
Министерство образования Республики Беларусь

Учреждение образования

«Белорусский государственный университет

информатики и радиоэлектроники»

Факультет информационных технологий и управления

Кафедра информационных технологий автоматизированных систем

А. А. Навроцкий

ОСНОВЫ АЛГОРИТМИЗАЦИИ

И ПРОГРАММИРОВАНИЯ

В СРЕДЕ VISUAL C++

Рекомендовано УМО по образованию в области информатики

и радиоэлектроники в качестве учебно-методического пособия

для специальностей общего высшего, специального высшего образования,

закрепленных за УМО

2-е издание, дополненное и пересмотренное

Минск БГУИР 2026

УДК 004.4’6(076)

ББК 32.973.26-018.2я73

 Н15

Р е ц е н з е н т ы:

кафедра естественно-научных дисциплин

ГУО «Университет Национальной академии наук Беларуси»

(протокол № 10 от 25.03.2025);

директор ООО «Софтарекс Технолоджиес» А. А. Пыхтин

Навроцкий, А. А.

Н15 Основы алгоритмизации и программирования в среде Visual C++ :

учеб.-метод. пособие / А. А. Навроцкий. – 2-е изд., доп. и пересм. – Минск :

БГУИР, 2026. – 156 с. : ил.

ISBN 978-985-543-842-8.

Cодержит теоретические сведения о языке С++. Рассмотрены примеры написания про-

грамм в среде Microsoft Visual Studio C++. Представлены задания для лабораторных работ.

Адресовано студентам 1–2 курсов университета, изучающим дисциплину «Основы

алгоритмизации и программирования».

Первое издание выпущено в 2014 году.

УДК 004.4’6(076)

ББК 32.973.26-018.2я73

ISBN 978-985-543-842-8 © Навроцкий А. А., 2014

 © Навроцкий А. А., 2026, с изменениями

 © УО «Белорусский государственный

 университет информатики

 и радиоэлектроники», 2026

 3

СОДЕРЖАНИЕ
ВВЕДЕНИЕ ... 7

ТЕОРЕТИЧЕСКИЙ РАЗДЕЛ ... 8

1. Базовые элементы языка C++ ... 8

1.1. Идентификаторы ... 8

1.2. Ключевые слова .. 8

1.3. Знаки операций ... 9

1.4. Константы .. 9

1.5. Разделители ... 9

1.6. Комментарии ... 9

1.7. Структура программы С++ ... 9

1.8. Директивы препроцессора .. 10

1.9. Стандартные библиотеки С++ ... 10

1.10. Функции библиотеки cmath .. 11

1.11. Потоковый ввод/вывод данных .. 12

2. Базовые типы данных .. 14

2.1. Типы данных .. 14

2.2. Объявление переменных и констант ... 14

2.3. Целый тип данных ... 14

2.4. Символьный тип данных ... 15

2.5. Вещественный тип данных ... 17

2.6. Логический тип данных .. 18

2.7. Тип void ... 18

2.8. Объявление auto ... 18

2.9. Математические константы .. 19

2.10. Неявное преобразование типов .. 19

2.11. Явное преобразование типов .. 21

3. Операции в языке С++ .. 22

3.1. Арифметические операции ... 22

3.2. Операция присваивания .. 22

3.3. Операции сравнения .. 23

3.4. Логические операции... 23

3.5. Поразрядные логические операции ... 24

3.6. Приоритет операций в С++ .. 24

3.7. Использование блоков ... 26

4. Организация разветвляющихся алгоритмов.. 27

4.1. Оператор условного ветвления (if-else) ... 27

4.2. Условный оператор .. 28

4.3. Оператор множественного выбора .. 28

 4

5. Организация циклических алгоритмов ... 31

5.1. Оператор цикла for ... 31

5.2. Оператор цикла while ... 33

5.3. Оператор цикла do-while ... 33

5.4. Операторы и функции передачи управления .. 33

5.5. Организация циклических алгоритмов .. 35

6. Использование массивов ... 38

6.1. Одномерные массивы .. 38

6.2. Алгоритмы работы с одномерными массивами 39

6.3. Многомерные массивы .. 40

6.4. Алгоритмы работы с двумерными массивами .. 41

7. Использование указателей .. 44

7.1. Объявление указателя (необработанного указателя) 44

7.2. Операции над указателями .. 44

7.3. Инициализация указателей ... 46

7.4. Работа с динамической памятью .. 46

7.5. Создание одномерного динамического массива 47

7.6. Создание двумерного динамического массива 47

8. Использование строковых переменных ... 49

8.1. Объявление строк ... 49

8.2. Функции для работы со строками .. 49

8.3. Алгоритмы работы со строками ... 54

9. Типы данных, определяемых пользователем .. 56

9.1. Объявление и использование структур .. 56

9.2. Объявление и использование объединений .. 59

9.3. Объявление и использование перечислений ... 60

10. Использование файлов .. 61

10.1. Понятие файла .. 61

10.2. Функции для работы с файлами ... 61

11. Функции .. 69

11.1. Понятие функции ... 69

11.2. Параметры функции ... 71

11.3. Перегрузка функций .. 79

11.4. Встраиваемые функции ... 80

11.5. Указатель на функцию ... 81

11.6. Ссылка на функцию ... 83

12. Область видимости и классы памяти .. 84

13. Рекурсивные алгоритмы ... 85

13.1. Понятие рекурсии... 85

 5

13.2. Условие окончания рекурсивного алгоритма 86

13.3. Типы рекурсивных алгоритмов .. 86

13.4. Примеры рекурсивных алгоритмов ... 86

13.5. Целесообразность использования рекурсии ... 89

14. Алгоритмы сортировки ... 91

14.1. Простые методы сортировки .. 91

14.2. Улучшенные методы сортировки ... 93

15. Алгоритмы поиска ... 99

15.1. Линейный поиск ... 99

15.2. Двоичный (бинарный) поиск .. 99

15.3. Интерполяционный поиск .. 100

16. Хеширование .. 101

16.1. Понятие хеширования .. 101

16.2. Схемы хеширования ... 102

16.3. Хеш-таблица с линейной адресацией ... 102

16.4. Хеш-таблицы с квадратичной и произвольной адресацией 104

16.5. Хеш-таблица с двойным хешированием .. 105

16.6. Хеш-таблица на основе связанных списков ... 105

16.7. Метод блоков ... 107

17. Динамические структуры данных ... 108

17.1. Понятие списка, стека и очереди .. 108

17.2. Работа со стеком ... 109

17.3. Работа со однонаправленной очередью ... 112

17.4. Работа с двусвязанными списками ... 113

17.5. Работа с двусвязанными циклическими списками 116

18. Нелинейные списки ... 117

18.1. Древовидные структуры данных ... 117

18.2. Использование древовидных структур ... 118

18.3. Двоичное дерево поиска ... 119

19. Синтаксический анализ арифметических выражений 128

19.1. Алгоритм преобразования выражения в форму ОПЗ 128

ЛАБОРАТОРНЫЙ ПРАКТИКУМ .. 134

Лабораторная работа 1. Программирование линейных алгоритмов 134

Лабораторная работа 2. Программирование

разветвляющихся алгоритмов .. 136

Лабораторная работа 3. Программирование циклических алгоритмов 138

Лабораторная работа 4. Использование одномерных массивов 140

Лабораторная работа 5. Использование двумерных массивов 141

Лабораторная работа 6. Программирование с использованием строк 142

 6

Лабораторная работа 7. Программирование с использованием структур 142

Лабораторная работа 8. Программирование с использованием файлов 144

Лабораторная работа 9. Использование функций ... 144

Лабораторная работа 10. Программирование рекурсивных алгоритмов ... 146

Лабораторная работа 11. Алгоритмы сортировки ... 147

Лабораторная работа 12. Алгоритмы поиска ... 148

Лабораторная работа 13. Хеширование .. 149

Лабораторная работа 14. Использование стеков ... 149

Лабораторная работа 15. Использование двусвязанных списков 150

Лабораторная работа 16. Работа с бинарным деревом поиска 151

Лабораторная работа 17. Вычисление алгебраических выражений 152

ПРИЛОЖЕНИЕ. РАБОТА В СРЕДЕ MICROSOFT VISUAL C++ 153

1. Консольный режим работы .. 153

2. Выполнение программы ... 153

3. Отладка программы .. 154

СПИСОК РЕКОМЕНДОВАННОЙ ЛИТЕРАТУРЫ 155

 7

ВВЕДЕНИЕ

Учебно-методическое пособие предназначено для изучения дисциплины

«Основы алгоритмизации и программирования» (ОАиП). В нем содержатся све-

дения об элементарных конструкциях языка С++, а также программировании ал-

горитмов на структурах данных.

Учебно-методическое пособие состоит из двух частей – теоретической ча-

сти и лабораторного практикума.

Теоретическая часть охватывает основы программирования на языке С++,

а также программирование динамических структур данных, таких как стеки, оче-

реди, деревья, алгоритмов сортировки и поиска, хеширования, рекурсивных и

других алгоритмов.

Лабораторный практикум состоит из 17 работ, которые позволят получить

практические знания на основе изученного материала.

Материал учебно-методического пособия рассчитан на последовательное

освоение материала – от простых понятий к более сложным. Пропуск любой

главы при изучении может не позволить качественно освоить материал последу-

ющих глав.

Учебно-методическое пособие содержит большое количество примеров, в

которых рассматриваются особенности использования изучаемых концепций и

механизмов программирования на языке С++.

Все примеры программ были выполнены и проверены в Microsoft Visual

Studio C++ в 64-разрядных системах.

 8

ТЕОРЕТИЧЕСКИЙ РАЗДЕЛ

1. Базовые элементы языка C++

Алфавит языка С++ включает прописные и строчные буквы латинского ал-

фавита, арабские числа, специальные, пробельные и разделительные символы.

Из символов алфавита формируются токены – наименьшие конструкции

языка, имеющие значение для компилятора.

К токенам относятся: идентификаторы, ключевые слова, знаки операций,

константы, разделители.

1.1. Идентификаторы

Идентификатор – последовательность цифр и букв латинского алфавита,

а также специальных символов при условии, что первой стоит буква или знак

подчеркивания. Идентификатор чуствителен к регистру (идентификаторы, для

образования которых используются совпадающие строчные и прописные буквы,

считаются различными).

 aa, AА, Aa, aA − различные идентификаторы.

В идентификаторе допустимо использовать любое количество символов,

однако значимыми считаются только первые 2048.

При выборе идентификатора:

− необходимо следить, чтобы идентификатор не совпадал с ключевыми

зарезервированными словами и именами библиотечных функций;

− нежелательно использование идентификаторов, начинающихся

со знака подчеркивания или с двойным знаком подчеркивания в любом месте,

так как такие идентификаторы используются в стандартной библиотеке (их ис-

пользование может привести к некорректной работе программы).

 Общепринятые правила именования идентификаторов:

− имена переменных и функций пишутся строчными буквами;

− имена типов начинаются с прописной буквы;

− имена констант пишутся прописными буквами;

− имя идентификатора отражает внутреннюю сущность объекта.

1.2. Ключевые слова

Ключевое слово – зарезервированный токен, имеющий специальное значение.

Некоторые ключевые слова, определенные стандартом С++: auto, bool, break,
case, catch, char, class, const, const_cast, constexpr, continue, default, delete, do,
double, dynamic_cast, else, enum, explicit, extern, false, float, for, friend, goto, if,
inline, int, long, namespace, new, noexcept, nullptr, operator,

 9

private, protected, public, register, reinterpret_cast, return, short, signed,
sizeof, static, static_cast, struct, switch, template, this, throw, true, try, typedef,
typeid, typename, unsigned, using, virtual, void, volatile.

1.3. Знаки операций

Знак операции – один или несколько символов, определяющих действие

над операндами. Использование пробелов внутри знака операции не допуска-

ется.

1.4. Константы

Константа – токен, значение которого не может быть изменено во

время выполнения программы.

Для объявления констант используются ключевые слова const и

constexpr:

const double pi = 3.14159265359;

constexpr int y = 5;

Отличие const от constexpr состоит в том, что constexpr может быть при-

менен и к функциям.

 Задание констант с помощью директивы препроцессора #define

в С++ не рекомендуется.

1.5. Разделители

Элементы языка С++ отделяются друг от друга символами-разделите-

лями. В качестве символов-разделителей используются пустые значения (про-

белы), а также знаки препинания (например, точка с запятой, фигурные

скобки, кавычки и др.).

1.6. Комментарии

Комментарий – текстовая или символьная информация, используемая для

пояснения участков программы. Комментарии не влияют на ход выполнения

программы, так как не являются токенами и не включаются в содержимое испол-

няемого файла (компилятор обрабатывает их как пробел).

В С++ комментарии:

− начинаются последовательностью «//» и заканчиваются концом

строки;

− начинаются последовательностью «/*» и заканчиваются последователь-

ностью «*/» (вложение комментариев не разрешено).

1.7. Структура программы С++

Программа С++ состоит из одной или нескольких функций. Обязательным

является присутствие функции main, которой передается управление при за-

пуске программы.

 10

Вид функции:

int main()

{

// Тело функции

}

После завершения выполнения функции main завершается выполнение

программы. Функция должна возвращать значение целого типа (если возвраща-

емое значение не указано, то компилятор возвращает нуль).

Упрощенная структура программы имеет вид:

<Директивы препроцессора>

<Описание типов пользователя и глобальных переменных>

<Прототипы функций>

<Описание глобальных переменных>

<Функция main()>

<Определения пользовательских функций>

1.8. Директивы препроцессора

Препроцессор – специальная часть компилятора, обрабатывающая дирек-

тивы до начала процесса компиляции программы. Директива препроцессора

начинается с символа «#», который должен быть первым символом строки, затем

следует название директивы. В конце директивы точка с запятой не ставится.

В случае необходимости переноса директивы на следующую строку применя-

ется символ «\».

Для подключения к программе заголовочных файлов используется дирек-

тива include. Если идентификатор файла заключен в угловые скобки, то поиск

файла будет вестись в стандартном каталоге, если в двойные кавычки, то поиск

проводится в следующем порядке:

− каталог, в котором содержится файл, включивший директиву;

− каталоги файлов, которые были уже включены директивой;

− текущий каталог программы;

− каталоги, указанные опцией компилятора «\I»;

− каталоги, заданные переменной окружения include.

Обработка препроцессором директивы include сводится к тому, что на ме-

сто директивы помещается копия указанного в директиве файла.

Директива define используется для написания макросов и определения

символических констант (не рекомендуется использование в С++).

1.9. Стандартные библиотеки С++

При создании исполняемого файла к исходной программе подключаются

библиотечные файлы (как правило, имеют расширение lib), содержащие уже от-

компилированный набор функций. Для осуществления связи с библиотечным

 11

файлом к программе подключается (с помощью директив препроцессора) заго-

ловочный файл, который содержит информацию об именах и типах функций,

расположенных в библиотеке. На этапе компиляции компоновщик извлекает из

библиотечных файлов используемые в программе функции.

В С++ заголовочные файлы не имеют расширения, например,

#include <iostream>.
Для файлов, унаследованных от С, следует указывать расширение:

#include <math.h>.

1.10. Функции библиотеки cmath

Все аргументы в тригонометрических функциях задаются в радианах. Па-

раметры остальных функций имеют тип double. Некоторые математические

функции перечислены в табл. 1.1.

 Таблица 1.1

Математическая

функция

Функция

библиотеки

math.h

Содержание вычислений

|x| аbs(x)
fаbs(x)

Вычисление абсолютного значения числа.

Например:

s = abs(-3.9) → Результат: s = 3.9

s = fabs(-4.5) → Результат: s = 4.5

arccos(x) acos(x) Вычисление значения арккосинуса числа x. Значе-

ние x может быть задано только из диапазона

−1...1.

Например:

s = acos (0.4) → Результат: s = 1.15928

s = acos (1.5) → Результат: s = −1.#IND

arcsin(x) asin(x) Вычисление значения арксинуса числа x. Значение

x может быть задано только из диапазона

–1...1.

Например:

s = asin (−1) → Результат: s = −1.5708

s = asin (0.9) → Результат: s = 1.11977

arctg(x) atan(x) Вычисление значения арктангенса. В результате

выполнения функции возвращается число из диа-

пазона −/2…/2.

Например:

x = atan (3.5) → Результат: s = 1.2925

√𝑥3 cbrt(x) Возвращает значение кубического корня от x

cos(x) cos(x) Вычисление cos(x)

ch(x) cosh(x) Вычисление косинуса гиперболического

 12

Окончание табл. 1.1

Математическая

функция

Функция

библиотеки

math.h

Содержание вычислений

ex exp(x) Вычисление экспоненты числа x

Минимум fmin(x, y) Вычисление минимального значения из x и y

Максимум fmax(x,
y)

Вычисление максимального значения из x и y

Остаток от

деления x на y

fmod(x,y) Функция возвращает действительное значение,

соответствующее остатку от деления x на y.

Например:

fmod (3, 4) → Результат: s = 3

fmod (6.4, 3.1) → Результат: s = 0.2

ln(x) log(x) Вычисление натурального логарифма x

lg10(x) log10(x) Вычисление десятичного логарифма x

xy pow(x, y) Возведение x в степень y

Округление round(x) Функция возвращает ближайшее к аргументу

целое значение

sin(x) sin(x) Вычисление sin(x)

sh(x) sinh(x) Вычисление синуса гиперболического x

x sqrt(x) Вычисление квадратного корня x

tg(x) tan(x) Вычисление тангенса x

tgh(x) tanh(x) Вычисление тангенса гиперболического x

Выделение

целой части

trunc(x) Выделение целой части числа

trunc (3.4) → Результат: s = 3

1.11. Потоковый ввод/вывод данных

Поток − это логическое устройство, которое осуществляет передачу дан-

ных от источника к приемнику. В библиотеке iostream определены четыре стран-

дартных потока:

cout − стандартный поток ввода, направлен из оперативной памяти на

внешнее устройство (по умолчанию – на экран компьютера);

cin − стандартный поток вывода, направлен от внешнего устройства (по

умолчанию – с клавиатуры) в оперативую память;

cerr – поток, предназначенный для вывода на экран сообщений об ошибках

и программной диагностики. Объект немедленно выводится на экран, минуя бу-

феризацию. Поток нельзя перенаправить;

clog − поток, предназначенный для ведения журналов. Не может быть пе-

ренаправлен, но проходит буферизацию.

Для работы с потоками применяются операции вставки в поток (<<) и из-

влечения из потока (>>).

 13

Введем, например, с клавиатуры переменную x и выведем ее на экран:

cout << "Enter value x: " << endl;

 cin >> x;

cout << "x = " << x << endl;

Здесь манипулятор endl переводит курсор в начало следующей строки.

 В языке С для перехода на новую строку использовали управляю-

щий символ «\n». Манипулятор endl, появившийся в С++, кроме

переноса строки производит сброс буферов потока вывода, что

повышает надежность программы, но несколько снижает скорость

ее выполнения.

Для управления вводом/выводом используются флаги или манипуляторы

форматирования. Флаги устанавливают параметры ввода/вывода, которые будут

действовать на все последующие операторы до тех пор, пока не будут отменены.

Манипуляторы (библиотека iomanip) помещаются в операторы ввода/вывода

непосредственно перед форматируемым значением. В табл. 1.2 приведены неко-

торые манипуляторы форматирования.

Таблица 1.2

Манипулятор Описание

setw(n) Задает ширину поля вывода в n символов

setprecision(m) Задает количество цифр (т-1) в дробной части числа

boolalpha Вывод логических величин в текстовом виде

scientific Экспоненциальная форма вывода вещественных чисел

fixed Фиксированная форма вывода вещественных чисел

(по умолчанию)

 14

2. Базовые типы данных

2.1. Типы данных

Тип данных позволяет определить, какие значения могут принимать пере-

менные, какая их структура, какое количество ячеек используется для их разме-

щения и какие операции допустимо над ними выполнять

Данные можно разбить на две группы: скалярные (простые) и структури-

рованные (составные).

К скалярному (простому) типу относятся данные, представляемые одним

значением из определенного диапазона.

Структурированные (составные) типы определяются как комбинация

скалярных и описанных ранее структурированных типов.

Базовыми типами данных являются: целый, действительный, логический и

символьный.

Данные могут быть константами и переменными. В отличие от перемен-

ных константы не могут изменять свое значение во время выполнения про-

граммы.

2.2. Объявление переменных и констант

Объявление переменных можно сделать в любом месте программы до пер-

вого их использования.

 Для повышения читабельности объявление значимых переменных

и констант желательно делать в начале программы.

При объявлении сначала указывается тип данных, а затем через запятую

список переменных данного типа, например:

int x, y, z;

double a, b;

Используются две формы объявления переменных:

− объявление, не приводящее к выделению памяти;

− объявление, при котором выделяется память в соответствии с указан-

ным типом.

При объявлении с выделением памяти можно сразу инициализировать пе-

ременную (присвоить ее начальное значение), например:

int sum = 0, k = 10;

2.3. Целый тип данных

Целый тип данных предназначен для хранения чисел, не имеющих дроб-

ной части. В языке С++ определены следующие целые типы данных:

int (__int32, signed) – занимает 4 байта памяти, может хранить значения

из диапазона от –2 147 483 648 до 2 147 483 647;

 15

long (long int) – занимает 4 байта памяти, может хранить значения из диа-

пазона от –2 147 483 648 до 2 147 483 647; в 64-разрядных системах совпадает с

типом int;
short (short int) – занимает 2 байта памяти, может хранить значения из

диапазона от –32 768 до 32 767. Данный тип данных использовать нежелательно,

так как имея меньшую длину, он обрабатывается медленнее типа int.
long long – занимает 8 байт памяти, может хранить значения из диапазона

от –9 223 372 036 854 775 808 до 9 223 372 036 854 775 807.

Для смещения границ диапазона только в положительную область исполь-

зуется атрибут unsigned. Например, unsigned int имеет длину от 0

до 4 294 967 295.

Константы целого типа – последовательность цифр, начинающаяся со

знака «минус» для отрицательных констант и со знака «плюс» (или без него) для

положительных констант. Для обозначения констант типа long после числа ста-

вят букву L или l.
Константы могут быть представлены в различных системах счисления.

Десятичные константы: последовательность чисел от 0 до 9, начинающа-

яся не с нуля, например 334.

Восьмеричные константы: последовательность чисел от 0 до 7, начина-

ющаяся с нуля, например 045.

Шестнадцатеричные константы: последовательность чисел от 0 до 9 и

букв от А до F, начинающаяся с символов 0x, например 0xF5C3.

2.4. Символьный тип данных

Символьный тип предназначен для хранения одного символа, для чего до-

статочно выделить 1 байт памяти. Данные такого типа рассматриваются компи-

лятором как целые, поэтому в переменных типа signed char можно хранить це-

лые числа из диапазона –128…127. Для хранения символов используется

unsigned char, который позволяет хранить 256 символов кодовой таблицы ASCII

(American Standard Code for Information Interchange – американский стандартный

код для обмена информацией). Стандартный набор символов ASCII использует

только 7 битов для каждого символа (диапазон 0…127). Добавление восьмого

разряда позволило увеличить количество кодов таблицы ASCII до 255. Коды от

128 до 255 представляют собой расширение таблицы ASCII для хранения симво-

лов национальных алфавитов, а также символов псевдографики.

Значения кодовой таблицы ASCII с номерами 0…32 и 127 содержат непе-

чатаемые символы, которые не имеют графического представления, но влияют

на отображение текста. Символы с кодами 32…127 представлены в табл. 2.1.

Символы с кодами 128…255 (кодовая таблица 866 – MS-DOS) представлены в

табл. 2.2.

 16

Таблица 2.1
Код Символ Код Символ Код Символ Код Символ

32 пробел 56 8 80 P 104 h

33 ! 57 9 81 Q 105 i

34 “ 58 : 82 R 106 j

35 # 59 ; 83 S 107 k

36 $ 60 < 84 T 108 l

37 % 61 = 85 U 109 m

38 & 62 > 86 V 110 n

39 ' 63 ? 87 W 111 o

40 (64 @ 88 X 112 p

41) 65 A 89 Y 113 q

42 * 66 B 90 Z 114 r

43 + 67 C 91 [115 s

44 , 68 D 92 \ 116 t

45 - 69 E 93] 117 u

46 . 70 F 94 ^ 118 v

47 / 71 G 95 _ 119 w

48 0 72 H 96 ` 120 x

49 1 73 I 97 а 121 y

50 2 74 J 98 b 122 z

51 3 75 K 99 c 123 {

52 4 76 L 100 d 124 |

53 5 77 M 101 e 125 }

54 6 78 N 102 f 126 ~

55 7 79 O 103 g 127 del

Таблица 2.2
Код Символ Код Символ Код Символ Код Символ
128 А 160 а 192 └ 224 р

129 Б 161 б 193 ┴ 225 с

130 В 162 в 194 ┬ 226 т

131 Г 163 г 195 ├ 227 у

132 Д 164 д 196 ─ 228 ф

133 Е 165 е 197 ┼ 229 х

134 Ж 166 ж 198 ╞ 230 ц

135 З 167 з 199 ╟ 231 ч

136 И 168 и 200 ╚ 232 ш

137 Й 169 й 201 ╔ 233 щ

138 К 170 к 202 ╩ 234 ъ

 17

Окончание табл. 2.2

Код Символ Код Символ Код Символ Код Символ

139 Л 171 л 203 ╦ 235 ы

140 М 172 м 204 ╠ 236 ь

141 Н 173 н 205 ═ 237 э

142 О 174 о 206 ╬ 238 ю

143 П 175 п 207 ╧ 239 я

144 Р 176 ░ 208 ╨ 240 Е

145 С 177 ▒ 209 ╤ 241 е

146 Т 178 ▓ 210 ╥ 242 Є

147 У 179 │ 211 ╙ 243 є

148 Ф 180 ┤ 212 ╘ 244 Ї

149 Х 181 ╡ 213 ╒ 245 ї

150 Ц 182 ╢ 214 ╓ 246 Ў

151 Ч 183 ╖ 215 ╫ 247 ў

152 Ш 184 ╕ 216 ╪ 248 °

153 Щ 185 ╣ 217 ┘ 249 ·

154 Ъ 186 ║ 218 ┌ 250 ·

155 Ы 187 ╗ 219 █ 251 √

156 Ь 188 ╝ 220 ▄ 252 №

157 Э 189 ╜ 221 ▌ 253 ¤

158 Ю 190 ╛ 222 ▐ 254 ■

159 Я 191 ┐ 223 ▀ 255

Значение переменной символьного типа записывается в одиночных

кавычках.

2.5. Вещественный тип данных

Вещественный тип данных характеризуется присутствием в числе дробной

части. Число представляется в экспоненциальной форме: n.mEp, где n.m –

мантисса (n – целая часть, m – дробная часть), p – порядок.

В языке С++ используются следующие типы вещественных данных:

float – занимает 4 байта памяти, может хранить значения из диапазона от

3.4  10–38 до 3.4  10+38. Данный тип позволяет хранить числа с точностью до семи

знаков после запятой. Не рекомендуется к использованию в С++;

double (long double) – занимает 8 байт памяти, может хранить значения

из в диапазона от 1.7  10–308 до 1.7  10+308. Данный тип позволяет хранить числа

с точностью до 15 знаков после запятой.

Вещественное число хранится в памяти компьютера в нормализованной

форме (1 ≤ M < 2). При нарушении нормализации мантиссу сдвигают влево до

тех пор, пока старшей цифрой мантиссы не станет единица, которая называется

 18

неявной единицей и в памяти не хранится. Порядок числа сдвигается таким обра-

зом, чтобы весь интервал значений находился в положительной области (знак

«плюс» в памяти не хранится). Сэкономленные 2 бита позволяют повысить

точность хранения числа.

При использовании вещественных констант после числа добавляется

буква F для типа float, D – для типа double (по умолчанию) и L для типа long
double.

2.6. Логический тип данных

Логический тип bool занимает 1 байт памяти, может принимать два значе-

ния: true (1) или false (0). Так как тип bool занимает 1 байт памяти, то он может

получать значения от 0 до 255. Значения от 1 до 255 трактуются как true (1), а

значение 0 – как false (0).

 bool b;

cout.setf(ios::boolalpha); // Вывод логического 0 или 1,

 // соответственно, как «false» или «true»

 b = true; cout << b << endl; // Выводит: true

 b = 1; cout << b << endl; // Выводит: true

 b = 225; cout << b << endl; // Выводит: true

 b = false; cout << b << endl; // Выводит: false

 b = 0; cout << b << endl; // Выводит: false

2.7. Тип void

Тип описывает пустой набор значений. Тип, как правило, используется для

описания функций, не возвращающих значение, или для объявления нетипизи-

рованных указателей (для использования требуется их приведение к определен-

ному типу). Запрещено объявление переменных типа void, ссылок и константных

указателей типа const void*.

