
1

Министерство образования Республики Беларусь

Учреждение образования

«Белорусский государственный университет

информатики и радиоэлектроники»

Инженерно-экономический факультет

Кафедра экономической информатики

Н. О. Петрович, О. Голда, Д. А. Сторожев

СОВРЕМЕННЫЕ ТЕХНОЛОГИИ РАЗРАБОТКИ

СЕРВЕРНОЙ ЧАСТИ ПРОГРАММНЫХ

ПРИЛОЖЕНИЙ

Рекомендовано УМО по образованию в области информатики

и радиоэлектроники

в качестве учебно-методического пособия

для специальности 6-05-0611-01 «Информационные системы и технологии»

Минск БГУИР 2026

2

УДК 004.42(075.8)

ББК 32.973.3я73

П30
Р е ц е н з е н т ы:

кафедра информатики и веб-дизайна

учреждения образования «Белорусский государственный

технологический университет»

(протокол № 3 от 25.10.2024);

кафедра программного обеспечения информационных технологий

учреждения образования «Белорусский государственный университет

информатики и радиоэлектроники»

(протокол № 11 от 02.03.2025);

кафедра автоматизированных систем управления производством

учреждения образования «Белорусский государственный аграрный

технический университет»

(протокол № 4 от 25.10.2024);

ведущий инженер-программист

ООО «Финмаркет Софт»

А. С. Сушинский

Петрович, Н. О.

П30 Современные технологии разработки серверной части программных

приложений : учеб.-метод. пособие / Н. О. Петрович, О. Голда,

Д. А. Сторожев. – Минск : БГУИР, 2026. – 176 с. : ил.

 ISBN 978-985-543-852-7.

Рассмотрены назначения, функции и структура технологий реализации гибкого и

функционального программного обеспечения, принципы разработки и проектирования

архитектуры систем на основе современных подходов и тенденций развития технологий

с применением фреймворков Hibernate и Spring Framework, изложен механизм

реализации персистентности. Представлены темы, посвященные проектированию

и реализации архитектуры на основе стиля REST и принципов SOLID.

Предназначено для студентов, обучающихся по специальности 6-05-0611-01

«Информационные системы и технологии».

 УДК 004.42(075.8)

 ББК 32.973.3я73

ISBN 978-985-543-852-7 © Петрович Н. О., Голда О., Сторожев Д. А., 2026

© УО «Белорусский государственный университет

информатики и радиоэлектроники», 2026

3

Содержание

Тема 1. Сборка проекта на основе Maven .. 5

1.1 Установка пакета Maven .. 5

1.2 Проверка поддержки Maven .. 9

1.3 Интеграция Maven в среду разработки Idea .. 9

1.4 Управление жизненным циклом проекта .. 12

1.5 Создание профилей сборки проектов .. 15

1.6 Управление репозиториями Maven .. 17

1.7 Интеграция плагинов для создания проекта ... 19

1.8 Создание и сборка проекта с интеграцией зависимостей 20

Тема 2. Системы контроля версий на примере Git .. 22

2.1 Настройка рабочего пространства и регистрация в системе 22

2.2 Установка дистрибутива Git ... 25

2.3 Настройка конфигурации системы контроля версии 25

2.4 Создание и инициализация репозиториев ... 27

2.5 Просмотр истории версий ... 30

2.6 Клонирование существующего репозитория .. 32

2.7 Работа с удаленными репозиториями .. 33

Тема 3. Управление персистенцией на основе JPA ... 35

3.1 Проектирование структуры проекта .. 36

3.2 Структура БД .. 61

3.3 Создание Entity-классов для маппинга объектной и реляционной

модели ... 62

Тема 4. Реализация веб-приложения на основе Servlets .. 69

4.1 Конфигурация проекта .. 69

4.2 Жизненный цикл Servlets ... 72

4.3 Добавление JSP .. 81

4.4 Передача параметров HTTP-запроса .. 94

4.5 Добавление форм фронт-составляющей .. 98

4.6 Внедрение проверок ... 99

4.7 Работа с возвратом списка... 102

4.8 Добавление JSTL .. 105

4.9 Реализация перенаправления между сервлетами 106

4.10 Редактирование списка .. 108

4.11 Добавление JQuery и Bootstrap ... 111

4.12 Реализация фильтра ... 120

4.13 Конфигурация БД ... 124

4

4.14 Работа с регистрацией ... 133

4.15 Хеширование паролей ... 140

4.16 Добавление поддержки Cookie ... 148

Тема 5. Основы Spring Framework .. 157

5.1 Конфигурация проекта .. 157

5.2 Основы Spring Core. .. 162

5.3 Итеграция Spring Boot ... 170

Список использованных источников .. 175

5

Тема 1. Сборка проекта на основе Maven

Maven – это инструмент для автоматической сборки проектов на Java и

других языках программирования. Он помогает разработчикам правильно

подключить библиотеки и фреймворки, управлять их версиями, выстроить

структуру проекта и составить к нему документацию.

Например, чтобы собрать приложение для управления базами данных на

Java, нам понадобятся фреймворки Spring и Hibernate, библиотека JUnit для

модульного тестирования и сама база данных. Все это можно собрать в одном

проекте вручную, но могут быть трудности из-за большого числа зависимостей.

Здесь на помощь разработчикам приходит Maven. Он автоматически добавит эти

или другие зависимости в проект и соберет его в исполняемый файл.

Maven – не единственный сборщик проектов. Некоторые разработчики

используют его аналоги – Gradle и Ant, но именно Maven сегодня – золотой

стандарт в индустрии.

1.1 Установка пакета Maven

Для работы необходимо установить Maven на компьютер, соответственно

переходим на официальный сайт Maven и скачиваем Binary zip archive, но перед

этим убедитесь, что у вас на компьютере установлен JDK (рисунок 1.1).

Открываем командную строку и пишем команду:

java -version

Рисунок 1.1 – Проверка версии Java

Установите Maven. Настройте environment variables и проверьте, что Maven

настроен корректно.

Скачайте архив binary по ссылке http://maven.apache.org/download.cgi. Архив

находится в разделе Files (рисунок 1.2).

http://maven.apache.org/download.cgi

6

Рисунок 1.2 – Архив сборщика Maven

Обратите внимание, что понадобится версия JDK 1.7 и выше. После

загрузки вы получите zip-архив около 10 Мб.

Maven устанавливается просто копированием в нужную директорию –

никакого инсталлера нет. Распакуйте архив в любую папку. Для Windows, как

правило, путь к папке не должен содержать пробелов.

Для начала использования Maven необходимо настроить переменные

среды Windows. Переменная MAVEN_HOME (M2_HOME) должна быть

установлена, а переменная PATH должна быть модифицирована для включения

папки, откуда запускается Maven (рисунок 1.3).

7

Рисунок 1.3 – Управление переменными средами для установки Maven

Убедитесь, что установлены следующие компоненты, как указано на

рисунках 1.4 и 1.5.

8

Рисунок 1.4 – Изменение системной переменной

Рисунок 1.5 – Изменение переменной среды

Apache Maven теперь готов к использованию. Он также доступен для

интеграции с IDE и другими программными средствами, предназначенными

для разработки.

