3.7, 0.2), (3.5, 0.2), (3.4, 

0.2), (3.4, 0.4), (3.9, 0.4), (3.4, 0.3), (3.2, 0.2), (2.8, 1.3), (3.5, 0.3), 

(2.4,1.0), (3.0, 0.1), (3.6, 0.2), (3.2, 0.2), (2.9, 0.2), (2.9, 1.3), (2.3, 

1.3), (3.8,0.2), (3.2, 1.5), (2.3, 1.0), (3.0, 1.7), (3.3, 0.2), (3.4, 0.2), 

(3.8, 0.3), (2.0,1.0), (3.1, 0.2), (2.5, 1.3), (2.4, 1.1), (3.2, 0.2), (2.2, 

1.0), (3.1, 1.4), (3.0,0.2), (3.0, 0.2), (3.4, 0.2), (3.7, 0.2), (2.8, 1.2), 

(2.9, 1.4), (4.0, 0.2), (3.2,1.4), (3.2, 0.2), (2.9, 1.3), (2.9, 1.3), (3.5, 

0.2), (3.3, 1.6), (2.9, 1.3), (2.7,1.0), (2.9, 1.3), (3.4, 0.2), (3.2, 0.2), 

(4.1, 0.1), (3.5, 0.6), (2.7, 1.4), (2.3,0.3), (2.9, 1.5), (3.1, 1.5), (3.5, 

0.2), (2.7, 1.6), (3.3, 0.5), (3.0, 1.4), (3.6,0.2), (3.0, 1.2), (2.8, 1.3), 

(2.5, 1.1), (3.0, 1.5), (3.1, 0.2), (2.6, 1.0), (2.7,1.2), (2.2, 1.5), (3.7, 

0.4), (3.4, 0.2), (3.5, 0.3), (3.6, 0.1), (2.5, 1.5), (2.6,1.2), (2.8, 1.3), 

(3.1, 0.1), (2.4, 1.0), (3.1, 1.5), (2.3, 1.3), (2.8, 1.5), (3.0,0.3), (3.0, 

0.2), (2.5, 1.1), (3.0, 1.5), (3.2, 1.8), (3.9, 0.4), (2.8, 1.4), (4.2,0.2), 

(3.4, 0.2), (2.7, 1.3), (3.8, 0.3), (3.0, 1.4), (2.6, 1.2), (4.4, 0.4), 

(3.8,0.4), (3.1, 0.2), (3.0, 0.1), (3.0, 1.5)] 

 

data_y = [1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1,  

-1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 

1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1,  

-1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1,   

-1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1] 
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Вариант 8 

 
data_x = [(2.9, 6.0), (3.8, 5.1), (3.0, 4.9), (3.5, 5.0), (2.6, 5.5), (3.4, 

4.6), (3.8, 5.1), (3.5, 5.5), (2.3, 5.0), (3.6, 4.9), (3.5, 5.1), (2.8, 5.7), 

(3.0,5.4), (2.9, 6.4), (3.0, 4.3), (3.0, 4.8), (3.5, 5.1), (3.2, 4.7), (2.8, 

5.7), (4.2,5.5), (2.5, 6.3), (2.4, 4.9), (3.1, 4.8), (3.7, 5.4), (3.0, 5.6), 

(2.7, 5.6), (3.1,6.9), (2.7, 6.0), (3.4, 4.8), (2.4, 5.5), (3.3, 5.1), (2.5, 

5.6), (2.9, 6.2), (3.0,5.9), (2.8, 6.1), (3.0, 4.4), (2.7, 5.2), (2.9, 5.7), 

(3.3, 5.0), (3.2, 6.4), (3.4,5.2), (3.4, 5.0), (3.1, 4.9), (4.4, 5.7), (2.8, 

6.1), (3.4, 5.0), (3.1, 6.7), (3.7,5.1), (3.1, 4.9), (4.0, 5.8), (2.3, 4.5), 

(3.1, 6.7), (3.2, 5.0), (2.4, 5.5), (3.6,5.0), (3.9, 5.4), (3.5, 5.0), (2.6, 

5.7), (2.8, 6.8), (3.9, 5.4), (2.2, 6.0), (3.2,4.4), (3.8, 5.7), (3.2, 4.7), 

(2.9, 6.6), (3.0, 4.8), (2.6, 5.8), (3.0, 5.0), (3.4,5.1), (3.8, 5.1), (2.3, 

6.3), (3.6, 4.6), (2.7, 5.8), (2.9, 4.4), (3.2, 4.6), (3.5,5.2), (3.1, 4.6), 

(2.5, 5.5), (2.2, 6.2), (3.2, 7.0), (3.3, 6.3), (3.0, 6.1), (3.4,4.8), (3.4, 

5.4), (2.3, 5.5), (2.5, 5.1), (3.4, 6.0), (2.0, 5.0), (2.9, 5.6), (2.7,5.8), 

(2.8, 6.5), (3.4, 5.4), (3.7, 5.3), (4.1, 5.2), (3.0, 5.6), (3.0, 6.6), 

(2.9,6.1), (3.0, 6.7), (3.0, 5.7), (3.2, 5.9)] 