2.8. Объявление auto

Ключевое слово auto используется для объявления переменной, тип кото-

рой определяется исходя из типа инициализацирующего выражения.

Формат:

auto инициализатор = инициализирующее выражение;

Например:

auto x = 5; // x – переменная типа int

auto y = 7.8; // y – переменная типа double

auto m1 = { 1, 2, 3 }; // m1 – массив типа int

auto m2 = { 1.5, 2.4 }; // m2 – массив типа double

 19

2.9. Математические константы

Математические константы находятся в библиотеке numbers (простран-

ство имен std::numbers):

#include <numbers>

using namespace std::numbers;

Математические константы представлены в табл. 2.3.

Таблица 2.3
Константа Математическая формула Значение

e Число e 2.718281828459045

log2e log2(e) 1.4426950408889634

log10e log10(e) 0.4342944819032518

ln2 ln(2) 0.6931471805599453

ln10 ln(10) 2.302585092994046

pi π 3.141592653589793

inv_pi 1/π 0.3183098861837907

inv_sqrtpi 1 / π 0.5641895835477563

sqrt2 2 1.4142135623730951

sqrt3 3 1.7320508075688772

inv_sqrt3 1 / 3 0.5773502691896257

2.10. Неявное преобразование типов

Неявное преобразование типов – автоматическое преобразование компи-

лятором данных одного типа в данные другого типа в случае, если требуется со-

гласование этих типов данных.

Неявное преобразование типов происходит, если:

− операнды имеют различный тип данных;

− типы аргументов функций отличаются от типов формальных парамет-

ров.

Неявное преобразование при выполнении арифметических операций.

Данные преобразуются к типам, имеющим больший приоритет (увеличивается

слева направо):

int → unsigned int → long → unsigned long → long long → unsigned long long →

float → double → long double.

 Преобразование данных типа long long (unsigned long long) в тип

float может привести к потере точности.

 20

Данные типов bool, char, signed char, unsigned char, short и un-
signed short всегда преобразуются к типу int (или к типу с еще большим прио-

ритетом).

Логические преобразования. Если операция требует использования логиче-

ского значения (например, в операторе if), то любой скалярный тип неявно пре-

образуется в тип bool.
Неявное преобразование типов является безопасным по определению. Это

достигается повышением уровня приоритета (увеличением размера типа дан-

ных).

При использовании операции присваивания различают расширяющее и

сужающее преобразование.

При расширяющем преобразовании значение переменной с меньшим

приоритетом присваивается переменной с большим приоритетом. Операция яв-

ляется безопасной (потеря данных невозможна).

Например, необходимо вычислить: s = a + b, где s − переменная типа

double, а − символ, b − переменная типа int. Пусть а = ’d’, b = 45. Выражение

будет рассчитываться следующим образом. Так как в арифметическом выраже-

нии присутствуют две переменные различных типов, то переменная с меньшим

приоритетом (a) будет приведена к типу int. Для этого в памяти компьютера со-

здается временная переменная типа int, которая будет хранить номер символа ’d’,
равный 100 (см. табл. 2.1). После этого выполняется операция суммирования, ре-

зультат которой будет равен 145 (100 + 45). Полученное значение (145) присва-

ивается переменной s. При выполнении операции присваивания преобразование

типа не происходит, но размер переменной типа double больше размера пере-

менной типа int, поэтому потеря информации в этом случае не происходит.

При сужающем преобразовании значение переменной с большим прио-

ритетом присваивается переменной с меньшим приоритетом. При таком преоб-

разовании возможна потеря данных.

Преобразование из типа с плавающей запятой в целочисленный тип все-

гда является узким преобразованием, так как дробная часть отбрасывается и

теряется.

При нахождении узкого преобразования компилятор выполняет его неяв-

ным образом, но выдает предупреждение. Предупреждение не останавливает

компиляцию, однако результат выполнения программы может быть неверным:

int m = 3.2; // warning C4244: инициализация:

// преобразование "double" в "int", возможна потеря данных

 cout << m; // Выводит: 3

 cout << endl;

 short k = 500000; // warning C4305: инициализация:

 // усечение из "int" в "short"

// warning C4309 : инициализация: усечение константного значения

 cout << k; // Выводит: -24288

 21

 cout << endl;

 int n = INT_MAX + 1; // warning C4307: "+":

 // переполнение целой константы со знаком

 cout << n; // Выводит: -2147483648

 cout << endl;

 bool b = m;

 cout << b; // Выводит: 1

2.11. Явное преобразование типов

Если неявное преобразование типов не приводит к требуемому результату,

можно сделать преобразование типов явным образом:

static_cast <тип> (переменная)

Например,

int a = INT_MAX, b = INT_MAX;

int s = (a * b) / a;

 cout << s << endl; // Выводит: 0 - Ошибка!

int f = (static_cast <double> (a) * b) / a;

 cout << f << endl; // Выводит: 2147483647

При расчете переменной s вычисленное значение произведения a на b вы-

ходит за границы диапазона значений, которые могут храниться в переменной

типа int. Создаваемая для хранения промежуточного результата временная пере-

менная типа int получает ошибочную информацию, поэтому результат вычисле-

ния будет неверным.

В следующей строке переменная a явным образом приводится к типу

double. Следовательно, результат вычисления произведения будет храниться во

временной переменной наибольшего по длине типа (из int и double) − типа

double. Полученный результат не выходит за границы диапазона значений типа

double, поэтому ошибка не возникает.

Оператор static_cast возвращает ошибку, если типы, используемые для

приведения, полностью несовместимы.

В языке С использовалась в настоящее время устаревшая (не рекомендуе-

мая разработчиком) форма приведения типов:

(тип) переменная

или

тип (переменная)

 22

 3. Операции в языке С++

3.1. Арифметические операции

Язык С++ содержит пять простых бинарных операций: «+», «–», «*», «/» и

«%». Операции сложения, вычитания, умножения и деления применимы ко всем

базовым типам. Операция получения остатка от деления «%» используется

только для работы с целочисленными данными.

Например: 10 % 6 = 4, 7 % 10 = 7, 10 % 5 = 0.

3.2. Операция присваивания

Формат операции:

операнд1 = операнд2;

В операнд1 заносится значение операнда2.

В качестве операнда1 можно только lvalue. В качестве операнда2 можно

использовать как lvalue, так и rvalue.

 lvalue (изменяемое выражение слева от оператора присваивания) – объ-

ект, занимающий идентифицируемое место в памяти (имеет адрес).

lvalue не может быть константой, функцией, массивом.

rvalue (выражение справа от оператора присваивания), в качестве кото-

рого может использоваться константа, переменная, выражение, массив

или функция.

Все lvalue могут использоваться как rvalue, но не все rvalue могут быть

lvalue.

Допустимо использовать следующее написание:

a = b = c = d; что равнозначно a = d; b = d; c =d ;

Для сокращения записи конструкции

операнд1 = операнд1 знак_операции операнд2;

можно использовать конструкцию

операнд1 знак_операции= операнд2;

Например, оператор

x = x + 2;

можно заменить оператором

x += 2;

Если операнд2 для операций суммирования и вычитания равен единице

(или минус единице), то используются операции инкремента:

операнд1++;

или декремента

операнд1--;

 23

Например, вместо оператора i = i + 1 используется оператор i++, а вместо

оператора i = i - 1 оператор i--.
Операторы инкремент или декремент могут иметь две формы: префиксную

(например, ++i) или постфиксную (например, i++). Форма оператора определяет

его приоритет при выполнении операций в выражении.

При использовании префиксной формы оператора сначала выполняется

инкремент или декремент, а затем арифметические операции. Если используется

постфиксная форма, то сначала выполняются арифметические операции, а затем

инкремент или декремент.

3.3. Операции сравнения

Операции сравнения применяются при работе с двумя операндами и воз-

вращают true (1), если результат сравнения – истина, и false (0), если результат

сравнения – ложь. В языке С определены следующие операции сравнения:

< (меньше), <= (меньше или равно), > (больше),

>= (больше или равно), != (не равно), = = (равно).

Операнды должны иметь одинаковый тип (допустимо сравнивать целый и

действительный типы).

 В C++20 добавлен оператор трехстороннего сравнения (<=>). Резуль-

татом выполнения операции является объект, содержащий результат

сравнения на больше, меньше и равно.

3.4. Логические операции

Логические операции возвращают результат (ложно или истинно) сравне-

ния операндов скалярных типов. В С++ определены три логические операции:

«!», «&&» и «||» (табл. 3.1).

Таблица 3.1
Логическая

операция
Обозначение Результат выполнения Пример

НЕ (!)

(унарная)

!а
или

not a

Возвращает true, если a=false,

и false, если a=true

a = 3;
x = !(a > 0);
Результат: x= false

И (&&)

(бинарная)

а && b
или

а and b

Возвращает true,

если а=true и b=true,

иначе возвращает false

a = 7;
x = (a > 0 && a < 5);
Результат: x= false

ИЛИ (||)
(бинарная)

а || b
или

а or b

Возвращает true,

если а=true или b=true,

иначе возвращает false

a = 7;
x = (a > 0 || a < 5);
Результат: x=true

 24

Допускается использование различных логических операций в одном вы-

ражении:

a = 7;

x = !(a >= 0 && a < 10 || a != 7);

Результат: x= false.

3.5. Поразрядные логические операции

Поразрядные логические операции работают с двоичным представлением

целых чисел.

Определены следующие операции:

«~» – поразрядное отрицание (унарная операция). Операция инвертирует

каждый бит операнда (0 заменяется на 1, а 1 на 0);

«<<» – поразрядный сдвиг влево. Операция сдвигает биты левого операнда

на число разрядов, указанное правым операндом. Сдвиг на n разрядов влево ана-

логичен умножению числа на 2n;

«>>» – поразрядный сдвиг вправо. Операция сдвигает биты левого опе-

ранда на число разрядов, указанное правым операндом. Сдвиг на n разрядов

вправо аналогичен делению числа на 2n;

«&» – поразрядное И;

«|» – поразрядное ИЛИ;

«^» – поразрядное исключающее ИЛИ.

Таблица истинности для операций «&», «|», «^» представлена ниже

(табл. 3.2).

 Таблица 3.2
Значение битов b1 & b2 b1 | b2 b1 ^ b2

b1 = 0, b2 = 0 0 0 0

b1 = 0, b2 = 1 0 1 1

b1 = 1, b2 = 0 0 1 1

b1 = 1, b2 = 1 1 1 0

3.6. Приоритет операций в С++

Приоритет операций – порядок выполнения операций в арифметическом

выражении. Операторы с более высоким приоритетом будут выполняться

раньше операторов с более низким приоритетом. Если операторы имеют одина-

ковый уровень приоритета, то порядок их выполнения определяется ассоциатив-

ностью (слева направо или справа налево).

Приоритет операций в языке С++ представлен в табл. 3.3. Приоритет

уменьшается сверху вниз. Ассоциативность указана с помощью стрелок: →

(слева направо) и ← (справа налево).

 25

 Таблица 3.3
Уровень

приоритета и

ассоциатив-

ность

Тип операции Операторы

1 Разрешение области действия ::

2 (←) Префиксные инкремент и декремент ++, --

3 (→)

Выбор элемента для указателя (объект

или указатель)

. (точка),

-> (стрелка)

Индекс массива []

Вызов функции, инициализация,

скобки
()

Имя типа объекта typeid

Явное приведение типа

const_cast,
dynamic_cast,
reinterpret_cast,
static_cast

4 (←)

Размер объекта или типа sizeof

Поразрядное отрицание ~ (compl)

Логическое отрицание ! (not)

Унарные плюс и минус +, –

Взятие адреса и разадресация &, *

Создание и уничтожение объекта new, delete

Явное приведение типа ()

5 (→) Указатель на элемент .*, ->*

6 (→) Арифметические операции *, /, %

7 (→) Арифметические операции +, –

8 (→) Сдвиг <<, >>

9 (→) Операции сравнения <, >, >=, <=

10 (→) Операции сравнения ==, != (not_eq)

11 (→) Побитовое И & (bitand)

12 (→) Побитовое исключающее ИЛИ ^ (xor)

13 (→) Побитовое ИЛИ | (bitor)

14 (→) Логическое И && (and)

15 (→) Логическое ИЛИ || (or)

16 (→) Условная операция ? :

17 (→) Постфиксные инкремент и декремент ++, – –

18 (←) Присваивание

=, *=, /=, %=, +=, –=,
<<=, >>=, &=
(and_eq), |= (or_eq),
^= (xor_eq), throw

19 (→) Последовательность , (запятая)

 26

3.7. Использование блоков

Группа операторов, заключенная в фигурные скобки, называется блоком.

Компилятор рассматривает такую группу операторов как один составной опера-

тор. В любой конструкции языка С++ простой оператор можно заменить блоком.

Например, вместо

оператор;

можно поставить

{

оператор1;

…

операторn;

 }

 27

4. Организация

разветвляющихся алгоритмов

Разветвляющийся алгоритм – алгоритм, содержащий несколько ветвей

(последовательностей команд), отличающихся друг от друга содержанием вы-

числений. Выход вычислительного процесса на ту или иную ветвь алгоритма

определяется текущими данными.

4.1. Оператор условного ветвления (if-else)

Формат оператора выбора:

if (логическое_выражение) оператор1;

 else оператор2;

Если логическое_выражение истинно, то выполняется оператор1,

иначе – оператор2.

Например:

if (f > 10) x = 3;

 else x = 42;

Истинным логическое_выражение считается, если оно равно:

– true;

– ненулевому арифметическому значению;

– значению указателя, отличному от nullptr;
– ненулевому значению типа класса, определяющего однозначное преоб-

разование к арифметическому, логическому типу или типу указателя.

Оператор имеет сокращенную форму:

if (логическое_выражение) оператор1;

Например:

if (f == 0) x = 3;

Логическое_выражение всегда располагается в круглых скобках. Если

оператор1 или оператор2 содержит более одного оператора, то используется

блок.

В качестве оператора1 и оператора2 могут быть использованы опера-

торы if. Такие операторы называют вложенными. Во вложенных операторах if
ключевое слово else принадлежит ближайшему предшествующему ему if.

Например:

if (логическое_выражение1) оператор1;

if (логическое_выражение2) оператор2;

 else оператор3;

Оператор3 будет выполняться, если логическое_выражение2 ложно.

Значение логического_выражения1 не оказывает влияния на работу

оператора3.

 28

Изменить порядок проверки можно, используя фигурные скобки:

if (логическое_выражение1) {

оператор1;

if (логическое_выражение2) оператор2;

 }

 else оператор3;

Оператор3 будет выполняться, если логическое_выражение1 ложно.

Значение логического_выражения2 не оказывает влияния на выбор опера-
тора3.

4.2. Условный оператор

Формат условного тренарного оператора:

условие ? операнд1 : операнд2;

Если значение условия истинно, то результатом выполнения оператора яв-

ляется операнд1, иначе – операнд2.

Например, найти наибольшее из двух чисел:

max = a > b ? a : b;

Условие может быть любым скалярным выражением. Операнды должны

быть одного типа, или их разрешено привести к одному типу неявным преобра-

зованием.

Применение условного оператора сокращает код, однако не увеличивает

скорость выполнения программы.

4.3. Оператор множественного выбора

При наличии в программе большого числа ветвлений, зависящих от значе-

ния одного операнда, используется оператор множественного выбора switch.

Формат оператора:

switch(переменная_выбора) {

 case константа1: оператор1 ; break;

 …

 case константаN: операторыn; break;

 default : операторыn+1;

 }

Переменная_выбора должна быть целочисленного типа (или типа не-

явно преобразуемого в целочисленный тип). Тип констант должен соответ-

ствовать типу переменной_выбора, а значение должно быть уникальным

(наличие констант с одинаковым значением не допускается).

 29

При совпадении значения переменной_выбора со значением одной из

констант управление передается первому оператору, стоящему после этой кон-

станты. Если совпадений не было, то управление передается первому оператору

блока default (при наличии) или первому оператору за конструкцией switsh.

Пример 4.1. Написать программу, реализующую простейший калькулятор.

int a, b, res; char znak;

cout << " Введите a :"; cin >> a;

cout << " Введите b :"; cin >> b;

cout << " Введите знак операции :"; cin >> znak;

switch(znak) {

 case '+': res = a + b; break;

 case '-': res = a - b; break;

 case '*': res = a * b; break;

 case '/': res = a / b; break;

 default: cout << "Ошибка!"; exit(1);

}

cout << res;

В конце каждого набора операторов ставится оператор break, который за-

вершает выполнение оператора switch. Если не поставить break, то после вы-

полнения соответствующей секции управление будет передано операторам, от-

носящимся к другим ветвям switch. Отсутствие break, как правило, приводит к

ошибке в вычислениях. Однако в некоторых случаях использование секций case

без break оправдано, например, если необходимо для различных значений кон-

стант сравнения выполнять одинаковую последовательность операторов.

Пример 4.2. Определить пору года по номеру месяца.

int mes;

cout << "Введите номер месяца : "; cin >> mes;

 switch (mes) {

 case 12: case 1: case 2: cout << "Зима"; break;

 case 3: case 4: case 5: cout << "Весна"; break;

 case 6: case 7: case 8: cout << "Лето"; break;

 case 9: case 10: case 11: cout << "Осень"; break;

 default: cout << "Ошибка!";

 }

 30

 При выводе текста в окно консоли происходит преобразование ки-

риллических букв в стандарт cp866, который отображает эти буквы

неправильно. Для корректного вывода русских букв (в потоке вы-

вода) можно использовать оператор:

system("chcp 1251");

или

setlocale(LC_ALL, "Russian");

Пример 4.3. Вычислить значение выражения

3

2 (), если 10,

sin(()), если 3,

() 3 иначе.

  +  


=  


+

y f x x y

s f x x y

f x

При выполнении задания предусмотреть выбор вида функции f(x): ln(x) или cos(x).

double x, y, f, p, res;

 int k;

 cout << "Введите x "; cin >> x;

 cout << "Введите y "; cin >> y;

 cout << "Введите 1 (если f(x) = ln(x)) или 2 (если f(x) = cos(x)) :" ;

 cin >> k;

 switch (k) {

case 1: f = log(x); break;

case 2: f = cos(x); break;

default: cout << "Функция не выбрана"; return 1;

 }

 p = x * y;

 if (p > 10) res =2*y+ f;

else

if (p <= 3) res =sin(f);

else res = cbrt(f + 3);

 cout << "Результат = " << res << endl;

 31

 5. Организация циклических алгоритмов

Циклический алгоритм – многократное выполнение одной и той же по-

следовательности операторов при различных значениях исходных данных.

5.1. Оператор цикла for

Общий вид оператора:

for (инициализирующее_выражение; логическое_выражение;

 инкрементирующее_выражение)

 {

// Тело цикла

 }

Обычно все три выражения содержат одну переменную, которую назы-

вают счетчиком цикла.

Инициализирующее выражение выполняется один раз в начале выполне-

ния циклического алгоритма. Как правило, используется для инициализации

счетчика цикла. Может содержать объявления и операторы.

Логическое выражение проверяется перед выполнением тела цикла. Если

результат имеет отличное от нуля целочисленное значение (true), то тело цикла

выполняется, иначе выполняется следующий за телом цикла оператор. Если ло-

гическое выражение отсутствует, то считается, что оно имеет значение true.

Инкрементирующее выражение предназначено для изменения значения

счетчика цикла. Модификация счетчика происходит после каждого выполнения

тела цикла.

Тело цикла – последовательность операторов, которая выполняется до тех

пор, пока не будет выполнено условие выхода из цикла. Тело цикла может со-

держать внутри себя любые конструкции языка C++, в том числе любое количе-

ство вложенных циклов.

Схема работы цикла for представлена на рис. 5.1.

Рис. 5.1

 32

При выполнении оператора

for (i = 1; i < 10; i++) cout << i << endl;

сначала (в инициализирующем выражении) в переменную i будет занесено

число 1. После этого будет проверено значение логического выражения, и

так как оно имеет значение true (1 < 10), то будет выполнено тело цикла – теку-

щее значение i (1) будет выведено на экран. Затем выполняется инкрементирую-

щее выражение (i++) и снова проверяется значение логического выражения.

Тело цикла будет выполняться до тех пор, пока значение логического вы-

ражения не примет значения false (10 < 10).

В результате работы циклического алгоритма на экран будут выведены

числа от 1 до 9.

 Если необходимо вывести числа от 1 до 10, то можно использовать

конструкцию

for (i = 1; i <= 10; i++) cout << i << endl;

однако в С++ чаще используют конструкции со строгим неравен-

ством:

for (i = 1; i < 11; i++) cout << i << endl;

Разрешено совмещать выполнение инкрементирующего выражения с опи-

санием счетчика цикла:

for (int i = 1; i < 11; i++)

Такое объявление удобно тем, что переменная i согласно стандарту языка

C++ будет существовать только внутри цикла. После выполнения цикла память,

выделенная для хранения i, освобождается.

Любая из секций в операторе for не является обязательной, поэтому может

отсутствовать любое количество секций. Допустимо такое написание бесконеч-

ного цикла:

for (; ;)

 Для размещения в одной секции оператора for нескольких операто-

ров используется операция «запятая», которая позволяет в тех ме-

стах, где допустимо использование только одного оператора, разме-

щать несколько операторов. Формат операции:

Оператор1, Оператор2, …, ОператорN

Программа для вычисления факториала числа n может выглядеть следую-

щим образом:

for (f=1, i=1; i<=n; f*=i, i++);

Точка с запятой в конце оператора for означает, что тело цикла отсутствует.

 33

Имеется форма оператора for, основанная на диапазоне (range-based for),

которая позволяет обращаться последовательно к каждому элементу коллекции

(множеству упорядоченных элементов).

for (элемент : имя_коллекции)

{

 // Тело цикла

}

5.2. Оператор цикла while

Оператор цикла с предусловием

while (логическое_выражение)

{

 // Тело цикла

}

выполняет операторы тела цикла до тех пор, пока значение логического выраже-

ния истинно. Если значение логического выражения становится равным 0 (false),

циклический процесс прекращается и выполняется первый после цикла опера-

тор. Если условие сразу равно 0 (false), то тело цикла не выполняется ни разу.

5.3. Оператор цикла do-while

Оператор цикла с постусловием

do {

 // Тело цикла

} while (логическое_выражение);

организует выполнение операторов тела цикла, пока значение логического выра-

жения истинно. Если значение логического выражения становится равным

0 (false), циклический процесс прекращается и выполняется первый после тела

цикла оператор.

 Оператор цикла do-while опасен тем, что тело цикла выполняется хотя

бы один раз (вне зависимости от значения условия). Поэтому, если это

возможно, следует избегать использования этого оператора.

5.4. Операторы и функции передачи управления

Операторы и функции передачи управления позволяют изменить стандарт-

ный порядок выполнения операторов.

 34

5.4.1. Оператор continue

Позволяет в циклическом алгоритме пропускать операторы тела цикла,

находящиеся после оператора continue, и передать управление следующему

циклу. Оператор continue обычно используется вместе с оператором if.
После выполнения оператора continue выполняется логическое

выражение оператора цикла.

 С осторожностью использовать continue в операторах do-while и

while, так как инкрементирующее выражение может попасть в

пропускаемую часть оператора (что приведет к бесконечному

циклу).

5.4.2. Оператор break

Позволяет перейти к следующему за блоком оператору. Например, в цик-

лах он обеспечивает досрочный выход из цикла, а в операторе switch – выход из

блока выбора.

 Оператор break позволяет выйти только из текущего блока,

т. е. в случае использования вложенных циклов выход происходит

только из одного циклического алгоритма.

5.4.3. Оператор return

Завершает выполнение функции и передает управление в точку ее вызова

(или в ОС, если это функция main()). Вызывающая функция помещает результат

вычисления выражения (если функция его возвращает) в точку вызова и возоб-

новляет свою работу.

Формат оператора:

return выражение;

В функции можно использовать любое количество операторов return.

5.4.4. Функция exit

Находится в библиотеке stdlib.lib. Корректно прерывает выполнение про-

граммы, записывая все буферы, закрывая все потоки. Формат функции:

void exit(int возвращаемое_значение)

Параметр является служебным сообщением системе. Как правило, 0 говорит

об успешном завершении программы, ненулевые значения – об ошибке.

Функция

void quick_exit(int возвращаемое_значение)

быстро завершает программу без полного освобождения ресурсов.

 35

5.4.5. Функция abort

Находится в библиотеке stdlib.lib. Генерирует «молчаливое» исключение и

прерывает выполнение программы. Функция abort не закрывает открытые и вре-

менные файлы, не очищает буферы потоков. Формат функции:

void abort()

5.4.6. Оператор безусловного перехода goto

Передает управление оператору, отмеченному меткой.

 Использование оператора goto существенно снижает читабельность

программы и увеличивает вероятность ошибки. Поэтому использо-

вание goto в программах нежелательно.

Примером обоснованного применения оператора безусловного перехода

может служить необходимость организации выхода сразу из нескольких вложен-

ных циклов, например:

for (i = 0; i < n; i++)

 for (j = 0; j < m; j++) {

 if (логическое_выражение) goto met;

 }

met: …

5.5. Организация циклических алгоритмов

Пример 5.1. Вывести таблицу значений функции y(x) = sin(x) на интервале

от a до b с шагом h.

Вариант 1 (с использованием оператора цикла for):

for (double x=a; x<b+h/2; x+=h)

cout << "x = " << x << " y = " << sin(x) << endl;

Так как значение h является действительным числом, то при суммировании

могут накапливаться ошибки округления. Например, если значение b равно 3.0,

а h после выполнения некоторого количества итераций приняло значение

3.00000000000001, то логическое выражение x <= b будет равно false, и, следо-

вательно, последнее значение таблицы не будет выведено на экран. Поэтому для

гарантированного выполнения последней итерации значение правой границы

интервала увеличивается на некоторую величину, не превышающую h

(например, на h/2).

Вариант 2 (с использованием оператора цикла while):

x = a;

while(x<b+h/2) {

 cout << "x = " << x << " y = " << sin(x) << endl;

 36

 x += h;

}

Пример 5.2. Вычислить интеграл sin

b

a

s x dx=  методом средних.

h = (b - a) / 100;

 s = 0; // Начальное значение для расчета площади

x = a + h / 2; // Центр прямоугольника

for (; x < b; x += h) s += sin(x) * h;

Пример 5.3. Вычислить сумму
100

1

() (1)
!

k
k

k

x
s x

k=

= − .

Для расчета такой последовательности удобно использовать рекуррентную

формулу. Рекуррентная формула – формула, которая выражает каждый член

последовательности через n предыдущих.

Для получения формулы вычисляются значения слагаемых при различных

значениях k:

при 11; 1 ;
1

x
k a= = −

при 22; 1 ;
1 2

x x
k a


= =



при 33; 1
1 2 3

x x x
k a

 
= = −

 
 и т. д.

Видно, что на каждом шаге слагаемое домножается на 1
x

k
− . Исходя из этого

формула рекуррентной последовательности будет иметь вид 1k k

x
a a

k
−= − .

Полученная формула позволяет избавиться от многократного вычисления

факториала и возведения в степень.

s =0; // Начальное значение суммы

a=1; // Начальное значение для вычисления очередного

 // члена рекуррентной последовательности

 for (int k=1; k<=100; k++)

{

 a*=-x/k; // Вычисление очередного члена

// рекуррентной последовательности

 s+=a; // Суммирование слагаемых

}

 37

Пример 5.4. Вычислить сумму
2100

0

() (1) sin()
(2)!

k
k

k

x
s x x

k=

= − .

В данной формуле получить рекуррентную зависимость для sin(x) сложно,

поэтому функция sin(x) будет рассчитываться отдельно (считается нерекуррентной

частью). Для оставшейся части формулы
2100

0

(1)
(2)!

k
k

k

x

k=

− рассчитываются значе-

ния слагаемых при различных значениях k:

при 1

1
0; 1 ;

1
k a= =

при 1;k = 1 1 ;
1

a =


2

2
−

x

при
2

22; 1 ;
1 2

x
k a


= =

  

2

3 4

x

при 3;k =
2 2

3 1
1 2 3 4

x x
a

 
=

    

2

5 6
−

x
 и т. д.

Формула рекуррентной последовательности будет иметь следующий вид:
2

1
(2 1) (2)

k k

x
a a

k k
−= −

− 
. Расчет удобно начинать не с нулевого элемента, а с

первого. Поэтому значение нулевого элемента рассчитывается вручную и

подставляется в начальное значение суммы.

s = sin(x); // Значение суммы для нулевого элемента

a = 1;

for (int k=1; k<=100; k++)

 {

 a *= -sqr(x)/(2*k*(2*k-1));

 s += a*sin(x); // Учитывается нерекуррентная часть

 }

 38

6. Использование массивов

Массив – структура однотипных данных, каждый элемент которой хра-

нится в отдельной ячейке, доступ к которой осуществляется по ее номеру. Мас-

сив характеризуется: имением массива, типом хранимых данных, размером

(количеством элементов) и размерностью (формой представления элементов

массива). Номер ячейки массива называется индексом. Индексы массивов

должны иметь целый тип, а элементы массивов могут иметь любой тип.