9

1.2 Проверка поддержки Maven

Для проверки можно запустить командную строку и выполнить команду

mvn-version (рисунок 1.6).

Рисунок 1.6 – Проверка работы Maven в консоли cmd

Шаблон, на основе которого будут создаваться проекты, включает

поддержку Maven. Если нужно будет поменять директорию Maven или

репозиторий, то необходимо зайти в среду разработки, в данном примере Idea.

Затем перейти в настройки Maven home directory (рисунок 1.7).

Рисунок 1.7 – Проверка настройки Maven home directory в среде Idea

1.3 Интеграция Maven в среду разработки Idea

Создайте проект с помощью Maven. Для этого перейдите по следующим

разделам среды разработки (рисунки 1.8 и 1.9).

10

Рисунок 1.8 – Создание проекта в среде Idea

Рисунок 1.9 – Выбор сборщика проектов и архетипа

Выбираем Maven. Архетипы будут рассмотрены в следующем подразделе.

Задаем имя проекта, а также спецификацию. После чего должен быть

автоматически создан проект с pom.xml.

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>test_empty</groupId>

 <artifactId>test_empty</artifactId>

 <version>1.0-SNAPSHOT</version>

11

 <name>Servlet</name>

 <packaging>war</packaging>

 <properties>

 <maven.compiler.target>1.8</maven.compiler.target>

 <maven.compiler.source>1.8</maven.compiler.source>

 <junit.version>5.7.0</junit.version>

 </properties>

</project>

Изучите раздел c существующими зависимостями. У вас должно

получиться примерно так после добавления.

<build>

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-antrun-plugin</artifactId>

 <version>1.1</version>

 <execution>

 <id>id.clean</id>

 <phase>clean</phase>

 <goals>

 <goal>run</goal>

 </goals>

 <configuration>

 <tasks>

 <echo>clean phase</echo>

 </tasks>

 </configuration>

 </execution>

 </executions>

 </plugin>

 </plugins>

</build>

Далее можно увидеть добавление зависимостей в проект (рисунок 1.10).

Рисунок 1.10 – Загрузка зависимостей с удаленного репозитория

12

После чего выполните команду, как показано на рисунке 1.11.

Рисунок 1.11 – Сборка и отчистка проекта

Maven начнет обработку и отображение всех фаз чистого жизненного

цикла.

1.4 Управление жизненным циклом проекта

Это основной жизненный цикл Maven, который используется для

создания приложения. Он имеет следующую 21 фазу (таблица 1.1).

Таблица 1.1 – Основные фазы жизненного цикла Maven

Название фазы Описание

validate Подтверждает, является ли проект корректным и вся ли

необходимая информация доступа для завершения

процесса сборки

initialize Инициализирует состояние сборки, например, различные

настройки

generate-sources Включает любой исходный код в фазу компиляции

process-sources Обрабатывает исходный код (подготавливает). Например,

фильтрует определенные значения

generate-

resources

Генерирует ресурсы, которые должны быть включены

в пакет

process-

resources

Копирует и отправляет ресурсы в указанную директорию.

Это фаза перед упаковкой

13

Название фазы Описание

compile Компилирует исходный код проекта

process-classes Обрабатывает файлы, полученные в результате компиляции.

Например, оптимизация байт-кода Java-классов

generate-test-

sources

Генерирует любые тестовые ресурсы, которые должны

быть включены в фазу компиляции

process-test-

sources

Обрабатывает исходный код тестов. Например, фильтрует

значения

test-compile Компилирует исходный код тестов

process-test-

classes

Обрабатывает файлы, полученные в результате компиляции

исходного кода тестов

test Запускает тесты, используя приемлемый фреймворк юнит-

тестирования (например, Junit)

prepare-package Выполняет все необходимые операции для подготовки

пакета непосредственно перед упаковкой

package Преобразует скомпилированный код и пакет

в дистрибутивный формат. Такие, как JAR, WAR или EAR

pre-integration-

test

Выполняет необходимые действия перед выполнением

интеграционных тестов

integration-test Обрабатывает и распаковывает пакет, если необходимо,

в среду, где будут выполняться интеграционные тесты

post-integration-

test

Выполняет действия, необходимые после выполнения

интеграционных тестов. Например, освобождение ресурсов

verify Выполняет любые проверки для подтверждения того, что

пакет пригоден и отвечает критериям качества

install Устанавливает пакет в локальный репозиторий, который

может быть использован как зависимость в других

локальных проектах

deploy Копирует финальный пакет (архив) в удаленный

репозиторий для того, чтобы сделать его доступным другим

разработчикам и проектам

14

Теперь обновим pom-файл и разберем, в чем он нам поможет сейчас.

Когда мы выполняем команду Maven, например install, то будут

выполнены фазы до install и фаза install.

Различные задачи Maven будут привязаны к различным фазам

жизненного цикла Maven в зависимости от типа архива (JAR/WAR/EAR).

В следующем примере мы привязываем задачу maven-antrun-plugin:run к

нескольким фазам жизненного цикла сборки. Это также позволяет нам

вызывать текстовые сообщения, отображая фазу жизненного цикла.

Содержание pom-файла должно выглядеть следующим образом:

<build>

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-antrun-plugin</artifactId>

 <version>1.1</version>

 <executions>

 <execution>

 <id>id.compile</id>

 <phase>compile</phase>

 <goals>

 <goal>run</goal>

 </goals>

 <configuration>

 <tasks>

 <echo>compile phase</echo>

 </tasks>

 </configuration>

 </execution>

 <execution>

 <id>id.test</id>

 <phase>test</phase>

 <goals>

 <goal>run</goal>

 </goals>

 <configuration>

 <tasks>

 <echo>test phase</echo>

 </tasks>

 </configuration>

 </execution>

 </executions>

 </plugin>

 </plugins>

</build>

15

Далее запускаем сборку проекта, как показано на рисунке 1.12.

Рисунок 1.12 – Начало сборки проекта

1.5 Создание профилей сборки проектов

Профиль сборки – это набор значений конфигурации, которые можно

использовать для установки или переопределения значений по умолчанию

сборки Maven. Используя профиль сборки, вы можете настроить сборку для

различных сред.

Создадим структуру проекта, как показано на рисунке 1.13, для реализации

тестовых профилей сборки проекта.

Рисунок 1.13 – Структура проекта с тестовыми профилями сборки

16

Теперь в каталоге src/main/resources есть три специальных файла для

среды:

− env.properties – используется конфигурация по умолчанию, если

профиль не указан;

− env.test.properties – тестовая конфигурация при использовании

тестового профиля;

− env.prod.properties – производственная конфигурация при

использовании профиля prod.

Явная активация профиля.

В следующем примере мы добавим maven-antrun-plugin: запустите цель,

чтобы проверить фазу. Это позволит нам отображать текстовые сообщения для

разных профилей. Мы будем использовать pom.xml для определения различных

профилей и активировать профиль в командной консоли с помощью команды

Maven.