 

data_y = [1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1,  

-1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1,   

-1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 

1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 

1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1] 

 

Вариант 9 

 
data_x = [(1.3, 5.5), (1.5, 4.9), (4.9, 6.3), (1.5, 5.2), (3.5, 5.7), (1.4, 

4.6), (4.8, 5.9), (4.5, 5.7), (3.7, 5.5), (1.5, 5.3), (4.6, 6.1), (1.6, 4.8), 

(1.5,5.0), (4.0, 5.5), (1.3, 4.7), (1.4, 5.0), (1.7, 5.1), (1.5, 5.2), (3.9, 

5.2), (1.5,4.6), (4.1, 5.8), (1.9, 5.1), (4.0, 5.5), (4.6, 6.6), (4.5, 6.4), 

(4.5, 6.0), (4.7,6.1), (1.3, 4.5), (5.1, 6.0), (4.4, 6.6), (4.0, 6.1), (4.5, 

6.2), (3.8, 5.5), (1.5,5.4), (4.9, 6.9), (3.0, 5.1), (4.5, 5.6), (1.4, 4.9), 

(4.0, 5.8), (5.0, 6.7), (4.4,5.5), (3.9, 5.6), (1.4, 4.6), (3.3, 4.9), (3.9, 

5.8), (4.2, 5.7), (4.4, 6.3), (1.4,5.1), (1.6, 5.0), (1.5, 5.1), (4.7, 6.3), 

(3.6, 5.6), (4.4, 6.7), (1.7, 5.4), (1.3,4.4), (4.1, 5.6), (1.0, 4.6), (4.3, 

6.2), (1.4, 4.4), (4.5, 6.0), (4.7, 6.7), (3.3,5.0), (1.5, 4.9), (3.5, 5.0), 

(1.6, 4.7), (1.4, 4.9), (1.4, 4.8), (1.3, 5.0), (4.6,6.5), (4.0, 6.0), (4.7, 

6.1), (1.6, 5.0), (1.4, 5.2), (4.7, 7.0), (1.1, 4.3), (1.6,5.1), (4.3, 6.4), 

(1.2, 5.8), (1.9, 4.8), (1.4, 4.8), (1.5, 5.1), (4.8, 6.8), (4.1,5.7), (1.7, 

5.7), (1.6, 5.0), (4.2, 5.7), (1.6, 4.8), (1.2, 5.0), (1.3, 4.4), (1.7,5.4), 

(4.5, 5.4), (4.2, 5.6), (1.5, 5.4), (1.4, 5.5), (1.4, 5.1), (1.5, 5.1), 

(4.2,5.9), (1.5, 5.7), (1.4, 5.0), (1.3, 5.4)] 

 

data_y = [-1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1,   

-1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 

1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 

-1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 

-1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1] 

 

Вариант 10 

 
data_x = [(3.0, 4.9), (2.7, 3.9), (3.0, 5.5), (2.6, 4.0), (2.9, 4.3), (3.1, 

5.1), (2.2, 4.5), (2.3, 3.3), (2.7, 5.1), (3.3, 5.7), (2.8, 5.1), (2.8, 4.9), 

(2.5,4.5), (2.8, 4.7), (3.2, 4.7), (3.2, 5.7), (2.8, 6.1), (3.6, 6.1), (2.8, 

4.8), (2.9,4.5), (3.1, 4.9), (2.3, 4.4), (3.3, 6.0), (2.6, 5.6), (3.0, 4.4), 

(2.9, 4.7), (2.8,4.0), (2.5, 5.8), (2.4, 3.3), (2.8, 6.7), (3.0, 5.1), (2.3, 

4.0), (3.1, 5.5), (2.8,4.8), (2.7, 5.1), (2.5, 4.0), (3.1, 4.4), (3.8, 6.7), 

(3.1, 5.6), (3.1, 4.7), (3.0,5.8), (3.0, 5.2), (3.0, 4.5), (2.7, 4.9), (3.0, 
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6.6), (2.9, 4.6), (3.0, 4.6), (2.6,3.5), (2.7, 5.1), (2.5, 5.0), (2.0, 3.5), 