6.1. Одномерные массивы

Объявление одномерного массива:

тип имя_массива [размер];

Пример объявления массива:

int с[4];

Размер массива задается константой или константным выражением целого

типа (размер не может быть изменен во время выполнения программы).

Индексы массивов в языке С++ начинаются с 0. Например,

вышеобъявленный массив состоит из четырех элементов: с[0], c[1], c[2] и c[3].
Расположение элементов массива в памяти указано на рис. 6.1.

Рис. 6.1

Одновременно с объявлением можно инициализировать (задавать

начальные значения) элементы массива:

double mas1[5] = {1.5, 3.3, 4.5, 2.7, 3.0};

int mas2[4] = {2, 5};

Если в группе инициализации не хватает начальных значений, то оставши-

еся элементы заполняются нулями, например массив mas2: mas2[0] = 2,
mas2[1] = 5, mas2[2] = 0 и mas2[3] = 0.

При объявлении со списком инициализации количество элементов можно

не указывать. В этом случае размер массива будет равен количеству начальных

значений. Объявление

char mc[] = {‘e’, ‘k’, ‘q’}

создаст массив из трех элементов.

 39

Обращение к элементу массива происходит через указание имени массива

и в квадратных скобках номера элемента массива. Например:

x = a[3]; a[4] = b[0] + a[2];

Правила работы с элементами массива соответствуют правилам работы с

переменными соответствующего типа.

6.2. Алгоритмы работы с одномерными массивами

Пример 6.1. Ввести с клавиатуры и вывести на экран одномерный массив.

int mas[10], n;

// Ввод одномерного массива

cout << "Введите размер массива : ";

cin >> n;

for (int i = 0; i < n; i++)

{

 cout << "Введите элемент [" << i << "]= ";

 cin >> mas[i];

}

// Вывод одномерного массива

for (int i = 0; i < n; i++)

 cout << mas[i] << " ";

Пример 6.2. Найти сумму и произведение элементов одномерного массива.

 s = 0; p = 1;

 for (i=0; i<n; i++)

{

 s += a[i]; // Расчет суммы элементов

 p *= a[i]; // Расчет произведения элементов

}

Пример 6.3. Найти минимальный и максимальный элементы одномерного

массива.

Вариант 1:

min = max = a[0];

 for (int i = 1; i < n; i++)

 if (mas[i] < min) min = a[i];

 else

if (mas[i] > max) max = a[i];

 40

Вариант 2:

min = max = a[0];

for (int x : mas)

{

 min = fmin(min, x);

 max = fmax(max, x);

}

Пример 6.4. Удалить из одномерного массива все отрицательные элементы.

for (int i=0; i<n; i++)

 if (mas[i] < 0)

 {

 for (j=i+1; j<n; j++) mas[j-1] = mas[j];

 n--; i--;

 }

Пример 6.5. Отсортировать массив по неубыванию значений элементов.

for (int i=0; i<n-1; i++)

 for (int j=i+1; j<n; j++)

 if (mas[i] > mas[j])

 {

 tmp = mas[i];

 mas[i] = mas[j];

 mas[j] = tmp;

}

6.3. Многомерные массивы

Объявление одномерного массива:

тип имя_массива [размер_1] [размер_2] … [размер_N];

Пример объявления двумерного массива:

int m[4][5]; // Двумерный массив из 4 x 5 = 20 элементов

Одновременно с объявлением можно инициализировать элементы массива:

int s[2][3] = { {3, 4, 2}, {6, 3, 4} };

В одномерном массиве первый индекс является номером строки, а второй –

номером столбца. Поэтому, например, значение элемента s[1][0] равно 6.

Математически массив s представляет собой матрицу вида

3 4 2

6 8 5

 41

В памяти компьютера такой массив располагается последовательно по

строкам (рис. 6.2).

Рис. 6.2

Обращение к элементу двумерного массива происходит через указание

имени массива и в квадратных скобках номера строки и номера столбца. Напри-

мер:

x = s[0][2];

s[1][2] = m[3][2] + s[0][1];

6.4. Алгоритмы работы с двумерными массивами

Пример 6.6. Ввести с клавиатуры и вывести на экран двумерный массив

целых чисел.

int n, m;

double mas[10][10];

// Ввод

cout << "Введите число строк и столбцов:" << endl;

cin >> n >> m;

for (int i = 0; i < n; i++)

 for (int j = 0; j < m; j++)

 {

 cout << "Введите элемент [" << i << "] [" << j << "]: ";

 cin >> mas[i][j];

 }

// Вывод

for (int i = 0; i < n; i++)

{

 for (int j = 0; j < m; j++)

 cout << setw(8) << mas[i][j] << " ";

 cout << endl;

}

 42

Для выравнивания столбцов используется модификатор setw (библиотека

iomanip), который устанавливает ширину поля вывода.

Пример 6.7. Вывести на экран двумерный массив действительных чисел.

// Вывод

for (int i = 0; i < n; i++)

{

 for (int j = 0; j < m; j++)

 cout << fixed << setw(10) << setprecision(3) << mas[i][j] << " ";

 cout << endl;

}

Используется вывод действительного числа с фиксированной точкой (мо-

дификатор fixed) с тремя знаками после запятой (модификатор setprecision(3)).

Пример 6.8. Заполнить двумерный массив случайными действительными

числами из диапазона от 30 до 70.

mt19937 mt(time(nullptr)); // Генератор случайных чисел

// Задание диапазона генерируемых чисел

uniform_real_distribution<> rnd(30, 70);

 for (int i = 0; i < n; i++)

 for (int j = 0; j < m; j++)

 mas[i][j] = rnd(mt);

Используется генератор случайных чисел mt19937 (библиотека random).

Пример 6.9. Найти сумму элементов, лежащих на побочной диагонали.

s = 0;

for (int i=0; i<n; i++)

 s += mas[i][n-i-1];

Пример 6.10. Найти координаты элементов, содержащих максимальное и

минимальное значения.

imin = jmin = imax = jmax = 0;

for (int i = 0; i < n; i++)

 for (int j = 0; j < m; j++) {

 if (mas[i][j] < mas[imin][jmin])

{

 imin = i; jmin = j;

 }

 else

 43

 if (mas[i][j] > mas[imax][jmax])

{

 imax = i; jmax = j;

 }

 }

Пример 6.11. Найти сумму элементов, лежащих выше главной диагонали.

s = 0;

for (int i=0; i<n-1; i++)

 for (int j=i+1; j<m; j++)

 s += mas[i][j];

Пример 6.12. Упорядочить строки матрицы по неубыванию элементов, со-

держащих максимальные значения.

for (int i = 0; i < n; i++)

{

 b[i] = mas[i][0];

 for (int j = 1; j < m; j++)

 if (mas[i][j] > b[i]) b[i] = mas[i][j];

}

for (int i = 0; i < n - 1; i++)

 for (int j = i + 1; j < m; j++)

 if (b[i] > b[j])

 {

 tmp = b[i];

 b[i] = b[j];

 b[j] = tmp;

 for (int k = 0; k < m; k++)

 {

 tmp = mas[i][k];

 mas[i][k] = mas[j][k];

 mas[j][k] = tmp;

 }

 }

 44

7. Использование указателей

7.1. Объявление указателя (необработанного указателя)

Память компьютера представляет собой массив последовательно пронуме-

рованных ячеек. При объявлении данных в памяти выделяется непрерывная об-

ласть для их хранения. Адрес первого байта памяти, выделенной под перемен-

ную, называется адресом этой переменной.

Указатель – это переменная, предназначенная для хранения адреса

участка памяти. Для хранения указателя выделяется участок памяти размером

8 байт (в 32-разрядных системах – 4 байта).

Указатели используются:

− для динамического выделения памяти;

− передачи параметров в функциях;

− обращения к элементам структур данных.

Формат объявления указателя:

Тип_переменной *имя_указателя;

Например:

int *a;

double *b, *d;

char *c;

На один и тот же участок памяти может ссылаться любое количество ука-

зателей (в том числе различных типов). Допустимо описывать переменные типа

«указатель на указатель» (указатель на ячейку памяти, которая в свою очередь

содержит адрес другой ячейки памяти). Например:

int *um1, **um2, ***um3;

В языке С определены три вида указателей:

1. Указатель на объект известного типа.

2. Указатель типа void. Применяется в случаях, когда тип объекта заранее

не определен.

3. Указатель на функцию. Позволяет обращаться с функциями, как с пере-

менными.

7.2. Операции над указателями

7.2.1. Унарные операции

Определены две унарные операции:

1. «&» («взять адрес»). Операция позволяет получить адрес переменной.

2. «*» («разадресация»). Позволяет получить доступ к величине, располо-

женной по указанному адресу.

 45

7.2.2. Арифметические операции и операции сравнения

При выполнении арифметических операций с указателями автоматически

учитывается размер типа данных указателя.

Инкремент и декремент. Перемещает указатель к следующему или

предыдущему элементу массива.

Например:

int* um, mas[5] = { 1,2,3,4,5 };

um = mas;

cout << *um << endl; // Выводит: 1

um++; um++;

cout << *um << endl; // Выводит: 3

um--;

cout << *um << endl; // Выводит: 2

Добавление или вычитание. Перемещение указателя на число байт, рав-

ное произведению размера типа данного, на которое ссылается указатель, на ве-

личину добавляемой или вычитаемой константы. Например:

int* um, mas[5] = { 1,2,3,4,5 };

um = mas;

cout << *um << endl; // Выводит: 1

um += 3;

cout << *um << endl; // Выводит: 4

um -= 2;

cout << *um << endl; // Выводит: 2

Разность указателей. Разность двух указателей равна числу объектов со-

ответствующего типа, размещенных в данном диапазоне адресов. Например:

int mas[5];

int* um = &mas[0];

int* un = &mas[4];

 int k = un - um;

 cout << k << endl; // Выводит: 4

Операции сравнения. Сравнивают адреса объектов. Результат определя-

ется исходя из взаимного расположения объектов в адресном пространстве про-

граммы.

 Операции сравнения для указателей имеют смысл при определении

принадлежности указателей к одному объекту (== и !=) или для ра-

боты с последовательно расположенными элементами (например,

с массивом).

 46

7.3. Инициализация указателей

Инициализация пустым значением. Например:

// Стиль С

 int* a = NULL;

 int* b = 0;

// Стиль С++ (начиная с v.11)

 int* с = nullptr;

Присваивание указателю адреса уже существующего объекта. Например:

int k = 23;

 int* uk = &k; // или int *uk(&k);

 int* us = uk;

Присваивание указателю адреса выделенного участка динамической

памяти:

int * s = new int;

 int* k = (int*)malloc(sizeof(int));

Операция sizeof() определяет размер указанного параметра в байтах.

7.4. Работа с динамической памятью

Динамическая память (heap) – специальная область памяти, позволяю-

щая во время выполнения программы выделять и освобождать место в соответ-

ствии с текущими потребностями. Доступ к выделенным участкам памяти осу-

ществляется через указатели. Для работы с динамической памятью в языке С

(библиотека malloc.lib) определены следующие функции:

void *malloc(size_t size) – выделяет область памяти размером size байт.

Возвращает указатель void* на выделенный блок памяти. Для получения указа-

теля заданного типа используется явное приведение типов. Если для выделения

заданного блока памяти недостаточно свободного места, то функция возвра-

щает NULL.

void *сalloc(size_t n, size_t size) – выделяет область памяти размером n

блоков по size байт. Возвращает адрес выделенного блока памяти. Если недоста-

точно свободного места для выделения заданного блока памяти, то возвращает

NULL. Вся выделенная память заполняется нулями.

void *realloc(void *u, size_t size) – изменяет размер ранее выделенной

памяти, связанной с указателем u, на новое число (size) байт. Если память под

указатель не выделялась, то функция ведет себя как malloc. Если недостаточно

свободного места для выделения заданного блока памяти, то функция возвра-

щает значение NULL.

void free(*u) – освобождает участок памяти, связанный с указателем u.

 47

 size_t – беззнаковый целочисленный тип данных, позволяющий хра-

нить максимальный размер любого теоретически возможного объ-

екта.

В языке C++ для выделения и освобождения памяти определены опера-

торы new и delete.

Имеются две формы операторов:

тип *указатель = new тип (инициализатор) – выделяет область па-

мяти в соответствии с указанным типом и заносит туда значение инициализатора

(не обязательно).

 delete указатель – освобождение выделенной памяти.

тип *указатель = new тип[n] – выделение участка памяти размером n

блоков указанного типа.

 delete []указатель – освобождение выделенной памяти.

Оператор delete не уничтожает значения, связанные с указателем, а разре-

шает компилятору использовать данный участок памяти.

 Каждому оператору, выделяющему динамическую память, соответ-

ствует свой оператор освобождения памяти.

7.5. Создание одномерного динамического массива

Для создания одномерного динамического массива необходимо знать тип

элементов массива и их количество. Например, для создания одномерного дина-

мического массива, состоящего из n действительных чисел, можно использовать

следующие функции:

umas1 = static_cast <double*> (malloc(n*sizeof(double)));

(освобождение памяти – free(umas1))
или

umas1 = static_cast <double*> (сalloc (n,sizeof(double)));

(освобождение памяти – free(umas1))
или

umas1 = new double[n];

(освобождение памяти – delete []umas1)

7.6. Создание двумерного динамического массива

При создании многомерного динамического массива значения всех раз-

мерностей, кроме первой, должны быть указаны целочисленными константами.

Например:

double (*mas1)[5] = new double[n][5];

 48

В качестве первого параметра может быть использована целочисленная пе-

ременная.

Такой подход не очень удобен, так как не позволяет задавать нужное коли-

чество столбцов во время выполнения программы.

Для работы с двумерными массивами используется конструкция, являю-

щаяся массивом указателей на одномерные массивы (рис. 7.1).

Рис. 7.1

При использовании такого способа выделения памяти имеется возмож-

ность обращения к элементам двумерного динамического массива таким же об-

разом, как и к элементам двумерного нединамического массива.

При создании двумерного динамического массива вначале выделяется па-

мять под одномерный массив указателей, затем каждый указатель получает ад-

рес созданного одномерного динамического массива (освобождение памяти осу-

ществляется в обратном порядке).

double** umas2; // Объявление указателя на массив

// Выделение памяти для размещения массива указателей

 umas2 = new double* [n];

// Выделение памяти для размещения одномерных массивов

 for (i = 0; i < n; i++) umas2[i] = new double[m];

 … // Работа с массивом

// Освобождение памяти, выделенной для одномерных массивов

 for (i = 0; i < n; i++) delete[]umas2[i];

// Освобождение памяти, выделенной для массива указателей

 delete[]umas2;

 umas2 = nullptr; // Очистка указателя

 49

8. Использование строковых переменных

В языке С++ имеется два основных способа работы со строковыми дан-

ными: использование массива символов типа char (нуль-терминальные строки)
и использование класса string. В данном учебно-методическом пособии рассмат-

ривается только первый способ организации работы со строками.

8.1. Объявление строк

Объявление строки аналогично объявлению массива:

char имя строки [размер]

В отличие от обычного массива строка должна заканчиваться нулевым

символом '\0' – нуль-терминатором. Длина строки равна количеству символов

плюс нулевой символ. При вводе данных нулевой символ помещается в конец

строки автоматически. Например, в строке

char str1[10] = "123456789";

символы располагаются следующим образом:

'1' '2' '3' '4' '5' '6' '7' '8' '9' '\0'

При объявлении строки со списком инициализации количество элементов

можно не указывать. В этом случае размер строки будет равен количеству

начальных значений плюс один (для нулевого символа). Объявление:

char str2[] = "absd";

Доступ к отдельным символам строки осуществляется по их индексам.

Например:

str2[2] = 'e';

 В языке С++ одиночные кавычки используются для обозначения

символов, а двойные – для обозначения строк.

Массив строк объявляется следующим образом:

char имя[количество строк][количество символов в строке];

Например:

char str[10][5].

Обращение к третьей строке массива строк:

str[2].

8.2. Функции для работы со строками

Для ввода/вывода строк и символов используются функции библиотеки

stdio.lib, для работы со строками – функции библиотеки string.lib, для преобра-

зования типов – функции библиотеки stdlib.lib, а для распознавания символов –

функции библиотеки ctype.lib.

 50

 В новых стандартах языка многие функции стандартной библиотеки

объявлены устаревшими и заменены их версиями с более высоким

уровнем безопасности. По умолчанию компилятор запрещает выпол-

нение устаревших функций и предлагает использовать безопасные

перегруженные функции.

Если программист уверен в своем коде и хочет использовать устарев-

шие функции, то перед include можно добавить отключение про-

верки на безопасность:

#define _CRT_SECURE_NO_WARNINGS

Для использования автоматической перегрузки небезопасных шаб-

лонов можно использовать

 #define _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES 1

Для перегрузки функций, использующих в качестве аргументов

числа, необходимо указать

#define _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES_COUNT 1

Наиболее часто применяются следующие функции:

int puts(const char *str) – выводит на экран строку str. Переводит указа-

тель на следующую строку.

char *gets_s(char *str, int n) – помещает n - 1 символов, введенных с

клавиатуры, в строку str. Возвращает NULL в случае ошибки.

errno_t strcpy_s(char * str1, int d, const char *str2) – копирует содер-

жимое строки str2 в строку str1. Параметр d задает размер буфера, который ис-

пользуется для переноса строки. Для получения необходимого размера буфера

можно использовать макрос _countof. Функция возвращает нуль в случае

ошибки и код ошибки в случае неудачи.

Например:

strcpy_s(str, _countof(str), "xyz");

Результат: str = "xyz".

 errno_t – целочисленный тип данных, предназначенных для хране-

ния кодов ошибок.

errno_t strcat_s(char * str1, int d, const char *str2) – добавляет в конец

строки str1 содержимое строки str2.

Например:

char str[10]="xyz";

 strcat_s(str, _countof(str), "abc");

Результат: str = "xyzabc".

 51

int strcmp(const char *str1, const char *str2) – сравнивает содержимое

строк str1 и str2. Если str1 < str2, то результат равен –1, если str1 = -2 − резуль-

тат равен нулю, если str1 > str2 – результат равен 1.

char st1[40] = "ABCD", st2[40] = "xyz";

k = strcmp(st1, st2)

Результат: k = –1.

char *strchr(char * str, int ch) – возвращает указатель на первое появле-

ние символа ch в строке str.
Например, требуется определить позицию первого появления символа d

в строке.

char str[40] = "AbCdFGh";

char* s = strchr(str, 'd');

int k = static_cast <int> (s - str);

Результат: k = 3.

char *strstr(char *str1, const char *str2) – возвращает указатель на пер-

вое появление строки str2 в строке str1.

Например, требуется определить позицию первого вхождения строки BC в

строку ABCD.

char str1[40] = "AbCdFGh";

char str2[40] = "FG";

char* s = strstr(str1, str2);

int k = static_cast <int> (s - str1);

Результат: k = 4.

char* strtok_s(char* str, const char* dlm, char** context) – возвращает

указатель на токен, находящийся в строке str (токеном считается набор симво-

лов, отделенный от других токенов символом-разделителем, находящимся в

строке dlm). Параметр context используется для хранения сведений о непрове-

ренной части строки.

При первом вызове функции strtok_s функция пропускает ведущие разде-

лители и возвращает указатель на первый токен в строке str (следующий после

токена символ заменяется нулевым символом). При последующих вызовах функ-

ции со значением NULL в качестве первого аргумента указатель аналогичным

образом переходит к следующим токенам. После нахождения всех токенов ука-

затель получает значение NULL.

Пример 8.1. Вывести на экран лексемы, разделенные символами пробела,

тире и запятой.

char str[50] = {"Простота - залог надежности программы."};

char *ctn = NULL;

char sp[] = " -.";

 52

char* wrd = strtok_s(str, sp, &ctn);

while (wrd != NULL)

{

 puts(wrd);

 wrd = strtok_s(NULL, sp, &ctn);

}

Выводит:

Простота

залог

надежности

программы

size_t strlen(const char* str) – возвращает длину строки str (нуль-терми-

натор '\0' не учитывается).

char str[40] = "ABCD";

 int k = strlen(str);

Результат: k = 4.

char *_strrev(char *str) – изменяет порядок следования символов в строке

str на противоположный.

char str[40] = "ABCD";

 _strrev(str);

Результат: str = "DCBA".

char *_strdup(const char *str) – возвращает копию строки str. Для выде-

ления памяти под новою строку функция вызывает malloc, следовательно, необ-

ходимо использовать free() для очистки памяти в конце работы.

char str1[40] = "ABCD";

char* str2;

str2 = _strdup(str1);

…

 free(str2);

Результат: st2 = "ABCD".

errno_t _strlwr_s(char *str, size_t n) – преобразует прописные символы

строки str в строчные. Параметр n задает размер буфера.

char str[40] = "aBcD";

 _strlwr_s(str, strlen(str) + 1);

Результат: st = "abcd".

 53

errno_t _strupr_s(char *str, size_t n) – преобразует строчные символы

строки str в прописные. Параметр n задает размер буфера.

char str[40] = "aBcD";

 _strupr_s(str, strlen(str) + 1);

Результат: st = "ABCD".

int atoi(const char *str) – преобразует символьное представление целого

числа str (до первого символа, не являющегося цифрой) в число целого типа.

Пробелы в начале строки пропускаются.

char st1[40] = " 354dg4f";

 int k = atoi(st1);

Результат: k = 354.

double atof(const char *str) – преобразует символьное представление дей-

ствительного числа str (до первого символа не соответствующего числу) в число

действительного типа. Пробелы в начале строки пропускаются.

char str[40] = "354.55dd3";

double b = atof(str);

Результат: b = 354.55.

errno_t _itoa_s(int k, char *str, size_t n, int d) – преобразует n символов

десятичного целого числа k в строку str (в заданной d системе счисления (от 2

до 36)).

_itoa_s(25, str, _countof(str), 10);

Результат: str = 25 в десятичной системе счисления.

_itoa_s(25, str, _countof(str), 2);

Результат: str = 11001 в двоичной системе счисления.

errno_t _gcvt_s(char *str, size_t n, double val, int dgt) – преобразует

число действительного типа val в строку str. Размер буфера n рекомендуется

устанавливать равным значению константы _CVTBUFSIZE (309+40). Количе-

ство десятичных разрядов dgt должно быть не более 18.

double a = -254.2965;

char str[_CVTBUFSIZE];

 _gcvt_s(str, _CVTBUFSIZE, a, 7); // st = "-254.2965"

 _gcvt_s(str, _CVTBUFSIZE, a, 5); // st = "-254.3"

 _gcvt_s(str, _CVTBUFSIZE, a, 3); // st = "-254"

 _gcvt_s(str, _CVTBUFSIZE, a, 1); // st = "-3e+003"

Функции распознавания символов (библиотека cctype.lib):

int isalnum(символ) возвращает ненулевое значение (true), если символ −

буква или цифра;

 54

int isalpha(символ) возвращает ненулевое значение (true), если символ −

буква;

int isdigit(символ) возвращает ненулевое значение (true), если символ −

цифра;

int ispunct(символ) возвращает ненулевое значение (true), если символ −

знак пунктуации;

int islower(символ) возвращает ненулевое значение (true), если символ −

буква нижнего регистра;

int isupper(символ) возвращает ненулевое значение (true), если символ −

буква верхнего регистра;

int isspace(символ) возвращает ненулевое значение (true), если символ −

пробел, знак табуляции, возврат каретки, символ перевода строки, вертикальной

табуляции, перевода страницы.

8.3. Алгоритмы работы со строками

 При одновременном использовании форматированного и неформа-

тированного ввода возможен некорректный ввод данных, поэтому

необходимо делать очистку буфера c помощью манипулятора ws

(например, cin >> n >> ws;) или методом cin.ignore().

Пример 8.2. Проверить, присутствует ли слово visual в заданной строке.

char str[30];

puts("Введите строку ");

gets_s(str, 20);

char* ch = strstr(str, "visual");

if (ch != nullptr) puts("Присутствует");

 else puts("Не присутствует");

Пример 8.3. В строке str удалить все символы ‘w’.

char* ch;

while (ch = strstr(str, "w"))

 while (*ch != '\0')

 {

 ch[0] = ch[1];

 ch++;

}

Пример 8.4. Выделить и вывести на печать все слова произвольной строки.

Слова отделяются друг от друга одним или несколькими пробелами.

char str[100], sl[100]; int k = 0;

 gets_s(str, 100);

 55

 strcat_s(str, _countof(str), " ");

 int n = strlen(str);

for (int i = 0; i < n; i++)

 if (str[i] != ' ') sl[k++] = str[i];

 else

 if (k > 0) {

 sl[k] = '\0';

 puts(sl);

 sl[0] = '\0';

 k = 0;

 }

Пример 8.5. Определить, является ли строка палиндромом, т. е. читается

ли она слева направо так же, как и справа налево (например, «А роза упала на

лапу Азора»).

 setlocale(LC_ALL, "ru-RU");

char str[80] = "А Роза упала на лапу Азора";

_strlwr_s(str, strlen(str) + 1);

int i = 0, j = strlen(str) - 1;

bool bl = true;

while (i <= j) {

 while (str[i] == ' ') i++;

 while (str[j] == ' ') j--;

 if (str[i++] != str[j--])

 {

 bl = false;

 break;

 }

}

 if (bl) cout << "Палиндром" << endl;

 else cout << "Не палиндром" << endl;

 Работа некоторых функций зависит от установленного языкового

стандарта. Например, для корректной работы с кириллическими сим-

волами надо установить

system("chcp 1251");

 56

9. Типы данных,

определяемых пользователем

9.1. Объявление и использование структур

 Структура – составной тип данных, в котором под одним именем

объединены функции и данные различных типов. Объявление структуры:

struct имя_структуры

{

 Список элементов структуры

} ;

Элементами структуры могут быть данные, которые называются полями,

и функции, которые называются методами.

Правила описания полей и методов аналогичны правилам описания

данных и функций.

Пример описания структуры с несколькими полями:

struct Tstr

{

int m1;

double m2, m3;

};

Поля структуры могут иметь любой тип, в том числе «массив» и

«структура».

Объявление структурной переменной:

Tstr x;

Разрешено совмещать описание структуры и объявление переменных

соответствующего типа (между закрывающей фигурной скобкой и точкой с

запятой):

struct Tstr

{

 int m1;

 double m2, m3;

} a, *b;

К полям и методам структуры можно обращаться через составное имя.

Формат обращения:

имя_структуры.имя_поля_или_метода

или

указатель_на_структуру -> имя_поля_или_метода

57

Например, обратиться к полям структуры Tstr можно следующим образом

(после выделения памяти для структуры, связанной с указателем b):

a.m1 = 35; b->m1 = 35;

или

(&a)->m1 = 35; (*b).m1 = 35;

Правила работы с полями структуры идентичны правилам работы с

переменными соответствующих типов.

Разрешено при объявлении структуры инициализировать поля:

struct Tstr

{

 int m1 = 4;

 double m2 = 2.0, m3 = 3.53;

};

Инициализировать переменные-структуры можно путем помещения за

объявлением списка инициализации:

struct Tstr

{

 int m1;

 double m2, m3;

} a = {5, 2.6, 34.2};

В качестве полей могут быть использованы другие структуры:

struct Tstr

{

 int m1;

 double m2, m3;

 struct

 {

int mm1;

 } m4;

} s;

Обращение к полю mm1 в этом случае будет следующим:

s.m4.mm1 = 3;

Если имя структуры не указывается, то такое определение называется

анонимным.

Разрешено использовать операцию присваивания (только для структур

одного типа). Например:

Tstr x, y;

 x = y;

 58

В этом случае все значения полей структуры y копируются в соответству-

ющие поля структуры x.

Из структур, как правило, формируют массивы:

Tstr ms[100]; // Объявление массива структур

…

ms[99].m1 = 56; // Обращение к полю массива структур

Пример 9.1. Имеется список жильцов многоквартирного дома. Каждый

элемент списка содержит следующую информацию: фамилия владельца, номер

квартиры, количество комнат в квартире. Вывести в алфавитном порядке

фамилии владельцев двухкомнатных квартир. Память для хранения списка

выделять динамически.

 struct Tlist

 {

 char fio[50];

 int nomer;

 int nrooms;

 } *spisok;

 int n, i, j;

 cout << "Введите число квартир: " << endl;

 cin >> n;

 spisok = new Tlist[n];

 for (i = 0; i < n; i++)

 {

 cout << "Введите фамилию: ";

 cin >> spisok[i].fio;

 cout << "Введите номер квартиры: ";

 cin >> spisok[i].nomer;

 cout << "Введите число комнат: ";

 cin >> spisok[i].nrooms;

 cout << endl;

 }

 Tlist tmp;

 for (i = 0; i < n - 1; i++)

 for (j = i + 1; j < n; j++)

 if (spisok[i].nrooms == 2 && spisok[j].nrooms == 2

 && strcmp(spisok[i].fio, spisok[j].fio) == 1)

59

 {

 tmp = spisok[i];

 spisok[i] = spisok[j];

 spisok[j] = tmp;

 }

 for (i = 0; i < n; i++)

 if (spisok[i].nrooms == 2)

 cout << spisok[i].fio << ", квартира номер - "

 << spisok[i].nomer << endl;

 delete[]spisok;

9.2. Объявление и использование объединений

Объединение (union) – размещение под одним именем некоторой совокуп-

ности данных таким образом, чтобы размер выделяемой памяти был

достаточен для размещения любого данного. Переменная типа union в любой

момент времени может хранить не более одного объекта из списка элементов.