<profiles>

 <profile>

 <id>test</id>

 <build>

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-antrun-plugin</artifactId>

 <version>1.1</version>

 <executions>

 <execution>

 <phase>test</phase>

 <goals>

 <goal>run</goal>

 </goals>

 <configuration>

 <tasks>

 <echo>Using env.test.properties</echo>

 <copy

file="src/main/resources/env.test.properties"

tofile="${project.build.outputDirectory}/env.properties"/>

 </tasks>

 </configuration>

 </execution>

 </executions>

 </plugin>

 </plugins>

 </build>

 </profile>

</profiles>

В файл properties добавьте текстовую информацию.

17

В результате в сборку проекта будут включены данные настройки,

указанные в тестовом файле или файле продакшина.

После чего выполните команду, как показано на рисунке 1.14.

Рисунок 1.14 – Выполнение тестового профиля сборки

1.6 Управление репозиториями Maven

При работе с Maven под репозиторием мы понимаем директорию, где

хранятся все JAR, библиотеки, плагины и любые артефакты, которыми Maven

может воспользоваться.

Существует три типа репозиториев Maven:

– локальные (local);

– центральные (central);

– удаленные (remote).

Пример использования удаленного репозитория начинается с поиска

необходимой библиотеки, используя ресурс удаленного репозитория

https://mvnrepository.com (рисунки 1.15 и 1.16).

Рисунок 1.15 – Поиск необходимой библиотеки в удаленном репозитории

https://mvnrepository.com/

18

Рисунок 1.16 – Структура представления библиотеки в удаленном репозитории

Можем скопировать и использовать в своем проекте. Все библиотеки

будут доступны нам в коде автоматически.

Последовательность поиска зависимостей Maven.

Когда мы выполняем команды сборки Maven, Maven начинает поиск

библиотек зависимостей в следующей последовательности:

Шаг 1. Поиск зависимости в локальном репозитории. Если не найдена,

перейти к шагу 2, иначе выполнить дальнейшую обработку.

Шаг 2. Поиск зависимости в центральном репозитории. Если не найдена и

упоминается (упоминается удаленный репозиторий), перейдите к шагу 4. В

противном случае он загружается в локальный репозиторий для дальнейшего

использования.

Шаг 3. Если удаленный репозиторий не был упомянут, Maven просто

останавливает обработку и выдает ошибку «Невозможно найти зависимость».

Шаг 4. Поиск зависимости в удаленном репозитории или репозиториях.

Если она найдена, он загружается в локальный репозиторий для дальнейшего

использования. В противном случае Maven останавливает обработку и выдает

ошибку «Невозможно найти зависимость».

19

1.7 Интеграция плагинов для создания проекта

Если говорить в целом, то Maven – это фреймворк, который выполняет

плагины. В этом фреймворке каждая задача, по сути, выполняется с помощью

плагинов.

Плагины Maven используются для:

– создания jar-файла;

– создания war-файла;

– компиляции кода файлов;

– юнит-тестирования кода;

– создания отчетов проекта;

– создания документации проекта.

Типы плагинов

Существует два типа плагинов в Maven:

1) плагины сборки. Выполняются в процессе сборки и должны быть

конфигурированы внутри блока <build></build> файла pom.xml;

2) плагины отчетов. Выполняются в процесса генерирования сайта и

должны быть конфигурированы внутри блока <reporting></reporting> файла

pom.xml.

Ниже приведен список наиболее используемых плагинов:

‒ clean – очищает цель после сборки. Удаляет директорию target;

‒ compiler – компилирует исходные Java-файлы;

‒ surefire – запускает тесты JUnit. Создает отчеты о тестировании;

‒ jar – собирает JAR-файл текущего проекта;

‒ war – собирает WAR-файл текущего проекта;

‒ javadoc – генерирует Javadoc проекта;

‒ antrun – запускает набор задач ant из любой указанной фазы.

Для понимания того, как это работает на практике, рассмотрим пример:

<profiles>

 <profile>

 <id>test</id>

 <activation>

 <file>

 <missing>target/generated sources/some/dir/com/iba/maven</missing>

 </file>

 </activation>

 </profile>

 </profiles>

 <dependencies>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

20

 <version>3.8.1</version>

 <scope>test</scope>

 </dependency>

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-antrun-plugin</artifactId>

 <version>1.1</version>

 <executions>

 <execution>

 <id>id.clean</id>

 <phase>compile</phase>

 <goals>

 <goal>run</goal>

 </goals>

 <configuration>

 <tasks>

 <echo>compile phase</echo>

 </tasks>

 </configuration>

 </execution>

 </executions>

 </plugin>

 </plugins>

 </build>

</project>

Далее необходимо выполнить команду, как представлено на рисунке 1.17,

и удостовериться в ее выполнении.

Рисунок 1.17 – Компиляция проекта с итегрированным плагином

1.8 Создание и сборка проекта с интеграцией зависимостей

Ранее мы уже изучали управление зависимостями с помощью

репозиториев. Но что, если необходимые файлы не найдены ни в центральном,

ни на удаленном репозитории? Для решения этой проблемы используются

внешние зависимости.

21

Рассмотрим такой пример.

Добавим в наш проект в папку src директорию lib. Добавьте в эту

директорию любой jar-файл (рисунок 1.18).

Рисунок 1.18 – Внешняя зависимость для подключения к проекту

После чего изменим наш pom-файл.

<profiles>

 <profile>

 <id>test</id>

 <activation>

 <file>

 <missing>target/generated sources/some/dir/com/iba/maven</missing>

 </file>

 </activation>

 </profile>

 </profiles>

 <dependencies>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>3.8.1</version>

 <scope>test</scope>

 </dependency>

 <!-- External dependency -->

 <dependency>

 <groupId>mysql-connector-java-8.0.13.jar</groupId>

 <artifactId>mysql-connector-java-8.0.13.jar</artifactId>

 <scope>system</scope>

 <version>1.0</version>

 <systemPath>C:/Users/User/Desktop/consumerBanking/src/lib/mysql-

connector-java-8.0.13.jar</systemPath>

 </dependency>

 </dependencies>

После наших правок проект сможет обработать нашу библиотеку.

22

Тема 2. Системы контроля версий на примере Git

Git – система управления версиями с распределенной архитектурой. В

отличие от некогда популярных систем вроде CVS и Subversion (SVN), где полная

история версий проекта доступна лишь в одном месте, в Git каждая рабочая

копия кода сама по себе является репозиторием. Это позволяет всем

разработчикам хранить историю изменений в полном объеме.

Разработка в Git ориентирована на обеспечение высокой

производительности, безопасности и гибкости распределенной системы.

С помощью Git вы можете вернуть свой проект к более старой версии,

сравнивать, анализировать или объединять свои изменения в репозиторий.

Репозиторием называют хранилище вашего кода и историю его изменений.

Git работает локально и все ваши репозитории хранятся в определенных папках

на жестком диске.

Также ваши репозитории можно хранить и в интернете. Обычно для этого

используют три сервиса:

‒ GitHub;

‒ Bitbucket;

‒ GitLab.

Каждая точка сохранения вашего проекта носит название коммит (commit).

У каждого commit есть hash (уникальный id) и комментарий. Из таких commit

собирается ветка. Ветка – это история изменений. У каждой ветки есть свое

название. Репозиторий может содержать в себе несколько веток, которые

создаются из других веток или вливаются в них.

2.1 Настройка рабочего пространства и регистрация в системе

Заведите бесплатную учетную запись на сайте https://github.com/.