(3.2, 5.9), (2.5, 5.0), (3.4, 5.6), (3.4,4.5), (3.2, 5.3), (2.2, 4.0), (2.2, 

5.0), (3.3, 4.7), (2.7, 4.1), (2.4, 3.7), (3.0,4.2), (3.2, 6.0), (3.0, 4.2), 

(3.0, 4.5), (2.7, 4.2), (2.5, 3.0), (2.8, 4.6), (2.9,4.2), (3.1, 5.4), (2.5, 

4.9), (3.2, 5.1), (2.8, 4.5), (2.8, 5.6), (3.4, 5.4), (2.7,3.9), (3.0, 6.1), 

(3.0, 5.8), (3.0, 4.1), (2.5, 3.9), (2.4, 3.8), (2.6, 4.4), (2.9,3.6), (3.3, 

5.7), (2.9, 5.6), (3.0, 5.2), (3.0, 4.8), (2.7, 5.3), (2.8, 4.1), (2.8,5.6), 

(3.2, 4.5), (3.0, 5.9), (2.9, 4.3), (2.6, 6.9), (2.8, 5.1), (2.9, 6.3), 

(3.2,4.8), (3.0, 5.5), (3.0, 5.0), (3.8, 6.4)] 

data_y = [1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1,  

-1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 

1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1,   

-1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 

-1, 1, -1, 1, -1, 1, 11, 1, -1, 1, -1, 1] 

 

Задание 3. Задача бинарной классификации (метод градиентного спуска). 

Даны обучающие выборки и функции потерь (по вариантам) для 

обучения линейного алгоритма бинарной классификации образов. 

Модель линейного алгоритма, называемая линейным классификатором, 

должна иметь вид  
 

( ) ( )sign ,=а х x , 

 

где  T,, 210  =  – вектор весовых коэффициентов модели (определяют 

положение разделяющей линии);  Tx,x,x 211=  – вектор, составленный 

из значений факторов объекта и единицы;  

 

( )
1, 0,

sign
1, 0

− 
= 

+ 

v
v

v
    –   знаковая функция.  

 

Метки классов принимают значения  11,Y − . Необходимо обучить 

модель a(x), т. е. найти значения весовых коэффициентов  T,, 210  =

 

с 

помощью алгоритма градиентного спуска (программы, написанной на языке 

Python), который должен минимизировать эмпирический риск: 
 

( )
1

( ) min
=

 =  → 
l

l
i i

i

Q X y a x


, 

 

где [•] – нотация Айверсона. Если условие в скобках истинно, то нотация 

Айверсона  возвращает 1, если условие в скобках ложно, то 0. То есть 

эмпирический риск )( lXQ  показывает число неверных классификаций. 

Так как градиентный алгоритм может минимизировать только гладкие, 

дифференцируемые функции, то величину )( lXQ  следует сверху ограничить 

именно таким функционалом: 
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( )
1

( ) ( ( ), ) min,
=

 = →
l

l l
i i

i

Q X Q X L a x y


 

 

где )()),(( iii MLyxaL = – выбранная функция потерь (здесь ,= i i iM y x  –  

отступ).  

Функция потерь (как и набор обучающих данных) определяется 

вариантом (табл. 11). 

 
Табл. 11. Функции потерь по вариантам 

Вариант Функция потерь для реализации 

градиентного алгоритма 

Производная функции 

потерь 

1 )1(log)( 2
MeML −+=  –

логарифмическая ( )
( )

1 ln 2

−

−

  
= −

 + 

M T

M

L M e x y

e

 

2 2)1()( MMQ −=  – квадратичная ( )
2 (1 )


= −  −    





T TQ M

x y x y  

3 1)1(2)( −+= MeMS  – 

сигмоидная ( )
2

( ) 2

1

  
= −

 +

M T

M

S M e x y

e
 

4 MeME −=)(  – экспоненциальная ( ) −
= −  


M TE M

e x y  

5 )1(log)( 2
MeML −+=  –

логарифмическая ( )
( )

1 ln 2

−

−

  
= −

 + 

M T

M

L M e x y

e

 

6 2)1()( MMQ −=  – квадратичная ( )
2 (1 )


= −  −    



T TQ M
x y x y


 

7 1)1(2)( −+= MeMS  – 

сигмоидная ( )
2

( ) 2

1

  
= −

 +

M T

M

S M e x y

e

 

8 MeME −=)( – экспоненциальная ( ) −
= −  


M TE M

e x y  

9 )1(log)( 2
MeML −+=  – 

логарифмическая ( )
( )

1 ln 2

−

−

  
= −

 + 

M T

M

L M e x y

e

 

10 2)1()( MMQ −=  – квадратичная ( )
2 (1 )


= −  −    





T TQ M

x y x y  

 

В качестве начальных значений весовых коэффициентов можно взять 

следующие: 

 

ω0 = 0, ω1 = 0, ω2 = 1. 