Такие структуры используются в случаях, когда отдельные поля существуют в

различные моменты времени.

Объявление объединения:

union имя_объединения

{

 // Набор полей

};

Например,

union per {

 int a;

 double b;

 char c;

 } un;

 un.a = 567;

 cout << un.a << endl; // Значение mun.a равно 567

 un.b = 8.2;

 cout << un.a << endl; // 1717986918 - Ошибка!

 cout << un.b << endl; // Значение mun.b равно 8.2

 60

 9.3. Объявление и использование перечислений

Перечисление (enum) задает множество значений для заданной

пользователем переменной.

Объявление перечисления:

enum имя {набор_значений};

Элементы в перечислении представлены в виде именованных констант и

называются перечислителями.

enum week { Mon, Tue, Wed, Thu, Fri, Sat, Sun };

Каждому перечислителю присваивается номер. По умолчанию первый

перечислитель имеет номер 0, второй – 1 и т. д.

Можно устанавливать нумерацию, отличную от заданной, по умолчанию:

enum week { Mon=1, Tue, Wed, Thu, Fri, Sat, Sun };

Каждый перечислитель должен быть уникальным. Номера могут

повторяться.

enum week { Mon=3, Tue, Wed, Thu=2, Fri, Sat, Sun };

В этом случае перечеслители Mon, Tue, Wed, Thu, Fri, Sat, Sun имеют

номера 3, 4, 5, 2, 3, 4 и 5 соответственно.

Перечисления могут неявно преобразовываться в целочисленные типы,

обратное преобразование запрещено. Для преобразования значения

перечеслителя можно использовать явное приведение типа:

enum week { Mon = 1, Tue, Wed, Thu, Fri, Sat, Sun } w;

 w = Sat;

 cout << w; // Выводит: 6

 // w = 7; // Ошибка!

 w= static_cast<week>(7);

 int n = w;

 cout << n; // Выводит: 7

 if (w == Sun) cout << "Day off!"; // Выводит: Day off!

 if (w == 7) cout << "Day off!"; // Выводит: Day off!

61

10. Использование файлов

10.1. Понятие файла

Файл − именованная совокупность данных, расположенных на внешнем

носителе. Для получения доступа к данным файл необходимо открыть. После

выполнения любой операции над данными указатель сдвигается на одну

позицию вперед. В конце работы файл требуется закрыть (доступ к данным,

размещенным в файле, будет запрещен). Информация о файле хранится в

управляющей структуре, имеющей тип FILE.

Различают два вида файлов: текстовые и двоичные.

Текстовые файлы хранят информацию в виде последовательности

символов. Вывод осуществляется аналогично выводу на экран. Текстовые

файлы могут быть отредактированы в любом текстовом редакторе.

Бинарные (или двоичные) файлы предназначены для хранения последо-

вательности байтов. Структура такого файла определяется программно.

Файлы, размещаемые на носителях информации, имеют структуру,

представленную на рис. 10.1.

Рис. 10.1

В начале файла записана информация о файле BOF (Begin of File), его имя,

тип, длина и т. д., в конце файла помещается признак конца файла EOF (End of

File). Если файл пуст, то BOF и EOF совмещены.

При работе с файлами используются следующие макросы:

− NULL − определяет пустой указатель;

– EOF − значение, возвращаемое при попытке чтения после конца файла;

− FOPEN_MAX − возвращает максимальное число одновременно

открытых файлов.

В последних стандартах языка С++ рекомендуется вместо макроса

NULL использовать ключевое слово nullptr, которое менее уязвимо и

в большинстве случаев работает лучше.

10.2. Функции для работы с файлами

Функции для работы с файлами размещены в библиотеках stdio.lib и io.lib.

При работе с файлами используются указатели типа FILE. Формат объявления

указателя на файл следующий:

FILE *указатель_на_файл;

Например:

FILE *fl1, *fl2;

BOF 0 1 … n-2 n-1 EOF

 62

Указатель содержит адрес структуры, включающей в себя различные

сведения о файле, например, его имя, статус, указатель на начало файла.

Функция

errno_t fopen_s(FILE **pFile, const char *filename, const char *mode);

открывает файл и связывает его с потоком. Возвращает нуль в случае успешного

открытия или код ошибки в случае неудачи;

pFile – файловый указатель, который получает указатель на открытый

файл;

filename – указатель на строку символов, в которой хранится имя файла и

путь к нему. Например: d:\\work\\lab2.dat;

mode – указатель на строку символов, в которой указывается режим

открытия файла. По умолчанию файл открывается в текстовом режиме.

Допустимые режимы приведены в табл. 10.1.

 Таблица 10.1
Режим открытия Действие

r
(или rt)

Открывает текстовый файл для чтения. В случае отсутствия

файла с указанным именем возникает ошибка

r+
(или rt+)

Открывает текстовый файл для чтения и записи данных

rb
Открывает двоичный файл для чтения. В случае отсутствия

файла с указанным именем возникает ошибка

rb+

(или r+b)
Открывает двоичный файл для чтения и записи данных

w

(или wt)
Создает текстовый файл для записи. Если файл с указанным

именем существует, то прежняя информация уничтожается

w+
(или wt+)

Создает текстовый файл для чтения и записи данных

wb
Создает двоичный файл для записи. Если файл с указанным

именем существует, то прежняя информация уничтожается

wb+
(или w+b)

Создает двоичный файл для чтения и записи данных

a

(или at)
Открывает текстовый файл для записи. Указатель устанавли-

вается в конец файла

a+

(или at+)

Открывает текстовый файл для чтения и записи данных.

Указатель устанавливается в конец файла. Если файл с

указанным именем отсутствует, то он будет создан

ab
Открывает двоичный файл для записи. Указатель устанавли-

вается в конец файла

ab+
(или a+b)

Открывает двоичный файл для чтения и записи данных.

Указатель устанавливается в конец файла. Если файл с

указанным именем отсутствует, то он будет создан

63

В режим открытия могут добавляться другие параметры (табл. 10.2).

Таблица 10.2
Режим открытия Действие

x При использовании совместно с "w" или "w+" вызывает

ошибку, если указанный в параметрах функции файл уже

существует

T Определяет файл как временный. По возможности он не

сбрасывается на диск

D Определяет файл как временный. Он удаляется с диска, по-

сле того как закрывается последний указатель файла

Для создания файла можно записать:

FILE* fl;

 errno_t err = fopen_s(&fl, "lab.dat", "w+b");

 if (err == 0) cout << "The file was opened";

 else {

 cout << "The file was not opened";

 return 1;

 }

Для исключения ошибки, возникающей при открытии несуществующего

файла, можно использовать конструкцию

err = fopen_s(&fl, "lab.dat", "r");

if (err) err = fopen_s(&fl, "lab.dat", "w");

При записи данных обмен происходит не непосредственно с файлом, а с

некоторым буфером. Информация из буфера переписывается в файл только при

переполнении буфера или при закрытии файла.

Для закрытия файла используется функция

int fclose(FILE *указатель_на _файл);

Функция закрывает поток, открытый с помощью вызова fopen(), и записы-

вает в файл все данные, которые находятся в дисковом буфере. Доступ к файлу

после выполнения функции будет запрещен. Если файл был закрыт без ошибок,

то функция возвращает нуль, иначе − EOF.

Для закрытия всех открытых файлов используется функция

int _fcloseall(void);

Функция

int fputc(int символ, FILE *указатель_на _файл);

записывает один символ в текущую позицию указанного открытого файла. Если

функция выполнилась успешно, то она возвращает записанный символ, иначе –

EOF.

 64

Функция

int fgetc(FILE *указатель_на_файл);

читает один символ из текущей позиции указанного открытого файла. После чте-

ния указатель сдвигается на одну позицию вперед. Если достигнут конец файла,

то функция возвращает значение EOF.

Функция

int feof(FILE *указатель_на_файл);

возвращает отличное от нуля значение (true) при попытке чтения данных после

конца файла и нуль (false), если конец файла не достигнут. Функция работает с фай-

лами всех типов.

Функция

int fputs (const char * строка, FILE *указатель_на_файл);

записывает строку символов в текущую позицию указанного открытого файла.

В случае ошибки эта функция возвращает EOF. Нулевой символ в файл не запи-

сывается.

Функция

char *fgets(char *строка, int длина, FILE *указатель_на_файл);

читает строку символов из текущей позиции указанного открытого файла до тех

пор, пока не будет прочитан символ перехода на новую строку или количество

прочитанных символов не станет равным длина – 1. В случае ошибки функция

возвращает NULL.

Функция

int *fprintf(FILE *указатель_на_файл,

 const char *строка форматирования [, аргументы]);

записывает форматированные данные в файл.

Строка форматирования состоит из обычных символов и спецификаторов

формата.

Общий вид этого спецификатора формата:

% [флаг] [ширина] [.точность] <символ_формата>

Параметр флаг определяет выравнивание числа при выводе. Некоторые

значения флага приведены в табл. 10.3.

Таблица 10.3
Флаг Назначение

− Выравнивает выводимое число по левому краю поля

+ Всегда будет выводиться знак числа

Пробел
Устанавливает пробел перед положительным числом и минус перед

отрицательным

65

Параметр ширина определяет минимальное количество выводимых

символов.

Параметр точность имеет различное назначение для различных типов вы-

водимых данных. Для действительных чисел, выводимых с использованием спе-

цификаторов %f или %e, точность определяет количество десятичных разрядов,

а с использованием спецификатора %g – количество значащих цифр. При

выводе строк точность определяет максимальную длину поля вывода, а при

выводе целых чисел − максимальное количество цифр.

Некоторые символы формата приведены в табл. 10.4.

Таблица 10.4
Символ

формата
Значение

c Вывод одного символа

d Вывод целого десятичного числа со знаком

e Вывод числа в экспоненциальном формате (.x xx e xx )

f Вывод числа с плавающей точкой (.xx xxx)

s Вывод строки символов

p Вывод значения указателя

Функция

int fscanf_s(FILE *указатель_на_файл,

 const char *строка_форматирования [, аргументы]);

читает форматированные данные из файла. Cтрока форматирования аналогична

строке форматирования функции fprintf.

Функция

void rewind(FILE *указатель_на_файл);

устанавливает указатель текущей позиции в начало файла.

Функция

int ferror(FILE *указатель_на_файл);

возвращает ненулевое значение, если при последней операции с файлом

произошла ошибка, иначе − возвращает 0 (false).

Функция

size_t fwrite(const void *записываемое_данное,

size_t размер_элемента, size_t число_элементов,

FILE *указатель_на_файл);

записывает в файл заданное число данных указанного размера. Размер данных

задается в байтах. Функция возвращает число записанных элементов.

 66

Функция

size_t fread(void *переменная,

size_t размер_элемента, size_t число_элементов,

FILE *указатель_на_файл);

считывает в указанную переменную заданное число данных указанного размера.

Размер данных задается в байтах. Функция возвращает число прочитанных эле-

ментов.

Функция

int _fileno(FILE *указатель_на_файл);

возвращает значение дескриптора указанного файла (дескриптор – логический

номер файла для заданного потока).

Функция

long _filelength(int дескриптор);

возвращает длину файла с соответствующим дескриптором в байтах.

Функция

int _chsize(int дескриптор, long размер);

устанавливает новый размер файла с соответствующим дескриптором. Если раз-

мер файла увеличивается, то в конец добавляются нулевые символы, если размер

файла уменьшается, то все лишние данные удаляются. В случае успешного из-

менения функция возвращает 0 (иначе –1).

Функция

int fseek(FILE * указатель_на _файл,

long int число_байтов, int точка_отсчета);

устанавливает указатель в заданную позицию. Заданное количество байтов от-

считывается от начала отсчета, которое задается следующими макросами:

начало файла – SEEK_SET, текущая позиция – SEEK_CUR, конец файла –

SEEK_END. При успешном завершении работы функция возвращает нуль, а в

случае ошибки – ненулевое значение.

Пример 10.1. Написать программу сортировки данных в файле по невоз-

растанию.

fopen_s(&fl, "f:\\lab10.dat", "rb+");

int nb = sizeof(int), a, b, nwrt;

int n = _filelength(_fileno(fl)) / nb;

for (int i = 0; i<n - 1; i++)

 for (int j = i + 1; j<n; j++) {

 fseek(fl, i*nb, SEEK_SET);

 nwrt = fread(&a, nb, 1, fl);

 fseek(fl, j*nb, SEEK_SET);

 67

 nwrt = fread(&b, nb, 1, fl);

if (a>b)

{

 fseek(fl, i*nb, SEEK_SET);

 nwrt = fwrite(&b, nb, 1, fl);

 fseek(fl, j*nb, SEEK_SET);

 nwrt = fwrite(&a, nb, 1, fl);

} }

fclose(fl);

Пример 10.2. Написать программу для работы с бинарным файлом, содер-

жащим список студентов. Каждый элемент списка содержит следующую инфор-

мацию: фамилия студента, номер группы, средний балл за последнюю сессию.

Занести данные в файл. Прочитать данные из файла и вывести на экран и в тек-

стовый файл фамилии студентов, сдавших сессию со средним баллом выше 7.

struct TStud

{

 char fio[50];

 int no;

 double score;

} list;

int main()

{

 system("chcp 1251");

 FILE *fl, *ft;

 char fname1[20], fname2[20];

 int n;

 cout << "Введите имя файла : " << endl;

 cin >> fname1;

 if (fopen_s(&fl, fname1, "wb")) { // Создание файла

 cout << "Error" << endl;

 return 1;

 }

 cout << "Введите число студентов: ";

 cin >> n;

 68

 for (int i = 0; i < n; i++) {

 cout << "Введите фамилию: "; cin >> list.fio; cin.ignore();

 cout << "Введите номер группы: "; cin >> list.no;

 cout << "Введите средний балл: "; cin >> list.score;

 fwrite(&list, sizeof(TStud), 1, fl);

 }

 fclose(fl); // Закрытие файла

 cout << "Введите имя текстового файла: " << endl;

 cin >> fname2;

 if (fopen_s(&ft, fname2, "w")) { // Создание файла

 cout << "Error" << endl;

 return 1;

 }

 if (fopen_s(&fl, fname1, "rb")) { // Открытие файла

 cout << "Error" << endl;

 return 1;

 }

 n = _filelength(_fileno(fl)) / sizeof(TStud);

 for (int i = 0; i < n; i++)

 {

 fread(&list, sizeof(TStud), 1, fl);

 if (list.score >= 7) {

 cout << list.fio << " - cредний балл : " << list.score << endl;

 fprintf(ft, "%s - cредний балл %f\n", list.fio, list.score);

 }

 }

 fclose(fl);

 fclose(ft);

}

 69

11. Функции

11.1. Понятие функции

Функция – последовательность операторов, оформленная таким образом,

что ее можно вызвать по имени из любого места программы.

Объявление функции:

 тип_возвращаемого_значения имя_функции (список_параметров)

 {

 // Тело функции

return возвращаемое_значение;

 }

Первая строка данного описания называется заголовком функции.

Результат вычисления функции, помещаемый в точку вызова, называется

возвращаемым значением. Тип возвращаемого значения может быть любым,

кроме массива или функции. Если функция не возвращает значение, то указыва-

ется тип void.

Список параметров функции (формальных параметров) представляет со-

бой набор конструкций следующей формы:

тип_параметра имя_параметра

Пример вызова функции:

double f(int a, double b)

{

 return a + b;

}

void main() {

 cout << f(5, 9.3);

}

При вызове функции программа приостанавливает свою работу и передает

управление функции. После завершения работы функции результат ее работы

передается в точку вызова и программа продолжает выполняться.

Правила оформления тела функции такие же, как и для любого другого

участка программы. Все объявления носят локальный характер, т. е. объявлен-

ные переменные доступны только внутри функции.

Не допускается вложение функций друг в друга.

Выход из функции происходит при достижении закрывающей функцию

скобки или после выполнения оператора return.

Функция должна быть объявлена до ее вызова, иначе компиляция завер-

шится ошибкой. Для инициализации указателя на функцию до ее определения

используется прототип функции. Прототип функции аналогичен заголовку

 70

функции, за исключением того, что имена формальных параметров не указыва-

ются (остаются только типы) и в конце ставится точка с запятой:

double f(int, double);

Широкое использование прототипов вызвано следующим:

− функции, имеющие прототипы, могут быть размещены в других модулях;

− использование прототипов позволяет размещать функции в произволь-

ном порядке (а не до первого их использования);

− размещение прототипов в одном месте делает программу более чита-

бельной.

Функция не может возвращать массив, однако может вернуть указатель на

него:

// int [10] f1(); // Ошибка!

int* f2();

Для возврата нескольких значений в качестве возвращаемого значения

можно использовать структуру

struct St

{

 int x;

 double y;

 int mas[5];

};

St f();

Разрешено использовать ключевое слово auto для обозначения типа воз-

вращаемого результата. В этом случае компилятор выводит тип автоматически,

исходя из типа данных, передаваемых оператору return:

auto f() {

 return 0.3;

}

В примере функция будет возвращать результат действительного типа.

В новых стандартах языка С++ для возврата значений разрешено исполь-

зовать структурированные привязки:

struct St {

 int x;

 double y;

 char c;

};

St f() {

 int a=4;

 double b=7.3;

 71

 char c = 'w';

 return { a, b, c };

}

void main() {

 auto [p1, p2, p3] = f();

 cout << p1 << " " << p2 << " " << p3 << endl;

}

В операторе auto [p1, p2, p3] = f() создаются переменные, тип которых

соответствует типу возвращаемых данных.

Спецификатор сonstexpr используется для обозначения константной пе-

ременной или функции, значение которой вычисляется на этапе компиляции

(если это возможно).

constexpr int f(int a, int b)

{

 return a + b;

}

void main() {

 int x=3, y=7, z;

 cin >> z;

int s1 = f(x, y); // Знач. будет вычислено на этапе компиляции

int s2 = f(x, z); // Знач. будет вычислено во время выполн. прогр.

}

11.2. Параметры функции

Описание функции в языке С обязательно должно содержать раздел пара-

метров (открытая и закрытая скобки). Если функция не имеет параметров, то

скобки остаются пустыми:

int fun() или int fun(void)

Для каждого параметра должен указываться его тип. Сокращенная запись

(один тип для нескольких параметров) запрещена:

// double f(int x, y) // Ошибка!

double f(int x, int y) // Правильно

Область видимости параметров – до конца функции, в которой они объяв-

лены.

Количество аргументов (фактических параметров), их типы и порядок

следования должны соответствовать количеству, типам и порядку следования

параметров (формальных параметров), указанных при объявлении функции.

Имена параметров и аргументов могут не совпадать.

 72

Существует три основных способа передачи параметров: передача по зна-

чению, по указателю и по ссылке.

11.2.1. Передача параметров по значению

При использовании передачи параметров по значению при вызове функ-

ции выделяется память в соответствии с типом параметров и инициализируется

значениями соответствующих аргументов. Доступ к аргументам из функции от-

сутствует, т. е. функция использует локальные копии аргументов. Память, выде-

ленная под такие параметры, освобождается при выходе из функции.

Пример передачи параметров по значению:

double f(double, int, char); // Прототип функции

int main() {

 double a1 = 2.3;

 int a2 = 10;

 char a3 = 'c';

 cout << a1 << " " << a2 << " " << a3 << endl; // Выводит: 2.3 10 c

 double s = f(a1, a2, a3); // Вызов функции

 cout << a1 << " " << a2 << " " << a3 << endl; // Выводит: 2.3 10 c

 cout << "s= " << s << endl; // Выводит: s = 116.5

 return 0;

}

double f(double a, int b, char c) // Заголовок функции

{

 a += 5.2; b--; c++;

 cout << a << " " << b << " " << c << endl; // Выводит: 7.5 9 d

 return a + b + c;

}

Достоинства передачи параметров по значению:

1. В качестве аргументов можно использовать переменные, константы, вы-

ражения, структуры, классы, перечисления. Так, в примере выше вызов функции

можно описать следующим образом:

double s = f(1+1.3,10,'c');

2. Защищены данные в вызывающей функции.

Недостатки передачи параметров по значению:

1. Затраты времени и памяти на копирование значений. Использование в ка-

честве параметров объектов структур и классов может привести к значительному

снижению производительности.

2. Функция не может изменять значения аргументов.

 73

11.2.2. Передача параметров по указателю

При использовании передачи параметров по указателю в качестве парамет-

ров используются не аргументы, а указатели на них. Поэтому любые изменения

параметров функции (с помощью операции разадресации) приводят к измене-

нию аргументов в вызывающей функции:

double f(double*, int*, char*); // Прототип функции

int main() {

 double a1 = 2.3;

 int a2 = 10;

 char a3 = 'c';

 cout << a1 << " " << a2 << " " << a3 << endl; // Выводит: 2.3 10 c

 double s = f(&a1, &a2, &a3); // Вызов функции

 cout << a1 << " " << a2 << " " << a3 << endl; // Выводит: 7.5 9 d

 cout << "s= " << s << endl; // Выводит: s = 116.5

 return 0;

}

double f(double *a, int *b, char *c) // Заголовок функции

{

 *a += 5.2; (*b)--; (*c)++;

 cout << *a << " " << *b << " " << *c << endl; // Выводит: 7.5 9 d

 return *a + *b + *c;

}

Достоинства передачи параметров по указателю:

1. Экономия ресурсов, связанная с тем, что при передаче не происходит

копирование аргументов.

2. Возможность передачи в вызывающую функцию любого количества зна-

чений.

3. Возможность изменения значения аргументов.

Недостатки передачи параметров по указателю:

1. В качестве аргументов нельзя использовать объекты, которые не имеют

идентифицированного места в памяти (rvalue).

2. Функция может изменять значение аргумента, что может привести к

ошибкам в программе. Для решения этой проблемы можно использовать ключе-

вое слово const перед соответствующим аргументом:

double f(const double*, const int*, const char*); // Прототип функции

// Заголовок функции

double f(const double *a, const int *b, const char *c)

 74

11.2.3. Передача параметров по ссылке

Использование указателей не всегда удобно из-за необходимости исполь-

зования операции разадресации, поэтому в языке С++ введена передача пара-

метров по ссылке. Ссылочный параметр («алиас») является псевдонимом соот-

ветствующего аргумента.

int x = 3, y = 9;

 int* p = &x; // Указатель

 int& l = y; // Ссылка

 cout << *p << " " << l << endl; // Выводит: 3 9

Разница между ссылками и указателями состоит в том, что ссылка иници-

ализируется один раз и после этого изменить ее нельзя, а указатель может изме-

нять свое значение (в том числе на nullptr):

int x = 3, y = 9;

 int* p = &x;

 p = &y;

 cout << *p << " " << x << " " << y << " " << endl; // Выводит: 9 3 9

 int& l = x;

 l = y;

 cout << l << " " << x << " " << y << " " << endl; // Выводит: 9 9 9

При обращении к ссылочным параметрам функции происходит обращение

к соответствующим аргументам в вызывающей функции. Например:

double f(double &, int &, char &); // Прототип функции

int main() {

 double a1 = 2.3;

 int a2 = 10;

 char a3 = 'c';

 cout << a1 << " " << a2 << " " << a3 << endl; // Выводит: 2.3 10 c

 double s = f(a1, a2, a3); // Вызов функции

 cout << a1 << " " << a2 << " " << a3 << endl; // Выводит: 7.5 9 d

 cout << "s= " << s << endl; // Выводит: s = 116.5

 return 0;

}

double f(double &a, int &b, char &c) { // Заголовок функции

 a += 5.2; b--; c++;

 cout << a << " " << b << " " << c << endl; // Выводит: 7.5 9 d

 return a + b + c;

}

75

Достоинства и передачи параметров по адресу аналогичны

достоинствам и недостатками передачи параметров по указателю.

По ссылке могут передаваться любые параметры, в том числе указатели:

void f(int *& a, int *&b)

{

 int* t;

 t = a; a = b; b = t;

}

void main() {

 int x = 3, y = 9;

 int* p1 = &x, * p2 = &y;

 cout << *p1 << " " << *p2 << endl; // Выводит: 3 9

 f(p1, p2);

 cout << *p1 << " " << *p2 << endl; // Выводит: 9 3

}

11.2.4. Передача параметров через глобальные переменные

Глобальные переменные доступны во всех функциях программы

(описанных ниже объявления глобальной переменной). Функции могут

использовать эти переменные для обмена данными:

int x = 10, y = 5, s; // Глобальные переменные

void sum() { s = x + y; }

void raz() { s = x - y; }

void main() {

 sum();

 cout << s << endl; // Выводит: 15

 raz();

 cout << s << endl; // Выводит: 5

}

Достоинство передачи параметров через глобальные переменные:

доступность данных из любого места программы.

Недостатки передачи параметров через глобальные переменные:

1. Высокая вероятность ошибок, так как изменение глобальной перемен-

ной оказывает влияние на все функции, ее использующие.

2. Сложность отладки программ и поиска ошибок (область поиска – вся

программа).

11.2.5. Параметры со значениями по умолчанию

При объявлении функции для некоторых аргументов можно задавать

значение по умолчанию, которое передается в функцию в случае, если при вызове

 76

соответствующий аргумент не задан. Так как компилятор присваивает имеющи-

еся значения последовательно слева направо, то аргументы, имеющие заданное по

умолчанию значение, должны располагаться правее аргументов, не имеющих та-

кого значения. Значения по умолчанию могут задаваться только в одном месте: в

прототипе или в заголовке функции. По соглашению значения по умолчанию за-

даются в прототипе функции. Пропуск аргументов при вызове функции запрещен.

Пример:

void f(double a = 5.5, int b = 10, char c = 'a');

int main() {

 f(); // Выводит: 5.5 10 a

 f(9.9); // Выводит: 9.9 10 a

 f(9.9, 6); // Выводит: 9.9 6 a

 f(9.9, 6, 'b'); // Выводит: 9.9 6 b

 // f(9.9, , 'b'); // Ошибка!

 f('b'); // 98 10 a

 return 0;

}

void f(double a, int b, char c)

{

 cout << a << " " << b << " " << c << endl;

}

11.2.6. Передача массивов в функции

Массив в С++ запрещено передавать по значению. Так как имя массива

является указателем на первый элемент массива, то передача в функцию всегда

осуществляется по указателю:

void f(int []);

или

void f(int *);

Одновременно с указателем на массив принято передавать и его размер:

void f1(int[], int); // Прототип функции

void f2(int[20], int); // Прототип функции

// (компилятор игнорирует размерность)

void f3(int*, int); // Прототип функции

void main() {

 const int n = 10;

 int a[n];

 f1(a, n); // Вызов функции

77

 f2(a, n); // Вызов функции

 f3(a, n); // Вызов функции

}

void f1(int b[], int k) {

 // Тело функции

}

void f2(int b[35], int k) {

 // Тело функции

}

void f3(int* b, int k) {

 // Тело функции

}

При передаче массива по указателю возможно изменение его элементов в

функции, что может привести к ошибкам. Для запрета изменения элементов мас-

сива в функции указывается ключевое слово const:

void f(const int []);

или

void f(const int *);

Имя массива всегда передается как указатель. При необходимости исполь-

зования ссылки следует указывать размер массива (ссылка на массив указанного

размера):

const int n = 10;

void f(int(&)[n]); // Прототип функции

void main() {

 int a[10];

 f(a); // Вызов функции

 // f(&a); // Ошибка!

 int b[5];

 // f(b); // Ошибка!

}

void f(int(&b)[n]) {

 // Тело функции

}

При передаче многомерного массива скобки для первой размерности оста-

ются пустыми, а для других размерностей должен указываться размер:

void f(int[][3]);

void f2(int (*)[3]);

void main() {

 78

 const int n = 3;

 int a[n][n];

f(a); // Вызов функции

f2(a); // Вызов функции

}

void f(int b[][3]) {

 // Тело функции

}

void f2(int (*b)[3]) {

 // Тело функции

}

11.2.7. Передача переменного числа параметров

Формат объявления функции с переменным числом:

 тип_возвращаемого_значения имя_функции (список_параметров, …)

Список параметров содержит хотя бы один обязательный параметр. Мно-

готочие (эллипсис, англ. ellipsis) указывает на возможность добавления любого

числа параметров.