Регистрация на сайте заключается в выборе имени пользователя и пароля.

Заполните информацию о себе на странице вашего профиля (рисунок 2.1).

https://github.com/
https://bitbucket.org/
https://gitlab.com/

23

Рисунок 2.1 – Стартовая страница с регистрацией GitHub

Создайте репозиторий для вашего первого проекта (можно загрузить

старый проект). Для этого нужно перейти по ссылке https://github.com/new,

выбрать название репозитория (произвольным образом), описание и режим

доступа Public. Выполните настройку согласно рисунку 2.2.

Рисунок 2.2 – Выбор настроек репозитория

В дальнейшем можно будет использовать разделы подсказок.

Воспользуйтесь разделом «…or create a new repository on the command line» из

24

подсказки, чтобы инициализировать репозиторий и создать в нем файл

README.md и т. д.

Мы создадим пустой репозиторий с файлом README.md. Для этого в

шапке конфигурации нужно нажать соответствующую ссылку. Модифицируйте

файл README.md так, чтобы он содержал ваше имя, номер группы. Добавляем

его в проект (зеленая кнопка внизу) (рисунки 2.3 и 2.4).

Рисунок 2.3 – Редактирование файлов репозитория

Рисунок 2.4 – Получение ссылки репозитория

25

2.2 Установка дистрибутива Git

Скачайте дистрибутив по ссылке http://git-scm.com/download/ и

установите консольного клиента (gitbush). Проверьте версию (рисунки 2.5 и 2.6).

Рисунок 2.5 – Выбор дистрибутива

Рисунок 2.6 – Проверка версии системы Git

2.3 Настройка конфигурации системы контроля версии

Мы можем выбрать пустую папку или существующий проект. Нажать

внутри правой кнопкой мыши и выбрать Git Bash Here. После чего откроется

консоль для управления версиями в текущей директории.

Выполните конфигурацию (git config) с помощью команды $ git config --

global user.name "XXX", а также команды $ git config --global user.email

XXX@XXX.com (настройте имя пользователя и т. п.) (рисунок 2.7).

mailto:XXX@XXX.com

26

Рисунок 2.7 – Установка глобальных значений для системы контроля версии

Передача параметра --global позволяет сделать эти настройки всего один
раз.

Если для конкретного проекта требуется указать другое имя или адрес
электронной почты, войдите в папку с проектом и выполните эту команду без
параметра --global.

Проверить выбранные настройки позволяет команда git config --list,
выводящая список всех обнаруженных параметров (рисунок 2.8).

Рисунок 2.8 – Проверка настроек

27

2.4 Создание и инициализация репозиториев

Есть два подхода к созданию Git-проекта. Можно взять существующий

проект или папку и импортировать в Git, а можно клонировать уже

существующий репозиторий с другого сервера.

Чтобы начать слежение за существующим проектом, перейдите в папку

этого проекта и введите команду согласно рисунку 2.9:

$ git init

Эта команда создает в текущей директории новую скрытую

поддиректорию с именем .git, содержащую все необходимые файлы

репозитория, – основу Git-репозитория. Если вы сделали ошибку, можно просто

ее удалить (рисунок 2.9).

Рисунок 2.9 – Инициализация репозитория

Выполните:

$ git status

Если использовать пустой проект, то основным инструментом

определения состояния файлов является команда git status. Она показывает, что

изменения не зафиксированы (рисунок 2.10).

 Рисунок 2.10 – Получение данных репозитория

28

При создании репозитория в существующем проекте обратите внимание на

файлы, выделенные красным цветом (рисунок 2.11).

Рисунок 2.11 – Статус неотслеживаемых файлов

Статус Untracked files, по сути, означает, что Git видит файл,

отсутствующий в предыдущем коммите (снимке состояния). Git не станет

добавлять его в ваши коммиты, пока вы его явно об этом не попросите.

Выполните первую фиксацию изменений. Чтобы начать слежение за

новым файлом, воспользуйтесь командой git add, добавляющей файлы, за

которыми вы хотите следить.

Теперь команда status покажет, что этот файл является отслеживаемым и

проиндексированным.

Затем следует команда git commit

$ git add *.java

$ git commit -m 'start commit'

Обратите внимание, что после добавления add все файлы из src пропали

как неотслеживаемые (modified у вас не будет), (рисунки 2.12 и 2.13).

Рисунок 2.12 – Изменение отслеживаемого файла

29

Рисунок 2.13 – Фиксирование изменений

Сообщение фиксации можно задать и в команде commit, поставив перед

ней флаг -m (как на рисунке 2.13). Вы создали первую версию изменений.

Обратите внимание, что версия предоставила вам ряд данных о себе:

зафиксированная вами ветка master, контрольная сумма SHA-1 версии,

количество подвергшихся изменениям файлов и статистика добавленных и

удаленных строк

Внесем изменения в любой файл, находящийся под наблюдением.

Отредактируйте отслеживаемый файл GsonExample.java (можете создать любой

файл с любым содержимым для теста) и далее воспользуйтесь проверкой с

помощью команды git status (рисунок 2.14).

Рисунок 2.14 – Отслеживание изменений в тестовом коде

Оказывается, Git индексирует файл в том состоянии, в котором он

пребывал на момент выполнения команды git add. Если сейчас зафиксировать

изменения, в коммит войдет версия файла GsonExample1.java, появившаяся

30

после последнего запуска команды git add, а не версия, находившаяся в рабочей

папке при запуске команды git commit. Редактирование файла после выполнения

команды git add требует повторного запуска этой команды для индексирования

самой последней версии файла.

В Git существует флаг, позволяющий получить сведения в более

компактной форме. Запустив команду git status -s или git status --short, вы

получите упрощенный вариант вывода (рисунок 2.15).

Рисунок 2.15 – Упрощенный вариант вывода информации

Рядом с именами новых неотслеживаемых файлов стоит знак «??», новые

файлы, добавленные в область предварительной подготовки, помечены

буквой A, а модифицированные файлы – буквой М.

2.5 Просмотр истории версий

После сохранения нескольких версий файлов вы, скорее всего, захотите

взглянуть на то, что было сделано ранее. Базовым инструментом в данном случае

является команда git log (рисунок 2.16).

31

Рисунок 2.16 – Проверка предудущих сохранений

Команда git log выводит в обратном хронологическом порядке список

сохраненных в данный репозиторий версий, т. е. первыми показываются самые

свежие коммиты. Как видите, рядом с каждым коммитом указывается его

контрольная сумма SHA-1, имя и электронная почта автора, дата создания и

сообщение о фиксации.

Если вы вдруг поняли, что не хотите сохранять внесенные в файл

изменения, можно отменить их и вернуть файл в состояние, в котором он

находился до последней фиксации.

Например, если мы внесли изменения в файл (см. рисунок 2.14), то

получим следующий результат (рисунок 2.17).

Рисунок 2.17 – Подтверждение изменений файлов

32

Если прочитать сообщения, то видно, что здесь указано, как сбросить

принятые изменения (рисунок 2.18).

Рисунок 2.18 – Проверка возможности сбросить принятые изменения

Как видите, откат изменений выполнен. Важно понимать, что

git restore <file> – опасная команда. Любые изменения соответствующего файла

пропадают – вы просто копируете поверх него другой файл. Ни в коем случае не

используйте эту команду, если вы не убеждены, что файл вам не нужен.