 

Шаг в градиентном алгоритме для коэффициента ω0 целесообразно 

выбрать побольше, а для коэффициентов ω1, ω2 поменьше. 
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Содержание отчета 

 

1. Математические расчеты, необходимые для реализации алгоритма 

обучения. 

2. Текст программы обучения линейной  модели с использованием гра- 

диентного алгоритма на языке Python. 

3. Результаты работы программы в виде графика множества точек 

обучающей выборки (каждый класс точек должен быть представлен разными 

маркерами и цветами) и полученной разделяющей линии. 

4. Выводы по полученным результатам. 
 

Задание 4. Задача классификации (метод опорных векторов).  

Реализуйте на языке Python (с применением пакета scikit-learn) линейный 

алгоритм метода опорных векторов для данных обучающей выборки своего 

варианта. Вычислите количество и долю неверных классификаций. Отобразите 

на плоскости объекты обучающей выборки и разделяющую линию, 

полученную в результате обучения (точки, изображающие объекты разных 

классов, должны иметь разные маркеры и цвет).  

 

Содержание отчета 

 

1. Программа, реализующая метод опорных векторов. 

2. Графики и результаты работы программы.  

3. Выводы по полученным результатам. 
 

Задание 5. Задача классификации (наивный байесовский классификатор).  

Реализуйте на языке Python наивный байесовский классификатор на 

основе данных обучающей выборки своего варианта. Будем считать, что 

признаки независимы и распределены по гауссовскому закону (нормальной 

плотности распределения вероятностей). Посчитайте количество и долю 

неверных классификаций для вашей выборки. Отобразите на плоскости 

объекты обучающей выборки (точки, изображающие объекты разных классов, 

должны быть разных цветов). 

 

Содержание отчета 

 

1. Математические расчеты, связанные с построением наивного 

байесовского классификатора. 

 2. Программа, реализующая наивный байесовский классификатор.  

 3. Графики и результаты работы программы. 

 4. Выводы по полученным результатам. 
 

Задание 6. Исследование работы L2-регуляризатора в задачах регрессии. 

Дана функция )(xy  (по вариантам). 
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1. Аппроксимируйте функцию )(xy  с помощью линейной модели 

 
13

1

0( ) ,
=

= + 
i

i
ia x x  

 

т. е. полиномом 13-й степени. Весовые коэффициенты  i (i = 0, 1, 2, …, 13) 

найдите с помощью градиентного алгоритма по обучающему набору данных 

своего варианта. 

2. Обучающую выборку составьте из всех четных индексов 

сгенерированных значений функции: 
 

( )( )












= 2
22 ,:

l

iii
l xfyxX . 

 

То есть сначала формируется первое значение x0 с целевым значением 

)( 00 xfy = , затем второе ( ))(, 222 xfyx =  и так до конца диапазона. 

3. Вычислите значения весовых коэффициентов  i (i = 0, 1, 2, …, 13) для 

квадратичной функции потерь (в задачах регрессии обычно используют именно 

такую функцию потерь), минимизирующие эмпирический риск: 
 

( )( )
2

1

1
( ) min.

2

l
l

i i

i

Q X y a x


=

= − →  

 

Весовые коэффициенты вычисляются по формуле 
 

( )
1

*

−
=    T TX X X Y , 

 

где X – входные векторы обучающей выборки; Y – вектор (или матрица) целевых 

значений обучающей выборки: 
 



















=



















=

lnll

n

n

l xxx

xxx

xxx

x

x

x

X

...

............

...

...

...

21

22221

11211

2

1

,  



















=

ly

y

y

Y
...

2

1

. 

 

4. Вычислите прогнозы функции с помощью полученной модели a(x) для 

всего диапазона значений. В отсчетах, не участвующих в выборке, значения 

модели должны сильно расходиться с целевыми. 

5. Вычислите коэффициенты вектора   с L2-регуляризатором по 

формуле  
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( )
1

*

−
=  +    T TX X I X Y , 

 

где λ > 0 – коэффициент регуляризации; 
nnI   – единичная матрица. 

6. Для новой модели a(x) повторите вычисление прогнозов функции для 

всего диапазона значений. 

Все программы реализуйте на языке Python с использованием пакетов 

NumPy и Matplotlib. Функция у (х) представлена в табл. 12. 

 
Табл. 12. Функции для исследования L1- и L2-регуляризаторов 

Вариант Функция для исследования L1- и L2-регуляризаторов 

1 
 

2  
3  
4  
5  

6 
 

7  
8  
9  
10  

 

Содержание отчета 

 

1. Математические выкладки для реализации алгоритмов.  

2. Тексты программ с результатами их работы. 

3. Выводы по полученным результатам. 
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