Для работы с параметрами определен тип списка va_list и три макроса:

 void va_start(va_list указатель, имя_послед._обязат._аргумента)

начинает работу со списком. Устанавливает указатель на первый необязатель-

ный аргумент.

void va_arg(va_list указатель, тип_аргумента)

возвращает значение очередного аргумента из списка. Каждый запуск макроса

переводит указатель на следующий аргумент. Достижение последнего аргумента

списка не контролируется.

void va_end(va_list указатель)

завершает работу со списком и освобождает память.

Пример 11.1. Подсчитать сумму введенных аргументов. Первый параметр

функции должен передавать количество элементов.

#include <iostream>

#include <cstdarg>

using namespace std;

int f(int, ...); // Прототип функции

void main() {

 cout << f(5, 1, 2, 3, 4, 5) << endl; // Выводит: 15

 cout << f(3, 1, 2, 3) << endl; // Выводит: 6

}

79

int f(int n, ...) { // Заголовок функции

 int ar, s = 0;

 va_list argm;

 va_start(argm, n);

 for (int i = 0; i < n; i++)

 s += va_arg(argm, int);

 va_end(argm);

 return s;

}

11.3. Перегрузка функций

Под перегрузкой функций понимается использование различных функций

с одинаковым именем, объявленных в одной области видимости. Перегрузка

применяется для ситуаций, когда требуется выполнить эквивалентные по

смыслу, но разные по алгоритму действия. Например, вычисление площади для

различных фигур или нахождение минимума для различных наборов данных.

Перегруженные функции различаются компилятором по типам и числу па-

раметров. Например, необходимо вычислить площадь для круга и прямоуголь-

ника:

double S(double a, double b) { return a * b; }

double S(double r) { return 3.14 * pow(r, 2); }

void main() {

cout << "Circle area " << S(4) << endl;

cout << "Rectangle area " << S(3,5) << endl;

}

При выборе перегруженной функции имена параметров, тип возвращае-

мого результата, спецификатор const (если не относится ко всей функции) и спо-

соб передачи массива в функцию не учитываются:

int f(int x) {}

//double f(int x) {} // Ошибка

void f(double x) {}

int f(int x[]) {}

// int f(int* x) {} // Ошибка

 int f(char x) { }

// int f(const char x) { } //Ошибка

Если типы аргументов при вызове функции не совпадают с типами пара-

метров, то подходящая функция ищется исходя из возможных преобразований

типов.

 80

Пример 11.2. Вывести на экран таблицу значений функции y(x) = ln(1)+x

и ее разложения в ряд s(x) =
2

1... (1)
1 2

n
nx x x

n

+− + + − с точностью  = 0.001. Выве-

сти число итераций, необходимое для достижения заданной точности.

double f(double);

double f(double, int &, double eps=1e-6);

int main() {

 double a = 0.1, b = 0.9, h = 0.1;

 int k;

cout << setw(5) << "x" << setw(12) << "y(x)" << setw(12) << "s(x)"

<< setw(5) << "k" << endl;

 for (double x = a; x < b + h / 2; x += h)

cout << setw(5) << x << setw(12) << f(x) << setw(12) << f(x, k)

<< setw(5) << k <<endl;

}

double f(double x) {

 return log(x+1);

}

double f(double x, int &k, double eps) {

 double a, c, sum;

 sum = c = a = x;

 k = 2;

 while (fabs(a) > eps)

 {

 c *= -x;

 a = c/k++;

 sum += a;

 }

 return sum;

}

11.4. Встраиваемые функции

Встраивание функции – способ оптимизации программы, при котором в

места вызова функции вставляется ее тело.

 81

Использование функций удобно, с точки зрения программиста, однако для

исполняемого модуля это не всегда хорошо, так как тратится время на организа-

цию вызовов функций. При использовании маленьких функций накладные рас-

ходы на организацию работы с ними превышают затраты, возникающие при

непосредственном внесении тела функции в код программы.

Для описания встраиваемой функции используется ключевое слово inline.

Например, если функцию объявить

inline double f(int a, double b) {

 return a*b;

}

то при компиляции во всех местах, где встречается обращение к этой функции,

будет вставлено тело функции.

Наличие ключевого слова inline не обязывает компилятор встраивать тело

функции в программу. Компилятор игнорирует спецификацию inline в следую-

щих случаях:

– при наличии операторов организации циклов (for, do, while), переключа-

телей (switch) и безусловного перехода (goto) в функциях, возвращающих зна-

чения;

– при наличии оператора return в функциях, не возвращающих значения;

– при обнаружении рекурсивного вызова функции;

– при использовании статических переменных (с атрибутом static).

Достоинство использования встраиваемых функций: увеличение скоро-

сти выполнения программы.

Недостатки использования встраиваемых функций:

– вставленные тела функций увеличивают размер программы;

– изменение функций inline требует перекомпиляции всех программ, их

использующих.

11.5. Указатель на функцию

Имя функции (как и имя массива) является константным указателем на

начало функции в оперативной памяти. Разрешается использовать указатели на

функции в программе.

Например, имеется функция

double y(double x, int n)

{

// Тело функции

}

 82

Указатель на такую функцию имеет вид

double (*fun)(double, int);

Если присвоить указателю fun адрес функции y:

fun = y;

то функцию можно вызывать

x = fun(t, m);

Указатели на функции, как правило, применяются при использовании

функций в качестве аргументов других функций.

Пример 11.3. Вывести на экран таблицу значений функции y(x) = sin x и

ее разложения в ряд s(x) =
3 2 1

... (1)
3! (2 1)!

n
nx x

x
n

+

− + + −
+

 с точностью  = 0.001. Вы-

вести число итераций, необходимое для достижения заданной точности.

typedef double (*uf)(double, double, int&);

void tabl(double, double, double, double, uf);

double y(double, double, int&);

double s(double, double, int&);

int main()

{

cout << setw(8) << "x" << setw(15) << "y(x)" << setw(10) << "k" <<

endl;

 tabl(0.1, 0.8, 0.1, 0.001, y);

cout << endl;

cout << setw(8) << "x" << setw(15) << "s(x)" << setw(10) << "k" <<

endl;

 tabl(0.1, 0.8, 0.1, 0.001, s);

 return 0;

}

void tabl(double a, double b, double h, double eps, uf fun)

{

 int k = 0;

 double sum;

 for (double x = a; x < b + h / 2; x += h)

 {

 sum = fun(x, eps, k);

cout << setw(8) << x << setw(15) << sum << setw(10) << k << endl;

 }

}

 83

double y(double x, double eps, int& k)

{

 return sin(x);

}

double s(double x, double eps, int& k)

{

 double a, c, sum;

 sum = a = c = x;

 k = 1;

 while (fabs(c) > eps)

 {

 c = pow(x, 2) / (2 * k * (2 * k + 1));

 a *= -c;

 sum += a;

 k++;

 }

 return sum;

}

11.6. Ссылка на функцию

Допустимо использование ссылок на функцию. Например:

void f(int); // Прототип функции

void(&sdf)(int) = f;

sf(3); // Вызов функции (то же самое, что и f(3);)

Для использования ссылки в примере 11.3 требуется переписать первый

оператор:

using uf = double (double, double, int&);

Использование ссылок на функции не имеет преимуществ по сравнению с

использованием указателей (к тому же имеются ограничения), поэтому они ис-

пользуются редко.

 84

12. Область видимости

и классы памяти

Область видимости определяет, в каких частях программы возможно ис-

пользование данной переменной, а класс памяти – время, в течение которого

переменная существует в памяти компьютера. Период времени между созданием

и уничтожением переменной называется временем жизни переменной.

В языке С++ определены четыре класса памяти:

Автоматический локальный (auto) класс памяти. Область видимости ло-

кальных переменных ограничена функцией или блоком, в котором она объяв-

лена. Время жизни автоматической локальной переменной − промежуток вре-

мени между ее объявлением и завершением работы функции или блока, в кото-

рых она объявлена. Ограничение времени жизни переменной позволяет эконо-

мить оперативную память. Этот класс памяти используется по умолчанию.

Статический локальный (static) класс памяти. Переменная имеет такую

же область видимости, как и автоматическая. Время жизни статической локаль-

ной переменной − промежуток времени между ее объявлением и окончанием ра-

боты программы. Инициализация переменной происходит только при первом об-

ращении к ней. Компилятор хранит значение переменной от одного вызова функ-

ции до другого. Если статическая переменная не инициализирована явно, она по

умолчанию имеет значение 0.

Внешний глобальный (extern) класс памяти. Глобальные переменные объ-

являются вне функций и доступны во всех функциях, находящихся ниже описа-

ния глобальной переменной. Время жизни глобальной переменной совпадает с

временем работы программы. В момент создания глобальная переменная иници-

ализируется нулем. Включение ключевого слова extern позволяет функции ис-

пользовать внешнюю переменную, даже если она определяется позже в этом или

другом файле. Память для глобальных переменных выделяется в начале про-

граммы и освобождается при завершении ее работы.

Регистровый локальный (register) класс памяти. Является «пожеланием»

компилятору помещать часто используемую переменную в регистры процессора

для ускорения скорости выполнения программы. Если компилятор отказался по-

мещать переменную в регистры процессора, то переменная становится автома-

тической.

Если при объявлении переменной класс памяти не указан явно, то он зада-

ется автоматически в зависимости от местоположения переменной в тексте про-

граммы. Переменные, объявленные внутри функции, по умолчанию имеют класс

памяти auto, а остальные – extern.

http://ru.wikipedia.org/w/index.php?title=%D0%90%D0%B2%D1%82%D0%BE%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%BF%D0%B5%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%BD%D0%B0%D1%8F&action=edit&redlink=1
http://ru.wikipedia.org/wiki/%D0%9B%D0%BE%D0%BA%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%BF%D0%B5%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%BD%D0%B0%D1%8F
http://ru.wikipedia.org/wiki/%D0%A0%D0%B5%D0%B3%D0%B8%D1%81%D1%82%D1%80%D1%8B_%D0%BF%D1%80%D0%BE%D1%86%D0%B5%D1%81%D1%81%D0%BE%D1%80%D0%B0

85

13. Рекурсивные алгоритмы

13.1. Понятие рекурсии

Рекурсивным называется способ построения объекта, при котором опреде-

ление объекта включает в себя аналогичный объект в виде некоторой его части.

Решать задачу рекурсивно – это значит разложить ее на подзадачи, которые затем

аналогичным образом (т. е. рекурсивно) разбиваются на еще меньшие подзадачи,

и так до тех пор, пока на определенном уровне подзадачи не становятся настолько

простыми, что могут быть решены тривиально. Путем последовательного реше-

ния всех элементарных подзадач получается решение всей задачи. Функция назы-

вается рекурсивной, если в ее теле содержится вызов аналогичной функции.

Например, необходимо вычислить факториал числа n (n!). Известно, что

n! = n  (n – 1)!. Следовательно, для вычисления n! необходимо вычислить

n  (n – 1)!, в свою очередь для вычисления (n – 1)! вычисляем (n – 1)  (n – 2)!,

для вычисления (n – 2)! вычисляем (n – 2)  (n – 3)! и т. д. На каждом шаге зна-

чение вычисляемого факториала уменьшается на единицу. Задача разбивается до

тех пор, пока значение n не станет равным 0, т. е. не будет получено тривиальное

решение 0! = 1. Текст программы вычисления факториала:

int fact(int n)

{

 if (n <= 0) return 1;

else return n*fact(n-1);

}

Рассмотрим работу функции для расчета 4!. Процесс рекурсивных вызовов

и возврата значений показан на рис. 13.1.

Рис. 13.1

При каждом рекурсивном вызове вызывающая функция приостанавливает

свою работу и все ее данные сохраняются в специальной области памяти, назы-

ваемой стеком. Структура стека такова, что в него можно последовательно вно-

сить данные, а затем извлекать в обратном порядке (первый вошел − последний

вышел). После достижения дна рекурсии происходит последовательная выборка

данных из стека.

 86

13.2. Условие окончания рекурсивного алгоритма

Если в рекурсивном алгоритме не выполняется условие окончания рекур-

сивных вызовов, то такой алгоритм будет вызывать функцию бесконечно (до тех

пор, пока не будет переполнен стек). В программе обязательно должен присут-

ствовать оператор, прекращающий рекурсивный вызов функции при достижении

определенных значений текущих данных. Для предотвращения переполнения

программного стека требуется делать оценку максимальной глубины рекурсии.

Бесконечная рекурсия может возникать не только при отсутствии условия

прекращения рекурсивного вызова функции, но и при неполном учете всех воз-

можных путей движения рекурсии. Например, если факториал рассчитывается

следующим образом:

int fact(int n)

{

if (n == 0) return 1;

else return n*fact(n-1);

}

то при вводе числа, меньшего нуля, функция будет вызываться бесконечно.

13.3. Типы рекурсивных алгоритмов

Можно выделить пять основных типов рекурсивных алгоритмов:

– линейная рекурсия. Рекурсивная функция вызывается один раз. Резуль-

тат вызова используется в финальной операции;

– хвостовая рекурсия. Рекурсивная функция вызывается один раз, но ре-

зультат вызова является последним действием;

– множественная рекурсия. Рекурсия в одном операторе вызывается не-

сколько раз;

– взаимная рекурсия. Несколько рекурсивных функций взаимно (цикличе-

ски) вызывающих друг друга;

– вложенная рекурсия. Одним из параметров функции является вызов ана-

логичной функции.

13.4. Примеры рекурсивных алгоритмов

Пример 13.1. Найти сумму
1

n

n i

i

S a
=

= 

int sumr(int i) {

 if (i < 0) return 0;

 else return a[i] + sumr(i-1);

}

 87

Пример 13.2. Найти наибольший общий делитель двух чисел, используя

следующее соотношение: если В делится на А нацело, то НОД(А, В) = А; иначе

НОД(А, В) = НОД(B %А, A).

int nodr(int a, int b) {

 if(b%a == 0) return a;

 else return nodr(b%a,a); }

Пример 13.3. Найти max(a0...an – 1).

Данную задачу можно разбить на следующие элементарные подзадачи:

max(max(a0...an – 2), an – 1), и далее max(max(max(a0...an – 3), an – 2), an – 1), …, каждая

из которых решается выбором: если x > y, тогда mx = x, иначе mx = y. На послед-

нем уровне окажется тривиальная задача – max(a0) → mx = a0, после чего нахо-

дится max(mx, a1) и т. д.

int maxr2(int i) {

 if (i == 0) return a[0];

 int mx = maxr2(i-1);

 if (a[i] > mx) return a[i];

 else return mx;

}

Пример 13.4. Найти сумму элементов одномерного массива (при рекур-

сивном разбиении массив следует делить на две части).

int sumr(int a[], int i, int j)

{

 if (i == j) return a[i];

 else

 return sumr(a,i,(j+i)/2) + sumr(a,(j+i)/2+1,j);

}

Пример 13.5. Вычислить числа Фибоначчи, которые определяются сле-

дующим рекурсивным соотношением: b0 = 0; b1 = 1; bn = bn – 1 + bn – 2.

int fibr (int n)

{ if (n <= 1) return n;

 else return fibr(n-1)+fibr(n-2); }

Данная реализация алгоритма имеет изящный код, однако работает неэффек-

тивно. Каждое обращение к функции приводит к вызову еще двух функций. С уве-

личением n число вызовов возрастает как 2n – 1. Например, при n = 5 дерево вызовов

программы будет иметь вид, представленный на рис. 13.2.

 88

Рис. 13.2

Видно, что при выполнении программы требуется стековая память для хра-

нения данных для 16 (24) функций. Большим недостатком алгоритма является

многократный вызов функции с одинаковыми параметрами.

Так как функция Фибоначчи растет достаточно быстро, то для больших

значений n рекурсивный алгоритм будет работать медленно или совсем переста-

нет работать из-за переполнения стека. Поэтому практического интереса такая

рекурсивная программа не представляет.

Рассмотренный выше пример показывает, что компактная и красивая про-

грамма не всегда эффективна. Для вычисления чисел Фибоначчи удобно исполь-

зовать обычный итерационный алгоритм или алгоритм с одним рекурсивным вы-

зовом:

int fibri (int x1, int x2, int n)

{

if (n == 1) return x2;

 else if (n == 0) return x1;

 else {

 x2 += x1;

 x1 = x2-x1;

 return fibri(x1, x2, n-1);

 }

}

Обращение к функции: fibri(0,1,n);

Пример 13.6. Задача о Ханойской башне. Даны три стержня, на один из

которых нанизаны n колец. Кольца отличаются размером и расположены мень-

шее на большем. Необходимо перенести башню на другой стержень. За один раз

разрешается переносить только одно кольцо, причем нельзя класть большее

кольцо на меньшее. Для промежуточного хранения дисков можно использовать

третий стержень.

Решение задачи для одного диска: переложить диск с первого стержня на

второй стержень.

 89

Решение задачи для двух дисков:

− переложить диск с первого стержня на третий стержень;

− переложить диск с первого стержня на второй стержень;

− переложить диск с третьего стержня на второй стержень.

Башня, состоящая из n дисков, рассматривается как башня из двух дисков:

первый диск − верхний диск башни, а второй диск − все диски, располагающиеся

под верхним диском. После перестановки этих двух составных дисков задача ре-

шается для n – 1 дисков.

void hanoy(int n, int sterg1, int sterg2, int sterg3)

{

 if (n > 0) {

 hanoy(n-1,sterg1,sterg3,sterg2);

 cout << "perenesty disk s "<<sterg1<<" na "<<sterg2<<endl;

 hanoy(n-1,sterg3,sterg2,sterg1);

 }

}

Обращение к функции: hanoy(n,1,2,3);

Пример 13.7. Вычислить ny x= по следующему алгоритму:
/ 2 2()ny x= ,

если n четное; 1ny x x −=  , если n нечетное.

double st(int n)

{ if (n == 0) return 1;

 else {

 if (n%2 == 0) {

 double p = st(n/2);

 return p * p;

 }

 else return x * st(n-1);

 }

}

13.5. Целесообразность использования рекурсии

Рекурсивные алгоритмы хорошо подходят для задач, допускающих рекур-

сивное разбиение на элементарные подзадачи. Однако это не означает, что для

решения таких задач бесспорно использование рекурсивных программ. В боль-

шинстве случаев использование рекурсии абсолютно неэффективно.

Недостатки рекурсии:

1. Большой расход памяти и ресурсов. При каждом рекурсивном вызове

система сохраняет в стеке все локальные данные. Обработка сложной цепочки

рекурсивных вызовов требует выделение больших ресурсов системы.

 90

2. Часто ход выполнения рекурсивного алгоритма требует многократного

вычисления функций, имеющих одинаковые входные данные, что существенно

снижает быстродействие программы. Классический пример – вычисление чисел

Фибоначчи.

3. Несмотря на кажущуюся простоту, рекурсивные программы сложны для

понимания и для отладки.

В большинстве случаев нерекурсивный алгоритм выполняется быстрее ре-

курсивного, однако существует ряд задач, решить которые без использования ре-

курсии достаточно сложно.

 91

14. Алгоритмы сортировки

Cортировка – процесс перегруппировки элементов массива, приводящий

к их упорядоченному расположению относительно заданного ключа. Ключом в

зависимости от решаемой задачи может считаться любое поле структуры. Целью

сортировки является облегчение поиска элементов.

Сортировку данных в оперативной памяти принято называть внутренней,

а сортировку на внешних носителях информации – внешней.

Для оценки эффективности сортировки часто используют следующие кри-

терии:

1. Скорость сортировки. Определяется числом сравнений и обменов. Оце-

нивается также скорость сортировки в наилучшем и наихудшем случаях, так как

существуют алгоритмы, которые, имея хорошую среднюю скорость, очень мед-

ленно работают в наихудшем случае.

2. Естественность сортировки. Сортировка называется естественной,

если время сортировки минимально для уже упорядоченных данных и увеличи-

вается по мере возрастания их степени неупорядоченности.

3. Устойчивость сортировки. Алгоритм сортировки является устойчивым,

если в отсортированном массиве элементы с одинаковыми ключами располага-

ются в том же порядке, в котором они располагались в исходном массиве. Луч-

шими считаются алгоритмы, не переставляющие элементы с одинаковыми

ключами.

Часто оценивается сложность алгоритма − зависимость объема работы,

выполняемой некоторым алгоритмом, от размера входных данных.

Существует три основных класса сортировок:

1. Обмен. При таком способе меняются местами элементы, расположен-

ные не по порядку. Обмен продолжается до тех пор, пока все элементы не будут

упорядочены.

2. Выбор. Вначале ищется наименьший элемент и ставится на первое ме-

сто, затем ищется следующий по значимости элемент и устанавливается на вто-

рое место и т. д. В результате все элементы помещаются в нужные позиции.

3. Вставка. Последовательно перебираются все элементы. Каждый эле-

мент перемещается в ту позицию, в которой он должен стоять.

14.1. Простые методы сортировки

14.1.1. Метод пузырька

Данная сортировка относится к классу обменных сортировок. Ее алгоритм

содержит многократные сравнения соседних элементов и при необходимости

их обмен. Элементы ведут себя подобно пузырькам воздуха в воде − каждый из

них поднимается на свой уровень.

void s_puz(tmas a[], int n) {
 tmas t;
 for (int i = 1; i < n; i++)

 92

 for (int j = n - 1; j > = i; j -)
 if (a[j - 1].key > a[j].key)
 {
 t = a[j - 1];
 a[j - 1] = a[j];
 a[j] = t;
 }
Особенности пузырьковой сортировки:

− сложность сортировки – O(N2);

− с увеличением степени отсортированности массива количество обме-

нов уменьшается, а количество сравнений всегда остается одинаковым;

− сортировка устойчива;

− проста в понимании и реализации.

14.1.2. Сортировка выбором

В массиве выбирается элемент с наименьшим значением и меняется ме-

стами с первым элементом. Затем из оставшихся элементов находится наимень-

ший и меняется местами со вторым элементом и т. д.

void s_vb(tmas a[], int n)

{

 int imin, i, j;

 tmas t;

 for(i=0; i<n-1; i++)

 {

 imin = i;

 for(j=i+1; j<n; j++)

 if (a[imin].key > a[j].key) imin = j;

 if (imin != i)

 {

 t = a[imin];

 a[imin] = a[i];

 a[i] = t;

 }

} }

Особенности сортировки выбором:

− сложность сортировки – O(N2);

− с увеличением степени отсортированности массива количество обме-

нов уменьшается, а количество сравнений всегда остается одинаковым;

− сортировка неустойчива;

− количество обменов намного меньше, чем в пузырьковой сортировке.

 93

14.1.3. Сортировка вставкой

Сначала сортируются два первых элемента массива. Затем вставляется тре-

тий элемент в необходимую позицию по отношению к первым двум элементам.

После этого четвертый элемент помещается в соответствующую позицию списка

из трех элементов и т. д. Процесс повторяется до тех пор, пока не будут встав-

лены все элементы.

void s_vst(tmas a[], int n)

{

 int i, j;

 tmas t;

 for(i=1; i<n; i++)

 {

 t = a[i];

 for(j=i-1; j>=0 && t.key<a[j].key; j--) a[j+1] = a[j];

 a[j+1] = t;

 } }

Особенности сортировки вставкой:

− сложность сортировки в лучшем случае – O(N), а в худшем – O(N2);

− с увеличением степени отсортированности массива уменьшается и ко-

личество обменов, и количество сравнений;

− сортировка устойчива.

14.2. Улучшенные методы сортировки

Все алгоритмы, рассмотренные выше, имеют один фатальный недоста-

ток – они работают очень медленно. Применяемые методы оптимизации кода не

дают существенного прироста производительности алгоритма. Существует пра-

вило: если используемый в программе алгоритм слишком медленный сам по

себе, никакой объем ручной оптимизации не сделает программу достаточно

быстрой. Решение заключается в применении лучшего алгоритма сортировки.

14.2.1. Метод Шелла

Общая идея заимствована из сортировки вставкой. Недостатком сорти-

ровки вставкой является то, что меньшие элементы множества быстро помеща-

ются в необходимую позицию, а большие – достаточно медленно. Для преодоле-

ния этого недостатка на начальных этапах алгоритм передвигает не все эле-

менты, а только элементы, отстоящие на некотором расстоянии друг от друга.

Интервал постепенно уменьшается, пока на станет равным единице. Например,

сначала сортируются элементы, расположенные на расстоянии трех позиций

друг от друга. Затем сортируются элементы, расположенные на расстоянии двух

 94

позиций. Наконец, сортируются все соседние элементы. Последовательность ша-

гов может быть любой, однако последний шаг обязательно должен быть равен

единице.

void s_shell(tmas a[], int n)

{

 int i, j;

 tmas t;

for(int d=3; d>0; d--)

 for(i=d; i<n; i++)

 {

 t = a[i];

 for(j=i-d; j>=0 && t.key<a[j].key; j-=d) a[j+d] = a[j];

 a[j+d] = t;

 }

}

Особенности сортировки вставкой:

− сложность сортировки в лучшем случае равна
2(log)О N N , а в худшем –

O(N2) (зависит от выбранной последовательности шагов. Оптимальная последо-

вательность не определена до сих пор);

− количество сдвигов элементов существенно снижено по сравнению с

простыми методами сортировки;

− средняя скорость сортировки значительно выше, чем у сортировки

вставкой;

− сортировка естественна;

− сортировка неустойчива.

14.2.2. Сортировка слиянием

Алгоритм сортировки слиянием следующий:

1. Сортируемый массив рекурсивно разбивается на смежные участки при-

мерно одинакового размера до тех пор, пока в каждом участке не останется по

одному элементу.

2. Смежные упорядоченные участки массива соединяются в один упорядо-

ченный участок, для чего последовательно извлекаются наименьшие элементы

из этих участков и помещаются в результирующий массив. Когда в одном из

смежных участков элементы заканчиваются, все оставшиеся элементы из

другого участка массива перемещаются в результирующий массив.

Результирующий массив записывается на место рассмотренных смежных

участков.

3. Алгорим прекращает работу в тот момент, когда будут соединены все

смежные участки.

 95

Функция слияния:

void slip(int left, int m, int right)

{

 int i = left, j = m + 1, k = 0;

 while ((i <= m) && (j <= right))

 if (a[i].key < a[j].key) { c[k++] = a[i++];}

 else { c[k++] = a[j++];}

 while (i <= m) c[k++] = a[i++];

 while (j <= right) c[k++] = a[j++];

 // Запись отсортированного участка в массив

 k = 0; i = left;

 while (i <= right) a[i++] = c[k++];

}

Функция сортировки:

void s_sl(int left, int right)

{

 if (left < right)

 {

 int m = (left + right) / 2;

 s_sl(left, m);

 s_sl(m + 1, right);

 slip(left, m, right);

 }

}

Вызов:

s_sl(0, n-1);

Особенности сортировки слиянием:

− сложность – O(N logN);

− средняя скорость сортировки значительно выше, чем у сортировки

вставкой;

− сортировка не является естественной (скорость не зависит от упорядо-

ченности исходных данных);

− сортировка устойчива;

− для работы алгоритма требуется дополнительный массив, поэтому он,

как правило, используется для внешней сортировки.

 96

14.2.3. Метод QuickSort (быстрая сортировка, сортировка Хоара)

В начале сортировки задается базовый элемент (средний или выбранный

случайным образом). Затем элементы, большие или равные базовому, перемеща-

ются на одну сторону, а меньшие − на другую. После этого аналогичные дей-

ствия повторяются отдельно для каждой части массива. Процесс повторяется до

тех пор, пока массив не будет отсортирован. Алгоритм по своей сути рекурсив-

ный, поэтому его можно реализовать в виде рекурсивной функции:

void s_qsr(int left, int right)

{

 int i = left, j = right;

 tmas t, x;

x = a[(i+j)/2];

do {

 while (a[i].key < x.key && i < right) i++;

 while (a[j].key > x.key && j > left) j--;

 if (I <= j) {

 t = a[i]; a[i] = a[j]; a[j] = t;

 i++; j--;

 }

 } while(i<=j);

 if(left < j) s_qsr(left, j);

 if(i < right) s_qsr(i, right);

}

Для быстрой работы алгоритма QuiskSort необходимо правильно выбрать

базовый элемент. Если значение базового элемента при каждом делении будет

равно наибольшему значению, то сортировка по скорости станет равной пузырь-

ковой. Методика выбора базового элемента должна отталкиваться от природы

сортируемого массива. Например, если данные расположены достаточно равно-

мерно, то удобнее выбирать средний элемент. В других случаях можно исполь-

зовать случайный выбор базового элемента.