Все, что зафиксировано коммитом в Git, почти всегда можно восстановить.

Если не сделать коммит, информация будет потеряна.

2.6 Клонирование существующего репозитория

Получение копии существующего репозитория, например проекта, в

котором вы хотите принять участие, выполняется командой git clone.

Команда git clone по умолчанию забирает все версии всех файлов за всю

историю проекта.

Клонирование репозитория осуществляется командой git clone <url>

(рисунок 2.19).

Рисунок 2.19 – Клонирование репозитория

33

Команда создает папку с именем IBAJava_1, инициализирует в ней

папку .git, считывает из репозитория все данные и выгружает рабочую копию

последней версии. В папке вы найдете все файлы проекта, подготовленные к

работе.

2.7 Работа с удаленными репозиториями

Удаленные репозитории представляют собой версии вашего проекта,

сохраненные в интернете или еще где-то в сети. У вас может быть несколько

удаленных репозиториев, каждый из которых может быть доступен для чтения

или для чтения-записи. Взаимодействие с другими пользователями предполагает

управление удаленными репозиториями, а также отправку и получение данных

из них. Управление репозиториями включает в себя как умение добавлять новые,

так и умение удалять устаревшие репозитории.

Просмотр уже настроенных удаленных серверов осуществляется командой

git remote. Если репозиторий был клонирован, вы должны увидеть по крайней

мере источник, т. е. имя, которое Git по умолчанию присваивает клонируемому

серверу. Параметр -v позволяет увидеть URL-адреса, которые Git хранит для

сокращенного имени, используемого при чтении из данного удаленного

репозитория и при записи в него.

Извлечение данных из удаленных проектов выполняется командой

git fetch <имя удаленного репозитория>

Эта команда связывается с удаленным проектом и извлекает оттуда все

пока отсутствующие у вас данные. После этого у вас должны появиться ссылки

на все ветки удаленного проекта, которые можно подвергнуть слиянию или

просмотреть.

При клонировании данная команда автоматически добавляет удаленный

репозиторий под именем origin. Соответственно команда git fetch origin

извлекает все, что появилось на этом сервере после его клонирования (или после

момента последнего извлечения информации). Важно понимать, что команда

git fetch помещает все данные в ваш локальный репозиторий. Она не выполняет

автоматическое слияние с ветками, с которыми вы работаете в данный момент,

и вообще никак не затрагивает эти ветки. Слияние вы выполните вручную, как

только в этом возникнет необходимость (рисунок 2.20).

34

Рисунок 2.20 – Извлечение данных из удаленного репозитория

Обратите внимание, что произошел конфликт при выполнении команды.

Если файл, который вы пытаетесь получить уже существует, а также данные

вашего файла имеют недостающие фрагменты, которых нет в удаленном

репозитории, то будет такая ошибка. Требуется его разрешить. Зайдем в файл в

каталоге и исправим его при необходимости, т. е. выберем информацию, которая

должна остаться в единственном экземпляре (рисунок 2.21).

Рисунок 2.21 – Пример конфликта сохраненных версий

Когда вы хотите поделиться своими наработками, вам необходимо

отправить (push) их в главный репозиторий. Команда для этого действия простая:

git push <remote-name> <branch-name>. Чтобы отправить вашу ветку master на

сервер origin (повторимся, что клонирование, как правило, настраивает оба этих

35

имени автоматически), вы можете выполнить следующую команду для отправки

наработок на сервер:

$ git push origin master

Эта команда срабатывает только в случае, если вы клонировали с сервера,

на котором у вас есть права на запись, и, если никто другой с тех пор не выполнял

команду push. Если вы и кто-то еще одновременно клонируете, затем он

выполняет команду push, а затем команду push выполняете вы, то ваш push точно

будет отклонен. Вам придется сначала получить (pull) их изменения и

объединить с вашими. Только после этого вам будет позволено выполнить push.

Тема 3. Управление персистенцией на основе JPA

В прежнее время люди хранили данные просто в файлах. Но как только

возникла необходимость одновременного доступа к чтению и редактированию,

с появлением нагрузки (т. е. одновременно поступает несколько обращений),

хранение данных просто в файлах становится проблемой.

С давних пор Java умеет работать с базами данных (БД) при помощи

JDBC API (The Java Database Connectivity).

Со временем разработчики каждый раз сталкивались с необходимостью

писать однотипный и ненужный «обслуживающий» код (так называемый

Boilerplate code) для тривиальных операций по сохранению Java-объектов в БД

и наоборот, созданию Java-объектов по данным из БД. И тогда для решения этих

проблем появилось такое понятие, как ORM.

ORM – Object-Relational Mapping или в переводе на русский «объектно-

реляционное отображение». Это технология программирования, которая

связывает базы данных с концепциями объектно-ориентированных языков

программирования.

ORM – это, по сути, концепция о том, что Java-объект можно представить как

данные в БД. Она воплотилась в виде спецификации JPA – Java Persistence API.

Спецификация – это уже описание Java API, которое выражает эту

концепцию. Спецификация рассказывает, какими средствами мы должны быть

обеспечены (т. е. через какие интерфейсы мы сможем работать), чтобы работать

по концепции ORM, и как использовать эти средства.

Реализацию средств спецификация не описывает. Это дает возможность

использовать для одной спецификации разные реализации. Можно упростить и

сказать, что спецификация – это описание API.

36

Текст спецификации JPA можно найти в одноименном разделе на сайте

Oracle: «JSR 338: JavaTM Persistence API».

Следовательно, чтобы использовать JPA нам требуется некоторая

реализация, при помощи которой мы будем пользоваться технологией.

3.1 Проектирование структуры проекта

Задача – реализовать часть бизнес-логики приложения управления

магазином автомобилей. Возможность добавлять марки машин, осуществлять

поиск в системе и CRUD-операции с компанией. Обеспечить наличие ролей

пользователей в системе.

Нам потребуется следующая структура (рисунок 3.1).

Рисунок 3.1 – Структура проекта

37

Начнем с конфигурации проекта.

Создайте пустой проект с помощью Maven. Далее откроем pom и

воспользуемся зависимостями.

 Добавить в Properties:

<hibernate-version>5.0.1.Final</hibernate-version>

<dependencies>

 <!--driver for connection to MYSql database -->

 <dependency>

 <groupId>mysql</groupId>

 <artifactId>mysql-connector-java</artifactId>

 <version>8.0.23</version>

 </dependency>

 <!-- Hibernate -->

 <!-- to start need only this -->

 <dependency>

 <groupId>org.hibernate</groupId>

 <artifactId>hibernate-core</artifactId>

 <version>5.4.28.Final</version>

 </dependency>

 <!-- for JPA, use hibernate-entitymanager instead of hibernate-core ->

 <dependency>

 <groupId>org.hibernate</groupId>

 <artifactId>hibernate-entitymanager</artifactId>

 <version>${hibernate-version}</version>

 </dependency>

</dependencies>

После чего нам необходимо создать папку ресурсов и добавить

конфигурацию подключения нашей БД к проекту.

Файл hibernate.cfg.xml:

<?xml version='1.0' encoding='utf-8'?>

<!DOCTYPE hibernate-configuration PUBLIC

 "-//Hibernate/Hibernate Configuration DTD//EN"

 "http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">

<hibernate-configuration>

 <session-factory>

 <property

name="hibernate.connection.driver_class">com.mysql.jdbc.Driver</property>

 <property

name="hibernate.connection.url">jdbc:mysql://localhost:3306/carshop</property>

 <property name="hibernate.connection.username">root</property>

 <property name="hibernate.connection.password">root</property>

 <property name="hibernate.connection.pool_size">1</property>

 <!-- Echo all executed SQL to stdout -->

 <property name="show_sql">true</property>

 <!-- SQL dialect -->

 <property name="dialect">org.hibernate.dialect.MySQLDialect</property>

38

 <property

name="hibernate.current_session_context_class">thread</property>

 <property name="hibernate.connection.CharSet">utf8</property>

 <property name="hibernate.connection.characterEncoding">utf8</property>

 <property name="hibernate.connection.useUnicode">true</property>

 </session-factory>

</hibernate-configuration>

Следующий файл – это класс Main.

import menu.Menu;

public class Main {

 public static void main(String[] args) {

 Menu menu = new Menu();

 menu.IntroducingMenu();

 }

}

Здесь мы сразу перенаправляем вызов на класс исполнителя. Методом

хорошей практики считается не загружать класс Main кодом бизнес-логики.

Поработаем с частью системы в пакете Menu (рисунок 3.2).

Рисунок 3.2 – Классы пользовательских функций

Наш класс Main перенаправил нас на метод класса Menu. Этот класс будет

определять наборы меню для пользователей и вызов определенных методов – это

первый слой нашей архитектуры, предназначенный для описания

пользовательской информации и взаимодействия.

Нас в первую очередь интересует самый первый метод, который

вызывается из Main, остальное чуть позже.

Рассмотрим, что он содержит:

package menu;

import authorization.LogIn;

import authorization.SignUp;

import entity.User;

import java.util.Scanner;

39

public class Menu {

 public Menu() { }

 Scanner in = new Scanner(System.in);

 MenuFunctions menuFunctions = new MenuFunctions();

 public void IntroducingMenu() {

 LogIn logIn = new LogIn();

 SignUp signUp = new SignUp();

 String choice = "0";

 while (Integer.parseInt(choice) != 3) {

 String s = "Меню\n" +

 "1. Войти\n" +

 "2. Зарегистрироваться\n" +

 "3. Выход\n" +

 "Выбор: ";

 System.out.print(s);

 choice = in.nextLine();

 switch (choice) {

 case "1":

 logIn.authorization();

 break;

 case "2":

 signUp.registration();

 break;

 case "3":

 System.out.println("До свидания!");

 break;

 default:

 System.out.println("Проверьте корректность ввода!");

 choice = "0";

 break;

 }

 }

 }

 public void AdminMenu() {

 String choice = "0";

 while (Integer.parseInt(choice) != 4) {

 String s = "Меню админа\n" +

 "1. Работа с пользователями\n" +

 "2. Работа с компаниями\n" +

 "3. Работа с машинами\n" +

 "4. Выход\n" +

 "Выбор: ";

 System.out.print(s);

 choice = in.nextLine();

 switch (choice) {

 case "1":

 AdminMenuWithUsers();

 break;

 case "2":

 AdminMenuWithCompanies();

 break;

40

 case "3":

 AdminMenuWithCars();

 break;

 case "4":

 break;

 default:

 System.out.println("Проверьте корректность ввода!");

 choice = "0";

 break;

 }

 }

 }

 public void UserMenu(User currentUser) {

 String choice = "0";

 while (Integer.parseInt(choice) != 6) {

 String s = "Меню пользователя\n" +

 "1. Просмотреть все компании\n" +

 "2. Просмотреть все модели машин\n" +

 "3. Найти компанию по названию\n" +

 "4. Найти модель машины по названию\n" +

 "5. Отредактировать свой профиль\n" +

 "6. Выход\n" +

 "Выбор: ";

 System.out.print(s);

 choice = in.nextLine();

 switch (choice) {

 case "1":

 menuFunctions.showCompanies();

 break;

 case "2":

 menuFunctions.showCars();

 break;

 case "3":

 menuFunctions.showOneCompany();

 break;

 case "4":

 menuFunctions.findCarByName();

 break;

 case "5":

 menuFunctions.updateLoginAndPassword(currentUser);

 break;

 case "6":

 break;

 default:

 System.out.println("Проверьте корректность ввода!");

 choice = "0";

 break;

 }

 }

 }

41

 private void AdminMenuWithUsers() {

 String choice = "0";

 while (Integer.parseInt(choice) != 5) {

 String s = "Работа с пользователями\n" +

 "1. Добавить пользователя\n" +

 "2. Изменить личные данные пользователя\n" +

 "3. Удалить пользователя\n" +

 "4. Просмотреть всех пользователей\n" +

 "5. Выход\n" +

 "Выбор: ";

 System.out.print(s);

 choice = in.nextLine();

 switch (choice) {

 case "1":

 menuFunctions.addPerson();

 break;

 case "2":

 menuFunctions.updatePerson();

 break;

 case "3":

 menuFunctions.deletePerson();

 break;

 case "4":

 menuFunctions.showPeople();

 break;

 case "5":

 break;

 default:

 System.out.println("Проверьте корректность ввода!");

 choice = "0";

 break;

 }}}

 public void AdminMenuWithCompanies() {

 String choice = "0";

 while (Integer.parseInt(choice) != 5) {

 String s = "Работа с компаниями\n" +

 "1. Добавить компанию\n" +

 "2. Изменить компанию\n" +

 "3. Удалить компанию\n" +

 "4. Вывести все компании\n" +

 "5. Выход\n" +

 "Выбор: ";

 System.out.print(s);

 choice = in.nextLine();

 switch (choice) {

 case "1":

 System.out.println(menuFunctions.addCompany());

 break;

 case "2":

 menuFunctions.updateCompany();

 break;

 case "3":

 menuFunctions.deleteCompany();

42

 break;

 case "4":

 menuFunctions.showCompanies();

 break;

 case "5":

 break;

 default:

 System.out.println("Проверьте корректность ввода!");

 choice = "0";

 break;

 }}

 }

 public void AdminMenuWithCars() {

 String choice = "0";

 while (Integer.parseInt(choice) != 7) {

 String s = "Работа с машинами\n" +

 "1. Добавить машину\n" +

 "2. Изменить машину\n" +

 "3. Удалить машину\n" +

 "4. Вывести все машины\n" +

 "5. Вывести все машины одной компании\n" +

 "6. Найти машину по названию\n" +

 "7. Выход\n" +

 "Выбор: ";

 System.out.print(s);

 choice = in.nextLine();

 switch (choice) {

 case "1":

 menuFunctions.addCar();

 break;

 case "2":

 menuFunctions.updateCar();

 break;

 case "3":

 menuFunctions.deleteCar();

 break;

 case "4":

 menuFunctions.showCars();

 break;

 case "5":

 menuFunctions.showCarsFromOneCompany();

 break;

 case "6":

 menuFunctions.findCarByName();

 case "7":

 break;

 default:

 System.out.println("Проверьте корректность ввода!");

 choice = "0";

 break;

 }

 }}

}

43

Как мы видим из данного класса, есть три возможности: получить доступ,

зарегистрироваться и выйти. При выборе пункта меню нам потребуется вызвать

методы класса входа в систему и регистрации.