Описанная выше рекурсивная реализация сортировки имеет красивый и

понятный алгоритм, однако знание особенностей функционирования рекурсив-

ных программ позволяет предположить, что нерекурсивная реализация будет ра-

ботать лучше:

struct St {

 int l;

 int r;

} stack[10];

 97

void push(int l, int r, int &s) {

 stack[s].l = l;

 stack[s].r = r;

 s++;

}

void pop(int &l, int &r, int& s) {

 s--;

 l = stack[s].l;

 r = stack[s].r;

}

void s_qs(tmas a[], int n) {

 int i, j, left, right, s = 0;

 tmas x;

 push(0, n-1, s);

 while (s != -1) {

 pop(left, right, s);

 while (left < right) {

 i = left; j = right; x = a[(left + right) / 2];

 while (i <= j) {

 while (a[i].key < x.key) i++;

 while (a[j].key > x.key) j--;

 if (i <= j) { swap(a[i], a[j]); i++; j--; }

 }

 if ((j - left) < (right - i)) { // Выбор более короткой части

 if (i < right) push(i, right, s);

 right = j;

 }

 else {

 if (left < j) push(left, j, s);

 left = i;

 }

 }

 }

}

В данной функции в качестве базового выбирается средний элемент. Мас-

сив просматривается слева направо до тех пор, пока не будет найден элемент,

 98

больший или равный базовому, и справа налево до тех пор, пока не будет найден

элемент, меньший или равный базовому. Найденные элементы меняются ме-

стами. Если найденный слева элемент стоит правее элемента, найденного при

поиске справа, то поиск прекращается. Массив разбивается на два новых участка.

Поиск и разбиение продолжаются до тех пор, пока каждая из частей не будет

состоять из одного единственного элемента.

Особенности быстрой сортировки:

− сложность сортировки – O(N log N), в худшем случае (маловероятно) –

O(N2);

− сортировка естественна;

− сортировка неустойчива (при данной реализации алгоритма);

− для работы алгоритма не требуется использование дополнительного

массива;

− количество сравнений намного меньше, чем у любого ранее рассмот-

ренного метода.

 99

15. Алгоритмы поиска

Цель поиска состоит в нахождении элемента, имеющего заданное значе-

ние ключевого поля.

15.1. Линейный поиск

Линейный поиск используется в случае, когда массив не отсортирован по

заданному ключу. Поиск представляет собой последовательный перебор элемен-

тов массива до обнаружения требуемого ключа или до конца массива, если ключ

не обнаружен:

int p_lin1(tmas a[], int n, int x)

{

for(int i=0; i < n; i++)

 if (a[i].key == x) return i;

 return -1;

}

В данном алгоритме на каждом шаге делается две проверки: проверка на

равенство ключевого поля и искомого ключа и проверка условия продолжения

циклического алгоритма. Для исключения проверки условия продолжения цик-

лического алгоритма вводится вспомогательный элемент – барьер, который

предохраняет от выхода за пределы массива:

int p_lin2(tmas a[], int n, int x)

{

 a[n].key = x;

 int i = 0;

 while (a[i].key != x) i++;

 return i;

}

Если функция возвращает значение, равное n, то это говорит о том, что

искомый элемент не обнаружен. Эффективность такого алгоритма почти в два

раза выше предыдущего.

15.2. Двоичный (бинарный) поиск

Двоичный поиск используется в случае, когда данные упорядочены,

например, по неубыванию ключевого поля. Алгоритм состоит в последователь-

ном исключении той части массива, в которой искомого элемента быть не может.

Для этого берется средний элемент, и если значение ключевого поля этого эле-

мента больше, чем значение искомого ключа, то можно исключить из рассмот-

рения правую половину массива, иначе исключается левая половина массива.

Процесс продолжается до тех пор, пока в рассматриваемой части массива не

останется один элемент.

 100

int p_dv(tmas a[], int n, int x)

{

 int i=0, j=n-1, m;

while(i < j) {

m=(i + j)/2;

if (x > a[m].key) i = m+1; else j = m;

 }

if (a[i].key == x) return i;

return -1;

}

15.3. Интерполяционный поиск

Для массивов с равномерным распределением элементов можно использо-

вать формулу, позволяющую определить примерное местоположение элемента:

()([].)

[]. [].

i j x a i key
m i

a i key a j key

− −
= +

−
,

где i, j − начало и конец интервала; x − искомое значение ключевого поля.

int p_dv(tmas a[], int n, int x) {

 int i = 0, j = n-1, m;

while(i < j)

{

 if (a[i].key == a[j].key) // Предотвращение деления на нуль

 if (a[i].key == x) return i;

 else return -1;

 m=i + (j - i) * (x - a[i]) / (a[j] - a[i]);

if (a[m].key == x) return m;

 else

 if (x > a[m].key) i = m+1; else j = m-1;

}

 return -1;

}

Данный поиск быстрее двоичного в 3–4 раза.

Интерполяционный поиск вблизи ключевого поля может вести себя

неустойчиво. Поэтому обычно с использованием

интерполяционного поиска делают несколько первых шагов, а

затем используют двоичный поиск.

 101

16. Хеширование

16.1. Понятие хеширования

Для решения задачи быстрого поиска используется алгоритм хеширова-

ния (hashing), при котором ключи данных записываются в особую хеш-таблицу.

Затем при помощи простой функции i = h(key) алгоритм хеширования опреде-

ляет положение искомого элемента в таблице по значению его ключа.

Рассмотрим пример.

Имеется массив структур из семи элементов, значения ключей которых

находятся в диапазоне 0…15.

mas[0].key = 5;

mas[1].key = 15;

mas[2].key = 1;

mas[3].key = 10;

mas[4].key = 8;

mas[5].key = 3;

mas[6].key = 11;

Допустим, что надо найти элемент с ключом 3. Для этого метод линейного

поиска сделает шесть шагов, а для использования двоичного поиска потребуется

предварительная сортировка. Количество шагов зависит от способа сортировки,

но затраты в этом случае будут выше, чем при линейном поиске.

Для ускорения поиска создадим новый массив (хеш-таблицу), в котором

номер элемента будет равен значению ключа:

H[Mas[i].key] = Mas[i];

Все неиспользуемые элементы массива H имеют значение –1:

H[0].key = -1;

H[1] = mas[2]; // Н[1].key = 1

H[2].key = -1;

H[3] = mas[5]; // Н[3].key = 3

H[4].key = -1;

H[5] = mas[0]; // Н[5].key = 5

H[6].key = -1;

H[7].key = -1;

H[8] = mas[4]; // Н[8].key = 8

H[9].key = -1;

H[10] = mas[3]; // Н[10].key = 10

H[11] = mas[6]; // Н[11].key = 11

H[12].key =-1;

H[13].key = -1;

 102

H[14].key = -1;

H[15] = mas[1]; // Н[15].key = 15

При такой организации для нахождения любого элемента достаточно сде-

лать только один шаг x = H[key] (сложность алгоритма O(1)). Для удаления эле-

мента достаточно поставить значение –1 в соответствующее поле.

Для решения реальных задач такой подход неприемлем, так как размер

массива должен быть достаточен для размещения элемента с максимальным

ключом, что существенно увеличивает размер хеш-таблицы. Например, для хра-

нения телефонной базы с семизначными номерами необходим массив из

9 999 999 элементов. Для уменьшения размера хеш-таблицы используются раз-

личные схемы хеширования.

16.2. Схемы хеширования

При сжатии таблицы несколько различных элементов могут получить

одинаковый номер в хеш-таблице, поэтому схема хеширования должна содер-

жать алгоритм разрешения конфликтов, определяющий поведение про-

граммы в случае, если новый ключ попадает на уже занятую позицию.

Схема работы алгоритма размещения элементов в хеш-таблице:

1. По значению ключа вычисляется номер позиции в хеш-таблице

i = key % m (m – количество элементов в хеш-таблице).

2. Если полученная позиция уже занята, то алгоритм разрешения конфлик-

тов находит новую позицию.

3. Если новая позиция тоже занята, повторяется п. 2 до тех пор, пока не

будет найдена свободная позиция.

Алгоритм поиска по значению ключа находит позицию искомого эле-

мента в хеш-таблице. Если значение ключа элемента не совпадает с искомым

ключом, то осуществляется дальнейший поиск в соответствии с выбранным ал-

горитмом разрешения конфликтов.

16.3. Хеш-таблица с линейной адресацией

Алгоритм разрешения конфликтов: если найденная для элемента позиция

i уже занята, то ищется первая незанятая позиция (начиная с i + 1).

Например, имеется следующий массив:

Mas[0].key = 5;

Mas[1].key = 15;

Mas[2].key = 3;

Mas[3].key = 10;

Mas[4].key = 125;

Mas[5].key = 333;

Mas[6].key = 11;

Mas[7].key = 437;

 103

Данные размещаются в хеш-таблице из 10 элементов. Функция размеще-

ния: i = key % 10.

Полученная хеш-таблица:

H[0] = Mas[3]; // H[0].key = 10;

H[1] = Mas[6]; // H[1].key = 11;

H[2] = -1

H[3] = Mas[2]]; // H[3].key = 3;

H[4] = Mas[5]]; // H[4].key = 333;

H[5] = Mas[0]]; // H[5].key = 5;

H[6] = Mas[1]]; // H[6].key = 15;

H[7] = Mas[4]]; // H[7].key = 125;

H[8] = Mas[7]]; // H[8].key = 437;

H[9] = -1

Пример 16.1. Создать хеш-таблицу, использующую алгоритм размещения

с линейной адресацией.

void sv_add(int key, int m, int* H)

{

 int i = abs(key % m);

 while (H[i] != -1) {

 i++;

 if (i == m) i = 0;

 }

 H[i] = key;

}

int sv_seach(int key, int m, int *H)

{

 int i = abs(key % m);

 while (H[i] != -1)

 {

 if (H[i] == key) return i;

 i++;

 if (i == m) i = 0;

 }

 return -1;

}

 104

int main()

{

 const int n = 8; // Число элементов в массиве

 int mas[n] = { 5, 15, 3, 10, 125, 333, 11, 437 };

 const int m = 10; // Число элементов в хеш-таблице

 int H[m];

 int i;

 for (i = 0; i < m; i++) H[i] = -1; // Все позиции свободны

 for (i = 0; i < n; i++) sv_add(mas[i], m, H);

 // Поиск элемента с ключом 333

 int key = 333;

 int k = sv_seach(key, m, H);

 if (k == -1) cout << "Item not found" << endl;

 else cout << H[k] << endl;

}

Достоинство: простой алгоритм размещения и поиска элементов.

Недостатки:

1. Фиксированный размер хеш-таблицы.

2. Сложный алгоритм удаления элемента, так как удаление элемента часто

приводит к необходимости перестройки всей таблицы. Для преодоления данного

недостатка можно использовать несколько состояний ячейки: «занята», «не за-

нята», «удалена». Если во время поиска алгоритм попадает на ячейку со статусом

«удалена», то поиск продолжается далее. При добавлении данных ячейка со ста-

тусом «удалена» считается свободной.

3. Если данные в таблице расположены неравномерно, то скорость по-

иска может быть очень низкой. Для преодоления данного недостатка можно

использовать следующую хеш-функцию: i = (key + r) % 10, где r – простое

число, сгенерированное датчиком случайных чисел. Для правильной работы

алгоритмов поиска и размещения датчик должен всегда устанавливаться в

одинаковое начальное положение.

16.4. Хеш-таблицы с квадратичной и произвольной адресацией

В отличии от метода с линейной адресацией, в методе с квадратичной ад-

ресацией поиск свободной ячейки ведется не последовательно (i++), а по фор-

муле 2i i p= + (p – номер попытки).

В методе с произвольной адресацией незанятая позиция ищется по фор-

муле: i += i + r[p] (r – заранее сгенерированный массив случайных чисел;

p – номер попытки).

По сравнению с линейной адресацией данные методы дают более равномер-

ное распределение данных в таблице, однако работают несколько медленнее.

 105

16.5. Хеш-таблица с двойным хешированием

Алгоритм метода:

1. Найти позицию элемента в хеш-таблице по формуле i = key % m.

2. Если ячейка с номером i свободна, то перейти к п. 6.

3. Вычислить с = 1 + (key % (m –2)).

4. Найти позицию элемента в хеш-таблице по формуле i = i – с (если i < 0,

то i = i + m).

5. Если ячейка с найденным номером i занята, то перейти к п. 4.

6. Вставить элемент в найденную позицию.

По сравнению с предыдущими данный метод из-за наличия независимых

друг от друга цепочек поиска свободной ячейки дает более равномерное распре-

деление данных в хеш-таблице. Усложнение алгоритма приводит к снижению

скорости его работы.

16.6. Хеш-таблица на основе связанных списков

Одним из наиболее эффективных методов разрешения конфликтов состоит

в том, что элементы, попадающие на одну и ту же позицию, размещаются в свя-

занных списках (см. разд. 17). Например, имеется следующий массив:

Mas[0].key = 5;

Mas[1].key = 15;

Mas[2].key = 3;

Mas[3].key = 10;

Mas[4].key = 125;

Mas[5].key = 333;

Mas[6].key = 11;

Mas[7].key = 437;

Данные размещаются в хеш-таблице из 10 элементов. Функция размеще-

ния: i = key % 10. Каждый элемент таблицы является указателем на вершину

стека.

Полученная хеш-таблица:

H[0] ← Mas[3]

H[1] ← Mas[6]

H[2] ← nullptr

H[3] ← Mas[2] ← Mas[5]

H[4] ← nullptr

H[5] ← Mas[0] ← Mas[1] ← Mas[4]

H[6] ← nullptr

H[7] ← Mas[7]

H[8] ← nullptr

H[9] ← nullptr

 106

Пример 16.2. Создать хеш-таблицу, использующую алгоритм размещения

на основе связанных списков.

struct TNode // Описание элемента стека

{

 int inf; // Информационная часть структуры

 TNode* a; // Адресная часть структуры

};

TNode** sv_create(int m)

{

 TNode** H = new TNode * [m];

 for (int i = 0; i < m; i++) H[i] = nullptr;

 return H;

}

void sv_add(int inf, int m, TNode** H)

{

 TNode* spt = new TNode;

 spt->inf = inf;

 int i = abs(inf % m);

 if (H[i]) { spt->a = H[i]; H[i] = spt; }

 else { H[i] = spt; spt->a = nullptr; }

}

TNode* sv_seach(int inf, int m, TNode** H)

{

 int i = abs(inf % m);

 TNode* spt = H[i];

 while (spt) {

 if (spt->inf == inf) return spt;

 spt = spt->a;

 }

 return nullptr;

}

void sv_delete(int m, TNode** H)

{

 TNode* spt, * sp;

 for (int i = 0; i < m; i++)

 107

 {

 sp = H[i];

 while (sp) {

 spt = sp;

 sp = sp->a;

 delete spt;

 }

 }

 delete[]H;

}

int main()

{

 int n = 8; // Число элементов в массиве

 int mas[] = { 5, 15, 3, 10, 125, 333, 11, 437 };

 int m = 10; // Число элементов в хеш-таблице

 TNode** H = sv_create(m);

 for (int i = 0; i < n; i++) sv_add(mas[i], m, H);

 int key = 333;

 TNode* p = sv_seach(key, m, H);

 if (!p) cout << "Item not found" << endl;

 else cout << p->inf << endl;

 sv_delete(m, H);

}

Достоинства:

1. Достаточно простой алгоритм вставки и поиска элементов.

2. Связанная таблица не может быть переполнена.

Недостаток: плохая работа с неравномерно размещенными данными.

Для преодоления этого недостатка используется методика, рассмотренная

в подразд. 16.3.

16.7. Метод блоков

Используется массив одномерных массивов одинакового размера (блоков).

Вначале находится номер блока, в который помещается элемент. Если блок

переполнен, то элемент помещается в специальный блок переполнения. Поиск

ведется в найденном блоке и в блоке переполнения. Метод хорошо зарекомендо-

вал себя при хранении хеш-таблицы на файле, так как запись и чтение из файла

можно осуществлять поблочно, что быстрее поэлементной работы.

 108

17. Динамические структуры данных

17.1. Понятие списка, стека и очереди

Объект данных считается динамической структурой, если его размер, вза-

имное расположение и взаимосвязи его элементов изменяются в процессе вы-

полнения программы.

Список (list) – последовательность однотипных данных, работа с кото-

рыми ведется в оперативной памяти. В процессе работы список может изменять

свой размер. Наибольшее распространение получили две формы работы со спис-

ком – очередь и стек.

Стек (stek) – список с одной точкой входа. Данные добавляются в список

и удаляются из него только с одной стороны последовательности (вершины

стека). Таким образом реализуется принцип «последний пришел – первый вы-

шел».

Очередь (turn) – список с одной или двумя точками входа. Данные добав-

ляются в конец очереди, а извлекаются из начала очереди. Таким образом реали-

зуется принцип «первый пришел – первый вышел».

Для работы со списками предусмотрен специальный рекурсивный тип дан-

ных, в описании которого содержится указатель на аналогичную этому типу

структуру.

Чаще всего используется следующая конструкция рекурсивного типа дан-

ных:

struct TInf

 {

 // Набор полей структуры

};

 struct TNode

 {

 TInf inf; // Информационная часть структуры

 TNode *a; // Адресная часть структуры

 };

Для упрощения рассмотрения в дальнейшем будет использоваться струк-

тура следующего вида:

struct TNode

 {

 int inf; // Информационная часть структуры

 TNode *a; // Адресная часть структуры

 } ;

 109

Однонаправленные связанные списки организуются следующим образом:

память для каждого элемента выделяется отдельно (по мере необходимости). В

информационную часть помещаются нужные данные, а в адресную часть – адрес

предыдущей или последующей структуры.

 Адресация, при которой каждый элемент, кроме информационной

части, хранит адрес другого элемента последовательности, называется

косвенной адресацией. В отличие от адресации по индексу косвенная

адресация менее наглядна, однако обладает большей гибкостью.

17.2. Работа со стеком

Для работы со стеком достаточно знать указатель на вершину стека. Для пе-

ремещения по стеку необходимо последовательно переходить от одной ячейки к

другой:

spt = top; // Установка текущего указателя в начало стека

spt = spt->a; // Перемещение к следующему элементу

spt=spt->a->a; // Перемещение на два элемента

Пример 17.1. Работа со стеком.

#include <iostream>

using namespace std;

struct TNode // Описание элемента стека

{

 int inf; // Информационная часть структуры

 TNode* a; // Адресная часть структуры

};

struct stack // Структура для работы со стеком

{

 TNode* top=nullptr; // Указатель на вершину стека

 int size=0; // Количество элементов стека

 bool empty() { // Проверка наличия элементов в стеке

 if (top) return false;

 else return true;

 }

 void push(int inf) { // Добавление элемента в стек

 TNode* spt = new TNode;

 110

 spt->inf = inf;

 spt->a = top;

 top = spt;

 size++;

 }

 void pop() { // Удаление элемента из стека

 TNode *spt = top;

 top = top->a;

 delete spt;

 size--;

 }

 void print() { // Вывод содержимого стека на экран

 TNode* spt = top;

 while (spt != nullptr)

 {

 cout << spt->inf << " ";

 spt = spt->a;

 }

 }

 TNode* search(int x) { // Поиск элемента c заданным ключом

 if (!top) return nullptr;

 TNode* spt = top;

 while (spt->inf != x && spt->a != nullptr) spt = spt->a;

 if (spt->inf == x) return spt;

 else return nullptr;

 }

 // Поиск предыдущего элемента (исключая первый)

 TNode* searchp(int x) {

 if (!top || !top->a) return nullptr;

 TNode* spt = top;

 while (spt->a->inf != x && spt->a->a != nullptr) spt = spt->a;

 if (spt->a->inf == x) return spt;

 return nullptr;

 }

 111

 // Удаление элемента c заданным ключем

 void del(int x) {

 if (!top) return;

 if (top->inf == x) pop();

 TNode* spt, * spp;

 spp = searchp(x);

 spt = spp->a;

 spp->a = spp->a->a;

 delete spt;

 }

 // Обмен следующих за указанным элементов

 void exchange(TNode* sp) {

 TNode* spt;

 spt = sp->a->a;

 sp->a->a = spt->a;

 spt->a = sp->a;

 sp->a = spt;

 }

} ;

int main() {

 stack s;

 s.push(4);

 s.push(2);

 s.push(1);

 s.push(6);

 s.push(9);

 s.print(); // Выводит: 9 6 1 2 4

 TNode* d1 = s.search(1); cout << d1->inf; // Выводит: 1

 TNode* d2 = s.searchp(1); cout << d2->inf; // Выводит: 2

 s.exchange (d2);

 s.print(); // Выводит: 9 6 2 1 4

 s.del(6);

 s.print(); // Выводит: 9 2 1 4

 while (!s.empty()) s.pop();

 if (s.empty()) cout << "Stack is empty";

}

 112

17.3. Работа со однонаправленной очередью

Работа с однонаправленной очередью аналогична работе со стеком за ис-

ключением того, что данные помещаются в конец списка, а извлекаются из

начала.

Пример 17.2. Работа с однонаправленной очередью.

struct TNode {

 int inf; // Информационная часть структуры

 TNode* a; // Адресная часть структуры

};

struct queue {

 TNode* front = nullptr; // Указатель на начало очереди

 TNode* back = nullptr; // Указатель на конец очереди

 bool empty() { // Проверка наличия элементов в очереди

 if (front) return false;

 else return true;

 }

 void push(int inf) { // Добавление элемента в очередь

 TNode* spt = new TNode;

 spt->inf = inf;

 spt->a = nullptr;

 // Если элементы отсутствуют

 if (!front) front = back = spt;

 else {

 back->a = spt;

 back = spt;

 }

 }

 void pop() { // Удаление элемента из очереди

 TNode* spt = front;

 front = front->a;

 delete spt;

 if (!front) back = nullptr;

 }

 113

 void print() { // Вывод элементов очереди на экран

 TNode* spt = front;

 while (spt != nullptr) {

 cout << spt->inf << " ";

 spt = spt->a;

 }

 }

};

int main() {

 queue s;

 s.push(4);

 s.push(2);

 s.push(1);

 s.push(6);

 s.push(9);

 s.print(); // Выводит: 4 2 1 6 9

 while (!s.empty()) s.pop();

 if (s.empty()) cout << "Queue is empty";

}

17.4. Работа с двусвязанными списками

Двусвязанный список состоит из структур, содержащих поля для хранения

адресов предыдущего и последующего элементов. Такая организация позволяет

осуществлять перемещение по списку в любом направлении.

Пример 17.3. Работа с двусвязанным списком.

struct TNode {

 int inf; // Информационная часть структуры

 TNode* left; // Адресная часть

 TNode* right; // Адресная часть

};

struct list {

 TNode* front = nullptr; // Указатель на начало очереди

 TNode* back = nullptr; // Указатель на конец очереди

 114

 bool empty() { // Проверка наличия элементов в очереди

 if (front) return false;

 else return true;

 }

 void push(int inf) { // Добавление элемента в очередь

 TNode* spt = new TNode;

 spt->inf = inf;

 spt->right = nullptr;

 if (!front) {

 spt->left = nullptr;

 front = back = spt;

 return;

 }

 back->right = spt;

 spt->left = back;

 back = spt;

 }

 void pop() { // Удаление элемента из очереди

 TNode* spt = front;

 front = front->right;

 delete spt;

 if (!front) back = nullptr;

 else

 front->left = nullptr;

 }

 void print() { // Вывод элементов очереди на экран

 TNode* spt = front;

 while (spt != nullptr) {

 cout << spt->inf << " ";

 spt = spt->right;

 }

 }

 TNode* search(int x) { // Поиск элемента с заданным ключом

 if (!front) return nullptr;

 115

 TNode* spt = front;

 while (spt->inf != x && spt->right != nullptr) spt = spt->right;

 if (spt->inf == x) return spt;

 else return nullptr;

 }

 void del(int x) { // Удаление элемента с заданным ключом

 TNode* spt = search(x);

 if (!spt) return;

 if (front == back) {

 front = nullptr;

 back = nullptr; }

 else

 if (!spt->left) {

 front = spt->right;

 front->left = nullptr;

 }

 else

 if (!spt->right) {

 back = spt->left;

 back->right = nullptr; }

 else {

 spt->right->left = spt->left;

 spt->left->right = spt->right;

 }

 delete spt;

 }

 // Добавление элемента после заданного

 void pushleft(TNode* spp, int inf) {

 TNode* spt = new TNode;

 spt->inf = inf;

 spt->right = spp->right;

 spt->left = spp;

 spp->right = spt;

 if (spt->right) spt->right->left = spt;

 }

};

 116

int main() {

 list s;

 s.push(4);

 s.push(2);

 s.push(1);

 s.push(6);

 s.push(9);

 s.print(); // Выводит: 4 2 1 6 9

 s.del(6);

 s.print(); // Выводит: 4 2 1 9

 s.pushleft(s.search(2), 7);

 s.print(); // Выводит: 4 2 7 1 9

 while (!s.empty()) s.pop();

}

17.5. Работа с двусвязанными циклическими списками

Циклические списки – одно- или двунаправленные очереди, в которых по-

следний элемент указывает на начало очереди (рис. 16.1). Понятия начала и

конца очереди здесь не имеют смысла, достаточно знать адрес любого элемента

очереди.

Рис. 16.1

 117

18. Нелинейные списки

18.1. Древовидные структуры данных

Рассмотрим древовидную структуру данных (рис. 18.1).

Рис. 18.1

Все данные называются узлами.

Связи между узлами называется ветвями.

Самый верхний узел – корень дерева (а).

Узлы, из которых не выходят связи, – листья дерева (f, g, h, i).

Узел, находящийся непосредственно над другим, называется родитель-

ским узлом (для узла d узел b является родительским). Узел, находящийся

непосредственно ниже, называется дочерним (для узла b узел d является до-

черним).

Все узлы, находящиеся выше рассматриваемого, являются его предками

(для узла d предки b и a), а все узлы, находящиеся ниже, – потомками (для узла b

потомки – d, f, g, h).

Узлы, имеющие одного и того же родителя, называются сестринскими (f,

g, h).

Узел, не являющийся листом, называется внутренним (b, или d, или с,

или а).

Порядок узла (или степень узла) – количество дочерних узлов (для узла b

порядок 1, для узла d порядок 3).

Степень дерева – это максимальный порядок его узлов (рассматриваемое

дерево имеет третий порядок). Дерево второй степени называется бинарным

или двоичным.

Глубина узла – число предков плюс единица (например, для узла d глубина

равна 3).

Глубина дерева – наибольшая глубина всех узлов (для данного дерева – 4).

 118

18.2. Использование древовидных структур

Для работы с древовидными структурами используется следующая кон-

струкция рекурсивного типа:

struct ttree

 {

 tinf inf;

 ttree *a1;

 ttree *a2;

…

 ttree *an;

 } *proot, *p;

Рассмотрим размещение в памяти структуры, приведенной на рис. 18.1:

ttree *proot, *p;

 proot = new ttree;

 proot->inf = 'a'; proot->a2 = nullptr;

 p = proot;

 p->a1 = new ttree;

p = p->a1;

p->inf = 'b'; p->a2 = nullptr; p->a3 = nullptr;

p->a1 = new ttree;

p = p->a1;

 p->inf = 'd';

p->a1 = new ttree;

 p->a1->inf = 'f'; p->a1->a1 = nullptr; p->a1->a2 = nullptr;

p->a1->a3 = nullptr;

p->a2 = new ttree;

 p->a2->inf = 'g'; p->a2->a1 = nullptr; p->a2->a2 = nullptr;

p->a2->a3 = nullptr;

p->a3 = new ttree;

 p->a3->inf = 'h'; p->a3->a1 = nullptr; p->a3->a2 = nullptr;

p->a3->a3 = nullptr;

 p = proot;

p->a3 = new ttree;

 p = p->a3;

 p->inf = 'c'; p->a1 = nullptr; p->a2 = nullptr;

p->a3 = new ttree;

 p = p->a3;

 p->inf = 'i'; p->a1 = nullptr; p->a2 = nullptr; p->a3 = nullptr;

 119

Как видно из приведенного выше фрагмента программы, непосредствен-

ное заполнение даже небольшого дерева требует довольно громоздкой последо-

вательности команд. Поэтому для работы с деревьями используют набор специ-

фических алгоритмов.

Обходом дерева называется последовательное обращение ко всем его уз-

лам. Следующая рекурсивная процедура осуществляет такой обход с выводом

каждого узла:

void obh(ttree *p) // Обход всего дерева

{

 if (p == nullptr) return;

 // Вывод при прямом обходе

 obh (p->a1);

 obh (p->a2);

 obh tree(p->an);

// Вывод при обратном обходе

}

Прямой обход: a b d f g h c i.

Обратный обход: f g h d b i c a.

18.3. Двоичное дерево поиска

Если ключевые поля в дереве расположены таким образом, что для любого

узла значение ключа у левого преемника меньше, чем у правого, то такое дерево

называется двоичным деревом поиска (Binary Search Tree). Предположим, что име-

ется набор данных, упорядоченных по ключу: key: 1, 5, 6, 9, 14, 21, 28, 32, 41. Для

таких данных двоичное дерево поиска выглядит следующим образом (рис. 18.2).