Рассмотрим часть входа и регистрации (рисунок 3.3).

Рисунок 3.3 – Классы входа и регистрации пользователей

Класс LogIn имеет следующую структуру:

package authorization;

import entity.Person;

import entity.User;

import menu.Menu;

import service.PersonService;

import service.serviceImpl.PersonServiceImpl;

import java.util.List;

import java.util.Scanner;

public class LogIn {

 Scanner in = new Scanner(System.in);

 public void authorization() {

 PersonService personService = new PersonServiceImpl();

 List<Person> people = personService.showPeople();

 System.out.print("Введите логин: ");

 String login = in.nextLine();

 System.out.print("Введите пароль: ");

 String password = in.nextLine();

 User currentUser = null;

 for(Person p : people) {

 if(p.getUser().getLogin().equals(login) &&

p.getUser().getPassword().equals(password)) {

 currentUser = p.getUser();

 p.setPersonId(people.size());

 }

 if (p.getUser().getLogin().equals(login) &&

!p.getUser().getPassword().equals(password)) {

 System.out.println("Проверьте корректность пароля!");

 }

 }

 if (currentUser != null) {

44

 System.out.println("Авторизация пройдена успешно! Добро пожаловать "

+

 currentUser.getPerson().getSurname() + " " +

currentUser.getPerson().getName());

 Menu menu = new Menu();

 String role = currentUser.getRole();

 switch (role) {

 case "Admin":

 menu.AdminMenu();

 break;

 case "User":

 menu.UserMenu(currentUser);

 break;

 }

 }

 else {

 System.out.println("Такого пользователя не найдено");

 }

 }

}

И класс SignUp:

package authorization;

import menu.MenuFunctions;

public class SignUp {

 public void registration() {

 MenuFunctions menuFunctions = new MenuFunctions();

 menuFunctions.addPerson();

 }

}

Начнем с SignUp.

Здесь мы видим создание объекта другого класса и перенаправление к

нему. Вопрос: почему нельзя это было сделать в предыдущем классе? Зачем

делать промежуточный класс? Ответ: во всех языках придерживаются правил

написания. Существуют правила, как официальные, так и неофициальные.

Например, самый распространенный стек правил, который вы могли слышать, –

SOLID, который устанавливает правильность или грамотность создания кода

(если говорить утрированно). Также можно привести CodConventions и т. д.

Чтобы закрыть раздел с Menu, добавим код для классов MenuFunctions и

рассмотрим его подробнее. Нас будет пока интересовать только первый метод,

но остальные методы тоже кратко рассмотрим, чтобы представлять назначение

класса. Более подробно их разберем при соответствующих вызовах.

45

package menu;

import entity.Car;

import entity.Company;

import entity.Person;

import entity.User;

import service.CompanyService;

import service.PersonService;

import service.serviceImpl.CompanyServiceImpl;

import service.serviceImpl.PersonServiceImpl;

//import validator.Validator;

import java.util.List;

import java.util.Scanner;

public class MenuFunctions {

 Scanner in = new Scanner(System.in);

 PersonService personService = new PersonServiceImpl();

 CompanyService companyService = new CompanyServiceImpl();

 public MenuFunctions() { }

 public void addPerson() {

 System.out.println("---Добавление пользователя---");

 Person person = getPersonInfo();

 if (person != null) {

 if (personService.addPerson(person)) {

 System.out.println("---Добавление выполнено!---");

 }

 }

 }

 private Person getPersonInfo() {

 Person person = null;

 System.out.print("Введите имя пользователя: ");

 String name = in.nextLine();

 System.out.print("Введите фамилию пользователя: ");

 String surname = in.nextLine();

 System.out.print("Введите возраст пользователя: ");

 String age = in.nextLine();

 System.out.print("Введите телефон пользователя: ");

 String phone = in.nextLine();

 System.out.print("Введите почту пользователя: ");

 String mail = in.nextLine();

 //if (Validator.correctPerson(name, surname, age, phone, mail)) {

 User user = getUserInfo();

 if (user != null) {

 person = new Person(name, surname, Integer.parseInt(age), phone,

mail);

 user.setPerson(person);

 person.setUser(user);

 }

 else {

 System.out.println("Пароль или логин некорректны!");

 }

 /* }

46

 else {

 System.out.println("Личные данные некорректны!");

 }*/

 return person;

 }

 private User getUserInfo() {

 User user = null;

 System.out.print("Введите логин пользователя: ");

 String login = in.nextLine();

 System.out.print("Введите пароль пользователя: ");

 String password = in.nextLine();

 // if(Validator.correctUser(login, password)) {

 if(checkUniqueLogin(login)) {

 user = new User(login, password, "User");

 }

 else {

 System.out.println("Такой логин уже занят!");

 }

 //}

 return user;

 }

 private boolean checkUniqueLogin(String login) {

 boolean isUnique = true;

 for (Person p : getPeople()) {

 if (p.getUser().getLogin().equals(login)) {

 isUnique = false;

 }

 }

 return isUnique;

 }

 public void updatePerson() {

 System.out.println("---Изменение пользователя---");

 showPeople();

 System.out.print("Выберите ID пользователя для изменения: ");

 String id = in.nextLine();

 if (getPersonId(id)) {

 Person person = findPersonById(Integer.parseInt(id));

 if (person != null) {

 changeDataFromPerson(person);

 changeDataFromUser(person);

 if (personService.updatePerson(person)) {

 System.out.println("---Изменение выполнено!---");

 }

 }

 }

 }

 private Person changeDataFromPerson(Person person) {

 System.out.print("Введите имя пользователя: ");

 String name = in.nextLine();

 System.out.print("Введите фамилию пользователя: ");

47

 String surname = in.nextLine();

 System.out.print("Введите возраст пользователя: ");

 String age = in.nextLine();

 System.out.print("Введите телефон пользователя: ");

 String phone = in.nextLine();

 System.out.print("Введите почту пользователя: ");

 String mail = in.nextLine();

 // if (Validator.correctPerson(name, surname, age, phone, mail)) {

 person.setName(name);

 person.setSurname(surname);

 person.setAge(Integer.parseInt(age));

 person.setPhone(phone);

 person.setMail(mail);

 /* }

 else {

 System.out.println("Личные данные некорректны!");

 }*/

 return person;

 }

 private Person changeDataFromUser(Person person) {

 System.out.print("Введите логин пользователя: ");

 String login = in.nextLine();

 System.out.print("Введите пароль пользователя: ");

 String password = in.nextLine();

 // if(Validator.correctUser(login, password)) {

 person.getUser().setLogin(login);

 person.getUser().setPassword(password);

 // }

 return person;

 }

 public void updateLoginAndPassword(User user) {

 System.out.println("---Изменение логина и пароля---");

 changeDataFromUser(user.getPerson());

 if (personService.updatePerson(user.getPerson())) {

 System.out.println("---Изменение выполнено!---");