Рис. 18.2

 120

Дерево, у которого узлы, имеющие только одну дочь, располагаются не

выше двух последних уровней, называется сбалансированным деревом или

AVL-деревом (Г. М. Адельсон-Вельский и Э. М. Ландис). Эффективность по-

иска информации в такой динамической структуре данных сравнима с эффектив-

ностью двоичного поиска в массиве (О(log2n)).

AVL-дерево считается сбалансированным, если для любого узла глубина

левого поддерева отличается от глубины правого поддерева не более чем на еди-

ницу. Разница глубин называется коэффициентом сбалансированности

(balance factor). Дерево считается сбалансированным, если коэффициент равен

одному из трех значений: –1, 0 и 1.

После добавления нового элемента дерево может стать разбалансирован-

ным. Существует четыре варианта разбалансировки дерева (рис. 18.3).

 а б в г

Рис. 18.3

Балансировка выполняется с помощью действий, называемых вращениями

узлов.

В случаях а и б, c нарушенной балансировкой, достаточно одного враще-

ния (малого левого или малого правого).

Малое правое вращение осуществляется так, как показано на рис. 18.4.

Рис. 18.4

Малое левое вращение осуществляется аналогично, но в другую сторону.

Новый
узел Новый

узел
Новый
узел

Новый
узел

2

2 1

1

1 2

A

A
A

B

B B

C

C

C

-1

-2 0

0

-1 0

 121

В случаях в и г, c нарушенной балансировкой, требуется двойное левое-

правое или правое-левое вращение. Такие вращения называются большим пра-

вым и большим левым.

Большое правое вращение осуществляется так, как показано на рис. 18.5.

Рис. 18.5

Большое левое вращение осуществляется аналогично, но в другую сторону.

Алгоритм балансировки при удалении такой же, как и при добавлении

узла.

Удаление узла дерева, осуществляется с учетом возможных вариантов его

размещения:

1. Если удаляется узел, не имеющий потомков (лист), то дополнительных

измененией в дерево вносить не требуется (рис. 18.6).

Рис. 18.6

2

2 3

2

3

3

1

1 1

D

D D

C

C
C

B

B B

0

1 -1

0

1 -1

-1

-2 -2

12
3

DCB

-1-1

0

 122

2. Если удаляется узел, имеющий только один дочерний узел (слева или

справа). Удаляемый узел заменяется этим дочерним узлом (рис. 18.7).

Рис. 18.7

3. Если удаляется узел, имеющий два дочерних узла, то удаляемый узел

заменяется узлом, имеющим наибольший ключ в левом поддереве либо наимень-

ший ключ в правом поддереве (рис. 18.8).

Рис. 18.8

Пример 18.1. Работа с двоичным деревом поиска.

struct TNode // Узел

{

 int inf; // Информационная часть

 TNode* left = nullptr; // Адресная часть

 TNode* right = nullptr; // Адресная часть

 int depth = 1; // Глубина поддерева

};

 123

int dph(const TNode* p) // Чтение глубины поддерева

{

if (!p) return 0; // Если поддерево отсутствует

 return p->depth;

}

int bfactor(const TNode* p) // Вычисление разбалансированности

{

return dph(p->right) - dph(p->left);

}

void maxdepth(TNode* p) // Вычисление глубины поддерева

{

 int l = dph(p->left);

 int r = dph(p->right);

if (l > r) p->depth = l + 1;

 else p->depth = r + 1;

}

TNode* rotateright(TNode* root) // Правый поворот вокруг p

{

 TNode* p = root->left;

 root->left = p->right;

 p->right = root;

 maxdepth(root);

 maxdepth(p);

 return p;

}

TNode* rotateleft(TNode* root) // Левый поворот вокруг q

{

 TNode* p = root->right;

 root->right = p->left;

 p->left = root;

 maxdepth(root);

 maxdepth(p);

 return p;

}

 124

TNode* AVL(TNode* p) // Балансировка узла p

{

 maxdepth(p); // Вычисление глубины поддерева

 if (bfactor(p) == 2) // Если требуется балансировка

 {

 if (bfactor(p->right) < 0) p->right = rotateright(p->right);

 return rotateleft(p);

 }

 if (bfactor(p) == -2) // Если требуется балансировка

 {

 if (bfactor(p->left) > 0) p->left = rotateleft(p->left);

 return rotateright(p);

 }

 return p; // Балансировка не требуется

}

TNode* push(TNode* p, int key) // Добавление нового элемента

{

 if (!p) {

 p = new TNode;

 p->inf = key;

 return p;

 }

 if (key < p->inf) p->left = push(p->left, key);

 else p->right = push(p->right, key);

 return AVL(p);

}

TNode* find_max(TNode* p) // Поиск узла с минимальным ключом

{

 TNode* q = p;

 while (q->right != nullptr) q = q->right;

 return q;

}

TNode* find_min(TNode* p) // Поиск узла с минимальным ключом

{

 TNode* q = p;

 125

 while (q->left != nullptr) q = q->left;

 return q;

}

// Отключение узла с максимальным ключом из поддерева

TNode* removemin(TNode* p)

{

 if (!p->right) return p->left;

 p->right = removemin(p->right);

 return AVL(p);

}

TNode* pop(TNode* p, int key) // Удаление узла с ключом k

{

 if (!p) return nullptr; // Ключ не обнаружен

 if (key < p->inf) p->left = pop(p->left, key);

 else

 if (key > p->inf) p->right = pop(p->right, key);

 else { // Ключ найден

 TNode* q = p->left;

 TNode* r = p->right;

 delete p;

 if (!r) return q;

 TNode* rep = find_max(q);

 rep->left = removemin(q);

 rep->right = r;

 return AVL(rep);

 }

 return AVL(p);

}

TNode* pop(TNode* p) // Удаление всего дерева

{

 if (!p) return nullptr;

 pop(p->left);

 pop(p->right);

 delete(p);

}

 126

TNode* search(TNode* p, int key) // Поиск по ключу

{

 TNode* q = p;

 while (q)

 {

 if (q->inf == key) return q;

 if (key < q->inf) q = q->left;

 else q = q->right;

 }

 return q;

}

void prints(TNode* p) // Симметричный обход дерева

{

 if (!p) return;

 prints(p->left);

 cout << p->inf << " ";

 prints(p->right);

}

bool empty(TNode* p) { // Проверка наличия элементов в дереве

 if (p) return false;

 else return true;

}

void print(TNode *p, int r = 0) // Вывод дерева на экран

{

 if (!p) return;

cout << setiosflags(ios::right);

 print(p->right, r + 5);

 cout << setw(r) << p->inf << endl;

 print(p->left, r + 5);

}

int main() {

 TNode* root = nullptr; const int n = 10;

 for (int i = 1; i < n; i++) root = push(root, i*2);

 127

 print(root); // Выводит дерево

 root = pop(root, 4); // Удаляет узел с ключом 4

 root = pop(root, 8); // Удаляет узел с ключом 8

 print(root); // Выводит дерево

 TNode* q = search(root, 12); // Поиск элемента с ключом 12

 if (q) cout <<"Element = " << q->inf << endl;

 else cout << "Not found" << endl;

 root = pop(root); // Удаление дерева

 if (empty(root)) cout << "Tree removed";

 else cout << "Tree exists";

}

 128

19. Синтаксический анализ

арифметических выражений

Выражения в математике обычно записываются в инфиксной форме,

например (a + b) * (k – d). Однако для компьютерной обработки такая форма не

удобна, так как при вычислениях необходимо учитывать приоритет операций,

который к тому же может быть изменен с помощью скобок.

Имеются эквивалентные формы записи:

– префиксная (знак операции ставится перед операндами, например

*+ab-kd);

– постфиксная (знак операции ставится после операндов, например

ab+kd-*).

Наиболее удобной для программирования является использование пост-

фиксной формы представления арифметических выражений, предложенной

польским математиком Я. Лукашевичем. Такая форма записи арифметических

выражений получила название обратной польской записи (ОПЗ). Удобство ис-

пользования ОПЗ состоит в том, что при записи выражений скобки не нужны, а

полученная последовательность операндов и операций удобна для расшифровки.

19.1. Алгоритм преобразования выражения в форму ОПЗ

Алгоритм преобразования выражений из инфиксной формы в форму ОПЗ

(алгоритм Дейкстры) заключается в следующем. Строка последовательно про-

сматривается слева направо. Имеются выходная строка и стек для временного

хранения символов. Операнды добавляются в выходную строку, а остальные

символы обрабатываются следующим образом:

1. Если текущий символ – знак операции, а стек пуст, то операция записы-

вается в стек.

2. Если текущий символ − открывающая скобка, то она записывается в

стек.

3. Если текущий символ − закрывающая скобка, из стека извлекаются в

выходную строку все элементы до открывающей скобки. Открывающая скобка

удаляется из стека, но в выходную строку не добавляется.

4. Если текущий символ – знак операции и стек не пуст, то из стека в вы-

ходную строку переносятся все операции с большим или равным приоритетом.

Знак текущей операции помещается в стек.

5. После просмотра всех символов в строке знаки операций, оставшиеся в

стеке, помещаются в выходную строку.

Алгоритм вычисления выражения, записанного в форме ОПЗ, основан на

использовании стека. При просмотре выражения слева направо значения операн-

дов заносятся в стек. Если найден знак операции, то из стека извлекаются два

операнда, к которым применяется найденная операция. Результат заносится в

стек. После выполнения всех операций в стеке остается одно значение − резуль-

тат вычисления арифметического выражения.

 129

Пример 19.1. Программа для вычисления арифметических выражений.

int Priority(char ch) { // Вычисление приоритета операции

 switch (ch) {

 case '+' : case '-' : return 1;

 case '*' : case '/' : return 2;

 case '^' : return 3;

 default : return 4; // Операнд

 }

}

int Op(int ch) { // Определение типа символа

 if (isdigit(ch)) return 1; // Если цифра

 else

 if (isalpha(ch)) return 2; // Если буква

 else

 if ((ch == '(' || ch == ')' || ch == '+' || ch == '-' ||

 ch == '*' || ch == '/' || ch == '^')) return 3; // Если знак операции

 return 4;

}

struct TTree // Объявление дерева

{

 char key[9];

 TTree* left = nullptr;

 TTree* right = nullptr;

};

struct TNode // Объявление стека

{

 double inf;

 TNode* a = nullptr;

};

struct TSA // Синтаксический анализ

{

char Mstr[30][10]; // Массив для хранения операторов и операндов

char st[30]; // Арифметическое выражение

TTree* Tree = nullptr;

 130

TNode* top = nullptr;

int nel, n;

void push(double inf) { // Добавление элемента в стек

 TNode* spt = new TNode;

 spt->inf = inf;

 spt->a = top;

 top = spt;

}

double pop() { // Извлечение элемента из стека

 double inf = top->inf;

 TNode* spt = top;

 top = top->a;

 delete spt;

 return inf;

}

void inputstr() { // Ввод уравнения

 cout << "Введите уравнение: ";

 gets_s(st, 30); n = strlen(st); // Длина строки

}

TTree* MakeTree(int n, int m) { // Построение дерева

 // Если в строке остался один операнд

 TTree* nl = new TTree;

 if (n == m) {

 strcpy_s(nl->key, _countof(nl->key), Mstr[n]);

 return nl;

 }

 // Если в строке имеется несколько операндов

 int nm=0, prt, priormin = 4, sk = 0;

 for (int i = n; i <= m; i++) {

 char ch = Mstr[i][0]; // Первый символ операнда

 if (ch == '(') sk++; // Если открывающая скобка

 else

 if (ch == ')') sk--; // Если закрывающая скобка

 else

 if (sk == 0) {

 131

 prt = Priority(ch); // Приоритет операции (4 - не операция)

// Определ. операции с минимальным приоритетом

 if (prt <= priormin)

 {

 priormin = prt;

 nm = i;

 }

} }

 if (priormin == 4 && Mstr[n][0] == '(' && Mstr[m][0] == ')')

 return MakeTree(n + 1, m - 1); // Обработка выражения в скобках

 strcpy_s(nl->key, _countof(nl->key), Mstr[nm]);

 nl->left = MakeTree(n, nm - 1);

 nl->right = MakeTree(nm + 1, m);

 return nl;

}

void rasAV(TTree* nl) { // Расчет арифметического уравнения

 if (!nl) return; // Выход из рекурсии

 rasAV(nl->left);

 rasAV(nl->right);

 if (Op(nl->key[0]) != 3) { // Если операнд

 cout << "Введите значение переменной:" << nl->key << endl;

 double p; cin >> p;

 push(p);

 }

 else { // Если операция

 double x1 = pop();

 double x2 = pop();

 switch (nl->key[0]) {

 case '+': push(x1 + x2); break;

 case '-': push(x2 - x1); break;

 case '*': push(x2 * x1); break;

 case '/': push(x2 / x1); break;

 case '^': push(pow(x2, x1)); break;

 };

 }

 delete(nl);

}

 132

void MakeTerm() // Получение массива операндов и операций

{

 nel = 0;

 for (int i = 0; i < n;) {

 Mstr[nel][0] = '\0';

 int nc = 0;

 switch (Op(st[i])) {

 case 1: while (isdigit(st[i]) || st[i] == '.')

Mstr[nel][nc] = st[i++];

Mstr[nel][++nc] = '\0';

 break;

 case 2: while (isalpha(st[i]) || isdigit(st[i]))

{ Mstr[nel][nc] = st[i++];

 Mstr[nel][++nc] = '\0'; }

strcpy_s(Mstr[nel], 10, Mstr[nel]);

 break;

 case 3: Mstr[nel][nc] = st[i++];

 Mstr[nel][++nc] = '\0';

 break;

 default: i++; nel--;

 }

 nel++;

 }

}

void print(TTree* p, int r = 0) {

 if (!p) return;

 cout << setiosflags(ios::right);

 print(p->right, r + 5);

 cout << setw(r) << p->key << endl;

 print(p->left, r + 5);

}

void outd() {

 for (int i = 0; i < nel; i++)

 cout << Mstr[i] << endl;

}

}; // Конец TSA

 133

int main() {

 system("chcp 1251");

 TSA av;

 av.inputstr();

 av.MakeTerm();

 av.outd();

 av.Tree = av.MakeTree(0,av.nel-1);

 cout << endl << "Дерево : " << endl;

 av.print(av.Tree);

 av.rasAV(av.Tree); // Расчет

 cout << endl << "Результат = " << av.pop();

}

 134

ЛАБОРАТОРНЫЙ ПРАКТИКУМ

Лабораторная работа 1. Программирование линейных алгоритмов

Вычислить значение выражения при заданных исходных данных. Срав-

нить полученное значение с указанным правильным результатом.

1.
2

2
2

2
2cos

3
1

1 3 / 5sin
2

x
z

s
zy

 
−    = + 

− +

при x = 14.26; y = –1.22; z = 3.5·
210−
. Ответ: s = 0.749155.

2.
23

3

2 2

9 ()
e tg

2

x yx y
s z

x y

−+ −
= −

+ +

при x = –4.5; y = 0.75·
410−
; z = –0.845

210 . Ответ: s = –3.23765.

3.
()2

2

2 2

1 sin 1
cos arctg

2

1

yx y
s x

zy
x

x y

+ +  
= +  

 
−

+

при x = 3.74
210− ; y = –0.825; z = 0.16

210 . Ответ: s = 1.05534.

4. ()2 2 3 4
1 2sin

cos cos 1
2 3 4

y z z z
s x y z

+  
= − + + + +  

 

при x = 0.4
410 ; y = –0.875; z = –0.475

310− . Ответ: s = 1.98727.

5.
2ln sin (arctg)

2

x y
s y x z

−   
= − +  

  

при x = –15.246; y = 4.642
210− ; z = 21. Ответ: s = –182.038.

6. () ()2 2310 arcsinys x x z x y+= + − −

при x = 16.55
310− ; y = –2.75; z = 0.15. Ответ: s = –40.6307.

7.

2

2

31
5 arctg arccos

4

x x y x
s x x

x y z x

+ − +
=  − 

− +

при x = 0.1722; y = 6.33; z = 3.25
410− . Ответ: s = –205.306.

8.
6 23

e
ln

arctg arctg

x yx y
x y

s x y
x z

+−
−

= + +
+

при x = –2.235
210− ; y = 2.23; z = 15.221. Ответ: s = 39.3741.

 135

9. ()
()

()
3

2

cos

1

y

x

z
y

y xy
s x y x

x y x

−
−

= − + −
+ −

при x = 1.825
210 ; y = 18.225; z = –3.298

210− . Ответ: s = 1.21308.

10.
3 1 / sin42 ex x zs x y− −= +

при x = 3.981
210− ; y = –1.625

310 ; z = 0.512. Ответ: s = 1.26185.

11.
()3

3 2cos sin
1

e
2

x

x y

y z
s y x y

x x y−

 
= +  − +  + +

при x = 6.251; y = 0.827; z = 25.001. Ответ: s = 0.712122.

12.
() ()

2

1
arctg

3
2 3

1

1

yy
x

x y z

s

x
y

 
− 

 = + −

+
+

при x = 3.251; y = 0.325; z = 0.466
410− . Ответ: s = 4.23655.

13.
()

34

2

1

sin tg

y x
s

x y z z

+ −
=

− +

при x = 17.421; y = 10.365
310− ; z = 0.828

510 . Ответ: s = 0.330564.

14. ()
1

1 / sin

3

2 1
22 3

x
z

y
x

y
s x

x yy

+
−

+
= + +

+− +

при x = 12.3
110− ; y = 15.4; .z = 0.252

310 . Ответ: s = 82.8256.

15. ()
2 31 1e

1
1 tg 2 3

y y y x y xx
s y x

x y z

+ − − −+
= + − + −

+ −

при x = 2.444; y = 0.869
210− ; z = –0.13

310 . Ответ: s = –0.498707.

Пример выполнения лабораторной работы

Условие: написать программу для вычисления линейного арифметиче-

ского выражения
2 1

4e
10 ln

1 tg

y yx
h x z

x y z

−+
= +  −

+ −
.

При x = 5.6, y = 8.9410-2, z = 0.2310-3. Ответ: h = 24.9365.

 136

Текст программы:

#include <iostream>

#include <cmath>

using namespace std;

int main()

{

 system("chcp 1251");

 double x, y, z, h;

 cout << "Введите x: ";

 cin >> x;

 cout << "Введите y: ";

 cin >> y;

 cout << "Введите z: ";

 cin >> z;

 double a = pow(x, 2 * y) + exp(y - 1);

 double b = 1 + x * fabs(y - tan(z));

 double c = 10 * pow(x, 1 / 4.) - log(z);

 h = a / b + c;

 cout << "Результат = " << h << endl;

}

 Данные с клавиатуры вводятся в экспоненциальной форме. Напри-

мер, число 0.2310-3 вводится:

0.23e-3

Лабораторная работа 2. Программирование

разветвляющихся алгоритмов

Вычислить значение в соответствии с номером варианта. Предусмот-

реть возможность выбора вида функции f(x): cos(x), x2 или ex. Вывести на экран

информацию о выполняемой ветви вычислений.

1.

2 3

2

2 3

(()) () , 0;

(()) sin , 0;

(()) .

 + + 



= + + 


+ +

f x y f x xy

a f x y x xy

f x y y иначе

 137

2.

4

2

2 3

ln(()) () , / 0;

ln () / , / 0;

(()) .

 + =



= − 


+

f x f x x y

b f x y y x y

f x y иначе

3.

2 3

2

2

() sin , 0;

(()) ln , 0;

(()) tg .

 + + − =


= − + − 


− +

f x y x x y

c f x y x x y

y f x y иначе

4.

3

3

3

() , ;

(()) sin , ;

() .

 + − 



= − + =


+ −

f x x tg y x y

d y f x y x y

y x f x иначе

5.

2

sin(()) / 3, 0;

ln () , 7 10;

2 .

 =


= −  


−

f x xy

e y f x xy

tg x y иначе

6.

() 3

2 2

2 3

e , / 0;

ln(), 5 / 0;

2 () .

− + =


= − + −  


−

f x y x x y

g x y x x y

f x y иначе

7.

2

3

2

sin (), 0;

, 0;

3 () .

 − + =


= + 



x f x x y

s xy x y

f x иначе

8.

2

3 2

/ , 0;

cos (), 0;

sin(cos(2 ())) .

 + =


= − + 



x y x y

b y f x x y

f x иначе

9.

2

2

2

2sin (ln), 0;

tg(), 5 0;

() 9 .

 =


= − −  


+ −

x y

l y x y

x f x иначе

 138

10.
()

3

ln(()), 10;

e , 10;

() .

+

 + 


= 


+

f x y

f x y xy

k xy

f x y иначе

11.

2

2 () 2

tg (), 0;

e , 0 10;

ln 2 () .

 − =


= −  
 +

f x

x f x xy

w y xy

y f x иначе

12.

2 2

2

sin , () 0;

tg (), () 0;

2 () sin .

   =


= +  
 −


y x y f x

g x f x y f x

f x y иначе

13.

2

2

ln (), () 10;

2 10 sin , () 10;

() .

 −  =


= −  


+

x f x y f x

q y x y f x

y f x иначе

14.

2

2 2

2

sin ln , 0;

tg (()), 2 7;

() / 2 .

 + =


=  


+

x y x y

u f x x y

f x x иначе

15.

3

2

() , 2 / 0;

sin , 2 / 0;

4 tg() .

 −  =


= −  
 −


f x xy x y

w x y x y

y x иначе

Лабораторная работа 3. Программирование циклических алгоритмов

Вывести на экран таблицу значений функции y(x) и ее разложения в ряд s(x)

для x, изменяющегося от a до b с шагом h = (b – a) / 17. Задание выбрать в со-

ответствии с номером варианта в табл. Л.1.

Таблица Л.1

Вари-

ант
a b Функция Разложение функции в ряд Тейлора k

1 0.1 1 () siny x x=
2 1

0

() (1)
(2 1)!

nk
n

n

x
s x

n

+

=

= −
+

 160

2 0.1 1 ()y x = ch x

2

0

()
(2)!

nk

n

x
s x

n=

=  100

 139

Окончание табл. Л.1

Вари-

ант
a b Функция Разложение функции в ряд Тейлора k

3 0.1 1 sin() ex xy x =
0

(sin)
()

!

nk

n

x x
s x

n=

=  120

4 0.1 1 () cosy x x=
2

0

() (1)
(2)!

nk
n

n

x
s x

n=

= − 80

5 0.1 1
sin

()
x

y x
x

=
2

0

() (1)
(2 1)!

nk
n

n

x
s x

n=

= −
+

 140

6 0.1 1 ()y x = sh x

2 1

0

()
(2 1)!

nk

n

x
s x

n

+

=

=
+

 80

7 0.1 1 2e() e
x

y x −=
0

2 (e)
()

!

n x nk

n

s x
n=

−
=  120

8 0.1 1 () 5xy x =
0

ln 5
()

!

n nk

n

x
s x

n=

=  100

9 0.1 1
2() e xs x =

0

(2)
()

!

nk

n

x
s x

n=

=  140

10 0.1 0.5
2() exy x x=

2

()
(2)!

nk

n

x
s x

n=

=
−

 150

11 0.1 1 () siny x x x=
2 2

0

() (1)
(2 1)!

nk
n

n

x
s x

n

+

=

= −
+

 100

12 0.1 1
cos() e xy x =

0

cos
()

!

nk

n

x
s x

n=

=  80

13 –2 –0.1 () cosy x x x=
2 1

0

() (1)
(2)!

nk
n

n

x
s x

n

+

=

= − 140

14 0.2 0.8
1() 3xy x −=

0

(1) ln 3
()

!

n nk

n

x
s x

n=

−
=  100

15 0.1 0.8 ()y x = cos 2x

2

0

() (4)
(2)!

nk
n

n

x
s x

n=

= − 180

 140

Лабораторная работа 4. Использование одномерных массивов

Ввести с клавиатуры размер массива, выделить необходимый объем па-

мяти для хранения элементов массива и ввести исходные данные. Выполнить

задание, результат вывести на экран.

1. Задан массив целых чисел. Удалить все элементы, имеющие значение

больше, чем среднее арифметическое значение элементов массива.

2. Задан массив целых чисел. Преобразовать массив следующим образом:

все отрицательные элементы массива перенести в начало, а все остальные – в ко-

нец, сохранив исходное взаимное расположение как среди отрицательных, так и

среди положительных элементов.

3. Задан массив целых чисел. Найти число, наиболее часто встречающееся

в этом массиве.

4. Задан массив целых чисел. Найти числа, входящие в массив не более

одного раза.

5. Задан массив действительных чисел. Сдвинуть элементы массива цикли-

чески на n позиций вправо, если n – положительное число, и влево, если n – отри-

цательное число (значение n задается с клавиатуры).

6. Задан массив целых чисел. Удалить из массива все числа, встречающи-

еся в массиве более одного раза.

7. Задан массив действительных чисел. Переставить в обратном порядке

элементы, расположенные между первым положительным и последним отрица-

тельным элементами массива.

8. Задан массив целых чисел. Удалить все элементы, стоящие до элемента

с максимальным значением.

9. Задан массив действительных чисел. Определить количество различных

элементов в массиве.

10. Задан массив целых чисел. Найти наименьший положительный элемент

среди элементов с четными индексами массива.

11. Задан массив действительных чисел. Перенести максимальный элемент

в нулевую позицию, а минимальный – в последнюю позицию массива. Взаимное

расположение остальных элементов не должно изменяться.

12. Задан массив действительных чисел. Удалить все положительные эле-

менты, у которых справа находится отрицательный элемент.

13. Задан массив целых чисел. Удалить из массива минимальный и макси-

мальный элементы.

14. Задан массив действительных чисел. Найти сумму элементов, располо-

женных между минимальным и максимальным элементами массива.

15. Задан массив целых чисел. Найти произведение элементов, расположен-

ных между последним и предпоследним положительными элементами массива.

 141

Лабораторная работа 5. Использование двумерных массивов

Ввести с клавиатуры количество строк и столбцов массива, выделить не-

обходимый объем памяти для хранения элементов массива и ввести исходные

данные. Выполнить задание, результат вывести на экран.

1. Задана матрица размером N × M. Определить количество различных эле-

ментов матрицы (т. е. повторяющиеся элементы считать один раз).

2. Задана матрица размером N × M. Поменять местами строку, содержащую

максимальный элемент, и строку, содержащую минимальный элемент.

3. Задана матрица размером N × M. Вывести все элементы, являющиеся мак-

симальными в своем столбце и одновременно минимальными в своей строке.

4. Задана матрица размером N × M. Получить одномерный массив, каждый

элемент которого будет содержать значение 0, если строка матрицы с таким же

номером упорядочена по возрастанию, или значение 1 в противном случае.

5. Задана матрица размером N × M. Удалить строку матрицы, содержащую

элемент с максимальным значением.

6. Задана матрица размером N × M. Определить количество «особых» эле-

ментов матрицы, считая элемент «особым», если он меньше суммы остальных

элементов соответствующей строки.

7. Задана матрица размером N × M. Поменять местами столбец, содержа-

щий элемент с минимальным значением, и столбец, содержащий элемент с мак-

симальным значением.

8. Задана матрица размером N × M. Упорядочить ее строки по убыванию

их максимальных элементов.

9. Задана матрица размером N × M. Поменять местами строку, содержащую

элемент с максимальным значением, и строку, содержащую элемент с минималь-

ным значением.

10. Задана матрица размером N × M. Упорядочить ее столбцы по возраста-

нию их наименьших элементов.

11. Задана матрица размером N × M. Удалить столбец матрицы, содержа-

щий элемент с минимальным значением.

12. Задана матрица размером N × M. Получить одномерный массив, занося

в ячейку значение 0, если строка матрицы с таким же номером содержит хотя бы

один нулевой элемент, или 1 в противном случае.

13. Задана матрица размером N × M. Удалить строку с максимальной сум-

мой элементов.

14. Задана матрица размером N × M. Определить количество «особых» эле-

ментов матрицы, считая элемент «особым», если он больше суммы остальных

элементов соответствующего столбца.

15. Задана матрица размером N × M. Упорядочить строки по возрастанию

суммы их элементов.

 142

Лабораторная работа 6. Программирование с использованием строк

Ввести нуль-терминальную строку с клавиатуры. Выполнить задание, ре-

зультат вывести на экран.

1. Дана строка символов, состоящая из произвольных десятичных цифр.

Числа в строке отделены друг от друга одним или несколькими пробелами. Уда-

лить из строки четные числа.

2. Заменить в строке все группы подряд расположенных пробелов на один

пробел.

3. Дана строка, состоящая из нулей и единиц. Удалить все группы, состоя-

щие из трех нулей.

4. Вставить слово Visual между вторым и третьим словом строки. Слова в

строке разделены одним или несколькими пробелами.

5. Поменять местами первое и второе слова строки. Слова в строке разде-

лены одним или несколькими пробелами.

6. Удалить из строки слова, содержащие четное количество символов.

Слова в строке разделены одним или несколькими пробелами.

7. Дана строка символов, состоящая из произвольных десятичных цифр.

Числа в строке отделены друг от друга одним или несколькими пробелами. Вы-

вести на экран числа этой строки в порядке возрастания их значений.

8. Дана строка, состоящая из нулей и единиц. Вывести группу с максималь-

ным количеством одинаковых символов.

9. Вывести на экран порядковый номер слова максимальной длины и номер

позиции в строке, с которой оно начинается. Слова в строке разделены одним

или несколькими пробелами.

10. Удалить из строки предпоследнее слово. Слова в строке разделены од-

ним или несколькими пробелами.

11. Вывести слова, которые начинаются и заканчиваются одной и той же

буквой. Слова в строке разделены одним или несколькими пробелами.

12. Заменить в строке все слова С на С++. Слова в строке разделены одним

или несколькими пробелами.

13. Дана строка, состоящая из нулей и единиц. Вывести на экран группы

единиц с максимальным и минимальным количеством символов.

14. Удалить из строки слова, содержащие символ 'w'. Слова в строке раз-

делены одним или несколькими пробелами.

15. Дана строка, состоящая из нулей и единиц. Подсчитать количество

групп с пятью единицами.

Лабораторная работа 7. Программирование с использованием структур

Объявить структуру с заданными полями. Динамически выделить память

для хранения списка. Ввести данные. Выполнить задание, результат вывести

на экран.

 143

1. Имеется список участников спортивных соревнований. Каждый элемент

списка содержит следующую информацию: название команды, фамилия спортс-

мена, номер телефона, возраст, рост и вес. Вывести в алфавитном порядке фами-

лии спортсменов, возраст которых менее 18 лет.

2. У администратора железнодорожных касс хранится информация о сво-

бодных местах в поездах. Каждый элемент списка содержит следующую инфор-

мацию: номер поезда, время отправления, пункт назначения, число свободных

мест. Вывести информацию о поездах, которые следуют до Бреста, в порядке

убывания количества свободных мест.

3. Имеется список товаров, хранящихся на складе. Каждый элемент списка

содержит следующую информацию: наименование, артикул, количество, цена.

Вывести в алфавитном порядке информацию о товарах, количество которых на

складе больше 10 и меньше 100 шт.

4. В аэропорту имеется список пассажиров, зарегистрировавшихся на рейс.

Каждый элемент списка содержит следующую информацию: фамилия, номер

билета, вес багажа. Вывести в алфавитном порядке фамилии пассажиров, вес ба-

гажа которых превышает 20 кг.

5. Имеется список участников олимпиады. Каждый элемент списка содер-

жит следующую информацию: название учебного заведения, фамилия участ-

ника, номер телефона, количество набранных очков. Вывести в порядке убыва-

ния количества набранных очков фамилии участников из БГУИР.

6. Имеется список семян овощных культур. Каждый элемент списка содер-

жит следующую информацию: номер партии, название культуры, номера меся-

цев посева, высадки рассады и уборки урожая. Вывести в алфавитном порядке

названия культур, урожай которых убирается в августе.

7. Имеется список студентов. Каждый элемент списка содержит следую-

щую информацию: фамилия, номер телефона, год и место рождения, три экзаме-

национных оценки за последнюю сессию. Вывести в алфавитном порядке фами-

лии студентов, которые сдали экзамены без двоек.

8. Имеется список автомобилей. Каждый элемент списка содержит следу-

ющую информацию: марка, номер кузова, год выпуска, объем двигателя и рас-

ход топлива. Вывести в порядке возрастания расхода топлива информацию об

автомобилях, выпущенных после 2010 года.

9. Имеется список студентов. Каждый элемент списка содержит следую-

щую информацию: фамилия, номер телефона, год и место рождения, три экзаме-

национные оценки за последнюю сессию. Вывести информацию о студентах,

проживающих в Минске, в порядке убывания среднего балла.

10. Имеется список сотрудников предприятия. Каждый элемент списка со-

держит следующую информацию: фамилия, табельный номер, год рождения и

год поступления на работу. Вывести информацию о сотрудниках фирмы, родив-

шихся после 1995 года, в порядке убывания стажа работы.

11. Имеется телефонная база данных. Каждый элемент базы содержит сле-

дующую информацию: номер телефона, фамилия и адрес абонента. Вывести на

 144

экран в алфавитном порядке фамилии абонентов, номера телефонов которых

начинаются с числа 23.

12. Имеется список автомобилей. Каждый элемент списка содержит следу-

ющую информацию: марка, номер кузова, год выпуска, объем двигателя и мак-

симальная скорость. Вывести информацию об автомобилях, выпущенных после

2005 года, в порядке убывания их максимальной скорости.

13. Имеется список стран мира. Каждый элемент списка содержит сле-

дующую информацию: название страны, код страны, название части света,

в которой находится страна, и площадь страны. Вывести информацию о стра-

нах, находящихся в Европе, в порядке возрастания их площади.

14. Имеется расписание движения междугородных автобусов. Каждый эле-

мент расписания содержит следующую информацию: номер рейса, время от-

правления, пункт назначения, время прибытия в пункт назначения. Вывести ин-

формацию о рейсах до города Могилев в порядке возрастания времени их от-

правления.

15. Имеется список книг. Каждый элемент списка содержит следующую ин-

формацию: название, фамилия автора, год издания, количество страниц,

ISBN книги. Вывести в алфавитном порядке названия книг, изданных до 1990 года.

Лабораторная работа 8. Программирование с использованием файлов

Записать необходимые данные в бинарный файл (задание взять из соот-

ветствующего варианта лабораторной работы 7). Прочитать данные и выпол-

нить задание. Результат вывести на экран и в текстовый файл.

Лабораторная работа 9. Использование функций

Вывести на экран таблицу значений функции и ее разложения в ряд для x,

изменяющегося от a до b с шагом h = (b – a) / 10. Расчет y(x) и s(x) поместить в

функцию. Использовать прототипы функций. Параметры передавать указанным

в табл. Л.2 способом. Расчет функции s(x) выполнить с заданной точностью .

 Таблица Л.2
Вари-

ант
a b Функция

Разложение функции

в ряд Тейлора


Способ передачи

параметров

1 0.8 1.8 () lny x x=
1

(1)
() (1)

n
n

n

x
s x

n



=

−
= − − 10–4 По ссылке

2 0.1 0.9
2() ch=y x x

2 1 2

1

2
() 1

(2)!

n n

n

x
s x

n

−

=

= +  10–5 По значению

3 0.1 0.6
1

()
1

y x
x

=
+

0

() (1)n n

n

s x x


=

= − 10–6 По указателю

 145

Окончание табл. Л.2

Вари-

ант
a b Функция

Разложение функции

в ряд Тейлора


Способ передачи

параметров

4 –0.9 0.9 () arctg=y x x x
2 2

0

() (1)
1 2

n
n

n

x
s x

n

+

=

= −
+

 10–4 По ссылке

5 –0.1 1 () 2 xy x −=
0

(ln(2))
()

!

n n

n

x
s x

n



=

−
=  10–5 По значению

6 –0.9 0.9 () cos(4)y x x= −

2

0

(4)
() (1)

(2)!

n
n

n

x
s x

n



=

−
= − 10–3 По указателю

7 –0.5 0.5 () cos(sin)y x x=
2

0

sin ()
() (1)

(2)!

n
n

n

x
s x

n



=

= − 10–4 По ссылке

8 –0.3 0.4 () x xy x e e−= +
0

()
()

!

n n

n

x x
s x

n



=

− +
=  10–5 По значению

9 –0.1 1.3 () 2xy x =
0

ln 2
()

!

n n

n

x
s x

n



=

=  10–3 По указателю

10 –0.5 0.5 () xy x e=

2 1

0

(2)
()

(2)!

n

n

x n x
s x

n

−

=

+
=  10–4 По ссылке

11 0.1 0.8 2() ln(1)y x x= +

2

1

() (1)
n

n

n

x
s x

n



=

= − − 10–5 По значению

12 1 2.5
2() siny x x=

2 1 2

1

2
() (1)

(2)!

n n
n

n

x
s x

n

−

=

= − − 10–3 По указателю

13 –1.5 1.5
3() cosy x x=

2

0

1 (3 9)
() (1)

4 (2)!

n n
n

n

x
s x

n



=

+
= − 10–4 По ссылке

14 –0.8 0.9
2() ch()y x x=

4

0

()
(2)!

n

n

x
s x

n



=

=  10–5 По значению

15 –0.9 0.9 () arctgy x x=
2 1

0

() (1)
2 1

n
n

n

x
s x

n

+

=

= −
+

 10–3 По указателю

 146

Лабораторная работа 10. Программирование

рекурсивных алгоритмов

Решить задачу двумя способами: с применением рекурсии и без нее.

1. Вычислить произведение четного значения (n  2) сомножителей

2 2 4 4 6 6
()

1 3 3 5 5 7 1 1

n n
y n

n n
=        

− +

2. Проверить, является ли заданная строка палиндромом.

3. Вычислить число сочетаний
!

!()!

k
n

n
C

k n k
=

−
 по формуле

0 1n
n nC C= = ,

1
1 1

k k k
n n nC C C −

− −= + при n > 1; 0 < k < n.

4. Вычислить () 1 2 ... (1)y n n n= + + + − + .

5. Вычислить значение x a= , используя формулу ()1 1

1

2
n n nx x a x− −= + ,

в качестве начального приближения использовать значение x0 = (1 + a) / 2.

6. Вычислить (), 1 2 ...k k ky n k n= + + + .

7. Вычислить ()
1

.
1

1
(1)

1
(2)

...

1
...

1
1

2

y n

n

n

n

=

+

− +

− +

+

+

8. Подсчитать количество цифр в заданном числе.

9. Вычислить ()
1

.
1

1
1

2
1

3
...

1
...

1
(1)

y n

n
n

=

+

+

+

+

− +

10. Написать функцию умножения двух чисел, используя только операцию

сложения.

11. В упорядоченном массиве целых чисел ai, i = 0...(n – 1) найти номер

элемента x методом бинарного поиска: если / 2nx a , тогда 1 / 2... nx a a    , иначе

 147

/ 2 1 ...n nx a a+
    . Если элемент x отсутствует в массиве, то вывести соответ-

ствующее сообщение.

12. Написать функцию сложения двух чисел, используя только операцию

добавления единицы.

13. Вычислить произведение двух целых положительных чисел P = a  b по

следующему алгоритму: если b четное, то P = 2 (a  b / 2), иначе −

P = a+(a  (b – 1)). Если b = 0, то P = 0.

14. Подсчитать сумму цифр в десятичной записи заданного числа.

15. Найти значение функции Аккермана A(m, n), которая определяется для

всех неотрицательных целых аргументов m и n следующим образом: A(0, n) =

= n + 1, если m = 0; A(m, 0) = A(m – 1, 1), если n = 0; A(m, n) = A(m – 1, A(m, n – 1)),

если и m > 0 и n > 0.

Лабораторная работа 11. Алгоритмы сортировки

Дополнить программу, написанную при выполнении лабораторной ра-

боты 8, функциями упорядочения массива структур по неубыванию заданного

ключа. Результат вывести на экран.

1. Ключ: рост спортсмена. Методы сортировки: QuickSort и сортировка

вставкой.

2. Ключ: время отправления поезда. Методы сортировки: QuickSort и метод

Шелла.

3. Ключ: цена товара. Методы сортировки: QuickSort и сортировка выбо-

ром.

4. Ключ: вес багажа пассажира. Методы сортировки: QuickSort и сорти-

ровка вставкой.

5. Ключ: количество набранных очков участником олимпиады. Методы

сортировки: QuickSort и метод Шелла.

6. Ключ: номер месяца уборки урожая. Методы сортировки: QuickSort и

сортировка выбором.

7. Ключ: год рождения студента. Методы сортировки: QuickSort и сорти-

ровка вставкой.

8. Ключ: объем двигателя автомобиля. Методы сортировки: QuickSort и ме-

тод Шелла.

9. Ключ: год рождения студента. Методы сортировки: QuickSort и сорти-

ровка выбором.

10. Ключ: год поступления на работу сотрудника. Методы сортировки:

QuickSort и сортировка вставкой.

11. Ключ: номер телефона абонента. Методы сортировки: QuickSort и ме-

тод Шелла.

12. Ключ: год выпуска автомобиля. Методы сортировки: QuickSort и сор-

тировка выбором.

 148

13. Ключ: год образования государства. Методы сортировки: QuickSort и

сортировка вставкой.

14. Ключ: номер рейса автобуса. Методы сортировки: QuickSort и метод

Шелла.

15. Ключ: количество страниц в книге. Методы сортировки: QuickSort и

сортировка выбором.

Лабораторная работа 12. Алгоритмы поиска

Дополнить программу, написанную при выполнении лабораторной ра-

боты 11, функциями поиска элементов по ключу в массиве структур. Найти

элемент с заданным ключом указанным методом поиска (для упрощения пред-

полагается, что в массиве присутствует не более одного такого элемента).

Если элемент не найден, то вывести соответствующее сообщение.

1. Вывести на экран фамилию спортсмена, у которого рост равен 197 см.

Метод поиска: интерполяционный.

2. Вывести на экран пункт назначения поезда, который отправляется

в 11 часов. Методы поиска: линейный с барьером и двоичный.

3. Вывести на экран наименование товара с ценой, равной 265 000 руб. Ме-

тоды поиска: линейный и двоичный.

4. Вывести на экран фамилию пассажира, у которого багаж весит 58 кг.

Метод поиска: интерполяционный.

5. Вывести на экран фамилию участника олимпиады, который набрал

212 очков. Методы поиска: линейный с барьером и двоичный.

6. Вывести на экран название культуры, которую убирают в июне (шестом

месяце года). Методы поиска: линейный и двоичный.

7. Вывести на экран средний балл, набранный на экзамене студентом, ро-

дившимся в 1991 году. Методы поиска: линейный с барьером и двоичный.

8. Вывести на экран марку автомобиля с объемом двигателя 1998 см3. Ме-

тод поиска: интерполяционный.

9. Вывести на экран фамилию студента, родившегося в 1980 году. Методы

поиска: линейный с барьером и двоичный.

10. Вывести на экран фамилию сотрудника, который был принят на работу

в 1999 году. Метод поиска: интерполяционный.

11. Вывести на экран фамилию абонента, на которого зарегистрирован но-

мер телефона 797-24-74. Методы поиска: линейный и двоичный.

12. Вывести на экран максимальную скорость автомобиля, выпущенного в

1996 году. Методы поиска: линейный с барьером и двоичный.

13. Вывести на экран название государства, образованного в 1927 году. Ме-

тод поиска: интерполяционный.

14. Вывести на экран пункт назначения автобуса с номером рейса 295. Ме-

тоды поиска: линейный с барьером и двоичный.

15. Вывести на экран название книги, в которой 1575 страниц. Методы по-

иска: линейный и двоичный.

 149

Лабораторная работа 13. Хеширование

Используя данные из лабораторной работы 8, создать хеш-таблицу из

М элементов (число М выбирается исходя из количества элементов в массиве

структур и особенностей схемы хеширования). Осуществить поиск элемента по

заданному ключу в хеш-таблице. Вывести на экран исходный массив, хеш-таблицу

и все поля найденной структуры. Задание выбрать в соответствии с номером ва-

рианта в таблице Л.3.

Таблица Л.3

Вариант Ключевое поле Схема хеширования

1 Номер телефона С квадратичной адресацией

2 Номер поезда С произвольной адресацией

3 Артикул товара С двойным хешированием

4 Номер билета На основе связанных списков

5 Номер телефона С квадратичной адресацией

6 Номер партии С произвольной адресацией

7 Номер телефона С двойным хешированием

8 Номер кузова автомобиля На основе связанных списков

9 Номер телефона С квадратичной адресацией

10 Табельный номер С произвольной адресацией

11 Номер телефона С двойным хешированием

12 Номер кузова автомобиля На основе связанных списков

13 Код страны С квадратичной адресацией

14 Номер рейса С произвольной адресацией

15 ISBN книги С двойным хешированием

Лабораторная работа 14. Использование стеков

Создать стек, состоящий из n целых чисел. Выполнить задание (информа-

ционную часть в оперативной памяти не перемещать). Результат вывести на

экран. В конце работы освободить всю динамически выделенную память.

1. Добавить элемент со значением 23 перед предпоследним элементом

стека.

2. Удалить каждый третий (по порядку) элемент стека.

3. Найти среднее значение всех элементов стека. Удалить из стека все эле-

менты, значение которых меньше среднего значения.

4. Удалить элементы, значение которых больше среднего арифметического

всех элементов стека.

5. Удалить из стека все отрицательные числа.

6. Удалить все элементы стека, расположенные перед минимальным эле-

ментом стека.

7. Удалить все элементы, расположенные между первым и последним от-

рицательными элементами стека.

8. Добавить элемент со значением 28 после максимального элемента стека.

 150

9. Поменять местами первый положительный и предпоследний отрица-

тельный элементы стека.

10. Удалить из стека все элементы, значения которых находятся в диапа-

зоне от 0 до 9.

11. Удалить из стека все нечетные числа.

12. Поменять местами минимальный и максимальный элементы стека.

13. Преобразовать стек таким образом, чтобы порядок следования элемен-

тов был изменен на обратный.

14. Поменять местами второй и предпоследний элементы стека.

15. Добавить элемент со значением 41 перед каждым отрицательным эле-

ментом.

Лабораторная работа 15. Использование двусвязанных списков

Выполнить задание в соответствии с вариантом (информационную

часть в оперативной памяти не перемещать). Результат вывести на экран.

В конце работы освободить всю динамически выделенную память.

1. Создать двусвязанный список, состоящий из n целых чисел. Переместить

во второй список элементы, находящиеся между минимальным и максимальным

элементами первого списка.

2. Создать два двусвязанных списка, состоящих из n целых чисел упорядо-

ченных по неубыванию. Переместить в третий список элементы со значениями,

которые встречаются и в первом, и во втором списках.

3. Создать двусвязанный список, состоящий из n целых чисел. Отрицатель-

ные элементы удалить, а четные перенести во второй список.

4. Создать двусвязанный список, состоящий из n символов латинского ал-

фавита и символов арифметических операций. Переместить символы арифмети-

ческих операций во второй список.

5. Создать два двусвязанных списка, состоящих из n символов латин-

ского алфавита. Переместить все данные в третий список таким образом,

чтобы строчные символы находились в левой половине списка, а прописные −

в правой.

6. Создать двусвязанный список, состоящий из n целых чисел. Переместить

во второй список элементы, значения которых больше среднего значения эле-

ментов первого списка.

7. Создать двусвязанный список, состоящий из n символов латинского ал-

фавита. Удалить из списка элементы с повторяющимися более одного раза зна-

чениями.

8. Создать два двусвязанных списка, состоящих из n целых чисел, упоря-

доченных по неубыванию. Преобразовать их в третий список, который будет

упорядочен по невозрастанию.

9. Создать двусвязанный список, состоящий из n символов латинского ал-

фавита. Преобразовать его в два списка: первый список должен содержать про-

писные символы, второй − строчные.

 151

10. Создать двусвязанный список, состоящий из n целых чисел. Извлечь

из первого списка и переместить во второй список все отрицательные числа.

11. Создать двусвязанный список, состоящий из n целых чисел. Удалить из

списка все элементы, находящиеся между его максимальным и минимальным

элементами.

12. Создать двусвязанный список, состоящий из n целых чисел. Переместить

во второй список элементы, повторяющиеся в первом списке более одного раза.

13. Создать двусвязанный список, состоящий из n целых чисел. Преобра-

зовать его в два списка: первый список должен содержать только четные числа,

второй − нечетные.

14. Создать двусвязанный список, состоящий из n действительных чисел.

Расположить элементы списка в обратном порядке.

15. Создать два двусвязанных списка, состоящих из n целых чисел, упоря-

доченных по неубыванию. Переместить все данные в третий список, удаляя по-

вторяющиеся значения.

Лабораторная работа 16. Работа с бинарным деревом поиска

Создать сбалансированное дерево поиска, состоящее из целых чисел. Вы-

вести информацию на экран, используя прямой, обратный и симметричный об-

ходы дерева. Выполнить задание, результат вывести на экран. В конце работы

освободить всю динамически выделенную память.

1. Найти узел, имеющий значение, ближайшее к среднему значению всех

ключей дерева.

2. Удалить из правой ветви дерева узел с минимальным значением ключа

и всех его потомков.

3. Удалить в дереве все узлы, имеющие только одного потомка справа.

4. Удалить в дереве все узлы, имеющие четные ключи.

5. Удалить из дерева ветвь с вершиной, имеющей заданный ключ.

6. Удалить из дерева узел с заданным ключом.

7. Поменять местами узлы с минимальным и максимальным ключами в ле-

вом поддереве.

8. Поменять местами узел с максимальным ключом и узел, являющийся

корнем дерева.

9. Найти количество листьев на каждом уровне дерева.

10. Удалить в дереве все узлы, имеющие отрицательные ключи.

11. Поменять местами узлы с минимальным и максимальным ключами.

12. Удалить в дереве все узлы, имеющие только одного потомка слева.

13. Удалить все узлы дерева, имеющие значение ключа больше 7.

14. Удалить из левой ветви дерева узел с максимальным значением ключа

и всех его потомков.

15. Удалить все узлы дерева, имеющие значение ключа, равное 33.

 152

Лабораторная работа 17. Вычисление алгебраических выражений

Ввести заданное арифметическое выражение и необходимые данные. Пре-

образовать запись арифметического выражения в форму обратной польской за-

писи (для обозначения операции возведения в степень использовать знак ^). Вычис-

лить арифметическое выражение. Результат вывести на экран. Задание выбрать

в соответствии с номером варианта.

1. ()w c k
x y

f k

+
− 

−
.

2.
wf s y s

f y x s

+ +
+

− −
.

3.
w b x

a x
y

+
 − .

4. w

y a
x c

y b

+
 −

+
.

5.
2

wx
s b

x y
 +

−
.

6. w

c k s
a

f k s

+ 
+

− 
.

7. w w

x
b s

x y
− 

+
.

8.
()

w w

w

c d

k k c



 +
.

9.
w w a y

x y
a x

+
− +

−
.

10.
()wx y

x y
x k

+
− 

+
.

11. ()
w

w

w

x
a b

x y
− 

+
.

12. w

x c
x y

c y

−
 −

+
.

13. w

x
xy c

f k
+ −

−
.

14. ()wax cy a y+ −  .

15.
w

w x k
a s

y k

+
 +

−
.

 153

ПРИЛОЖЕНИЕ

РАБОТА В СРЕДЕ MICROSOFT VISUAL C++

1. Консольный режим работы

Программа, создаваемая в среде Visual C++, оформляется в виде отдель-

ного проекта. Проект (project) – набор взаимосвязанных исходных файлов,

предназначенных для решения определенной задачи, компиляция и компоновка

которых позволяет получить выполняемую программу. В проект входят как

файлы, непосредственно создаваемые программистом, так и файлы, которые ав-

томатически создает и редактирует среда программирования.

Для создания нового проекта необходимо:

– выбрать Файл – Создать – Проект;

– в открывшемся окне выбрать Пустой проект С++ (выбрать C++,

Windows, Консоль);

– в поле Имя проекта ввести имя проекта, например maylab1;

– в поле Расположение ввести имя каталога, в котором будет размещен

проект и полный путь к нему, например D:\WORK\mylab1. Каталог также можно

выбрать, используя диалоговое окно Расположение проекта, для чего надо

щелкнуть мышью по кнопке … ;

– щелкнуть мышью по кнопке Создать.

Для работы с консольным приложением необходимо создать новый или

добавить существующий файл с текстом программы.

Для создания нового файла необходимо:

– выбрать Проект – Добавить новый элемент;

– выбрать Файл С++ (.cpp), задать имя файла, нажать кнопку Добавить.

Для добавления в проект уже существующего файла с текстом про-

граммы необходимо выбрать Проект – Добавить существующий элемент и

указать имя добавляемого файла.

2. Выполнение программы

Для создания проекта необходимо выполнить Сборка – Собрать решение

(Ctrl + Shift + B). В окне Вывод появятся результаты сборки проекта. Если в

программе были обнаружены синтаксические ошибки, то выводится их описа-

ние. Все ошибки необходимо исправить.

Если ошибки не были обнаружены, то можно запустить программу на вы-

полнение Отладка – Запуск без отладки (Ctrl + F5) (для файлов, в которые по-

сле последней сборки вносились изменения, автоматически выполняются пере-

компилирование и перекомпоновка).

После окончания работы проект можно закрыть, выбрав Файл – Закрыть

решение, или закрыть приложение MVC++.

Для открытия сохраненного ранее проекта выбрать Файл – Открыть про-

ект или решение.

 154

3. Отладка программы

Если синтаксических ошибок в программе нет (программа выполняется),

но результат неверный, необходимо проверить наличие логических ошибок.

Для поиска логических ошибок имеется встроенный отладчик.

Для построчного выполнения программы используется Отладка – Шаг с

обходом (F10). При каждом нажатии клавиши F10 выполняется текущая строка

и осуществляется переход к следующей строке. Если необходимо проверить

текст вызываемой функции, то следует нажать Отладка – Шаг с обходом (F11).

Для того чтобы начать отладку с определенной строки программы, надо устано-

вить курсор в эту строку и нажать Ctrl + F10.

Имеется возможность установки точек прерывания выполнения про-

граммы. Для установки точки прерывания необходимо поместить курсор в нуж-

ную строку и нажать F9. Точка прерывания обозначается красным кружком на

специальном поле (слева от текста программы). Для удаления точки прерывания

поместить курсор в необходимую строку и повторно нажать F9. Количество то-

чек прерывания в программе не ограничено. Для выполнения программы до

точки прерывания необходимо нажать F5. Для продолжения отладки (выполнения

программы до следующей точки прерывания) повторно нажимается клавиша F5.

Желтая стрелка на поле слева от окна текста программы указывает на

строку, которая будет выполнена на следующем шаге отладки.

Для контроля за значением переменной можно подвести к ней указатель

мыши и задержать его на несколько секунд. На экране рядом с именем перемен-

ной появится окно, содержащее текущее значение этой переменной. Кроме

этого, значения последних измененных, а также добавленных в список пользовате-

лем переменных будут отображаться в окне Видимые (Watch).

 155

СПИСОК РЕКОМЕНДОВАННОЙ ЛИТЕРАТУРЫ

1. Вирт, Н. Алгоритмы и структуры данных / Н. Вирт. – СПб. : Невский

Диалект, 2001. – 352 с.

2. Лафоре, Р. Объектно-ориентированное программирование в C++ /

Р. Лафоре. – 4-е изд. – СПб. : Питер, 2016. – 928 с.

3. Керниган, Б. Язык программирования C / Б. Керниган, Д. Ритчи. –

2-е изд., перераб. и доп. – М. : Вильямс, 2009. – 304 с.

4. Навроцкий, А. А. Основы алгоритмизации и программирования в среде

Visual C++ : учеб.-метод. пособие / А. А. Навроцкий. – Минск : БГУИР, 2014. –

160 с.

5. Шилдт, Г. Искусство программирования на C++ / Г. Шилдт. – СПб. :

БХВ-Петербург, 2005. – 496 с.

6. Страуструп, Б. Язык программирования С++ / Б. Страуструп. – М. :

Бином, 2012. – 1104 с.

7. Кнут, Д. Искусство программирования. В 3 т. Т. 1–3 / Д. Кнут. – М. :

Вильямс, 2004. – 486 с.

 Св. план 2025, поз. 2

Учебное издание

Навроцкий Анатолий Александрович

ОСНОВЫ АЛГОРИТМИЗАЦИИ

И ПРОГРАММИРОВАНИЯ

В СРЕДЕ VISUAL C++

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ

2-е издание, дополненное и пересмотренное

Редактор А. Ю. Шурко

Корректор Е. Н. Батурчик

Компьютерная правка, оригинал-макет Е. Г. Бабичева

Подписано в печать 24.12.2025. Формат 60×84 1/16. Бумага офсетная. Гарнитура «Таймс».

Отпечатано на ризографе. Усл. печ. л. 9,18. Уч.-изд. л. 9,6. Тираж 50 экз. Заказ 140.

Издатель и полиграфическое исполнение: учреждение образования

«Белорусский государственный университет информатики и радиоэлектроники».

Свидетельство о государственной регистрации издателя, изготовителя,

распространителя печатных изданий №1/238 от 24.03.2014,

№2/113 от 07.04.2014, №3/615 от 07.04.2014.

Ул. П. Бровки, 6, 220013, г. Минск