 }

 }

 public void deletePerson() {

 System.out.println("---Удаление пользователя---");

 showPeople();

 System.out.print("Выберите ID пользователя для изменения: ");

 String id = in.nextLine();

 if (getPersonId(id)) {

 if (personService.deletePerson(Integer.parseInt(id))) {

 System.out.println("---Удаление выполнено!---");

 }

 }

 }

 private boolean getPersonId(String id) {

 boolean isAppropriateNumber = false;

 // if (Validator.correctId(id)) {

48

 if (!(Integer.parseInt(id) < 0) && !(Integer.parseInt(id) >

getPeople().size())) {

 isAppropriateNumber = true;

 }

 else {

 System.out.println("Такого ID нет!");

 }

 /* }

 else {

 System.out.println("ID некорректно!");

 }*/

 return isAppropriateNumber;

 }

 public void showPeople() {

 List<Person> people = getPeople();

 if (people.size() != 0) {

 System.out.format("%10s%20s%20s%10s%20s%30s%20s", "ID |", "Имя |",

"Фамилия |", "Возраст |", "Телефон |", "Почта |", "Логин |");

 for (Person p: people) {

 System.out.println(" ");

 System.out.format("%10s%20s%20s%10s%20s%30s%20s",

p.getPersonId() + " |", p.getName() + " |",

 p.getSurname() + " |", p.getAge() + " |",

 p.getPhone() + " |", p.getMail() + " |",

p.getUser().getLogin() + " |");

 }

 System.out.println(" ");

 }

 else {

 System.out.println("Нет пользователей!");

 }

 }

 private List<Person> getPeople() {

 List<Person> people = personService.showPeople();

 return people;

 }

 private Person findPersonById(int id) {

 Person person = personService.findPersonById(id);

 return person;

 }

 //---COMPANY---//

 public String addCompany() {

 System.out.println("---Добавление компании---");

 String result = null;

 System.out.print("Введите название компании: ");

 String name = in.nextLine();

 System.out.print("Введите страну происхождения компании: ");

 String country = in.nextLine();

49

 // if (Validator.correctCompany(name, country)) {

 Company company = new Company(name, country);

 if (companyService.addCompany(company)) {

 result = "---Добавление выполнено!---";

 }

 /* }

 else {

 result = "Данные некорректны!";

 }*/

 return result;

 }

 public String updateCompany() {

 String result = null;

 System.out.println("---Изменение компании---");

 showCompanies();

 System.out.print("Выберите ID компании для изменения: ");

 String id = in.nextLine();

 if (getCompanyId(id)) {

 System.out.print("Введите название компании: ");

 String name = in.nextLine();

 System.out.print("Введите страну происхождения компании: ");

 String country = in.nextLine();

 // if (Validator.correctCompany(name, country)) {

 Company company =

companyService.findCompanyById(Integer.parseInt(id));

 company.setCompanyName(name);

 company.setCompanyCountry(country);

 if (companyService.updateCompany(company)) {

 System.out.println("---Изменение выполнено!---");

 }

 /* }

 else {

 System.out.println("Данные некорректны!");

 }*/

 }

 return result;

 }

 public void deleteCompany() {

 System.out.println("---Удаление компании---");

 showCompanies();

 System.out.print("Введите ID компании для удаления: ");

 String id = in.nextLine();

 if (getCompanyId(id)) {

 if(companyService.deleteCompany(Integer.parseInt(id))) {

 System.out.println("---Удаление выполнено!---");

 }

 }

 }

 private boolean getCompanyId(String id) {

 boolean isAppropriateNumber = false;

 // if (Validator.correctId(id)) {

50

 if (!(Integer.parseInt(id) < 0) && !(Integer.parseInt(id) >

getCompanies().size())) {

 isAppropriateNumber = true;

 }

 else {

 System.out.println("Такого ID нет!");

 }

 /* }

 else {

 System.out.println("ID некорректно!");

 }*/

 return isAppropriateNumber;

 }

 public void showCompanies() {

 List<Company> companies = getCompanies();

 if (companies.size() != 0) {

 theHeaderForCompany();

 for (Company c: companies) {

 theTableForCompany(c);

 }

 System.out.println(" ");

 }

 else {

 System.out.println("Нет компаний!");

 }

 }

 private void theTableForCompany(Company c) {

 System.out.println(" ");

 System.out.format("%10s%20s%30s", c.getCompanyId() + " |",

c.getCompanyName() + " |", c.getCompanyCountry() + " |");

 System.out.println(" ");

 }

 private void theHeaderForCompany() {

 System.out.format("%10s%20s%30s"," ID |", "Название |", "Страна

происхождения |");

 }

 private List<Company> getCompanies() {

 List<Company> companies = companyService.showCompanies();

 return companies;

 }

 public void showOneCompany() {

 Company company = findCompanyByName();

 if (company != null) {

 theHeaderForCompany();

 theTableForCompany(company);

 }

 }

 private Company findCompanyByName() {

 System.out.print("Введите название компании: ");

 String name = in.nextLine();

51

 boolean isFound = false;

 for (Company c : getCompanies()) {

 if (c.getCompanyName().equals(name)) {

 isFound = true;

 }

 }

 Company company = null;

 if (isFound) {

 company = companyService.findCompanyByName(name);

 }

 else {

 System.out.println("Такой компании не найдено!");

 }

 return company;

 }

 //---CAR---//

 public void addCar() {

 System.out.println("---Добавление машины---");

 showCompanies();

 System.out.print("Выберите ID компании для авто: ");

 String id = in.nextLine();

 Car car = getCarInfo();

 if (car != null) {

 Company company =

companyService.findCompanyById(Integer.parseInt(id));

 car.setCompany(company);

 company.addCar(car);

 if (companyService.updateCompany(company)) {

 System.out.println("---Добавление выполнено!---");

 }

 }

 }

 private Car getCarInfo() {

 System.out.print("Введите название: ");

 String name = in.nextLine();

 System.out.print("Введите год создания: ");

 String year = in.nextLine();

 System.out.print("Введите пробег: ");

 String distance = in.nextLine();

 System.out.print("Введите вид топлива: ");

 String fuel = in.nextLine();

 System.out.print("Введите расход: ");

 String fuelConsumption = in.nextLine();

 System.out.print("Введите цену: ");

 String price = in.nextLine();

 // if (Validator.correctCar(name, year, distance, fuel, fuelConsumption,

price)) {

 // if (Validator.correctFuel(fuel)) {

 Car car = new Car();

 car.setName(name);

 car.setYear(Integer.parseInt(year));

 car.setDistance(Integer.parseInt(distance));

52

 car.setFuel(fuel);

 car.setFuelConsumption(fuelConsumption);

 car.setPrice(Integer.parseInt(price));

 return car;

 /* }

 else {

 System.out.println("Введите топливо: Бензин или Дизель!");

 }*/

 /* }

 else {

 System.out.println("Данные некорректны!");

 }*/

 }

 public void deleteCar() {

 System.out.println("---Удаление машины---");

 showCars();

 Company company = findCompanyByName();

 if (company != null) {

 System.out.print("Введите название машины: ");

 String name = in.nextLine();

 Car car = findCarInList(company, name);

 if (car != null) {

 company.getCars().remove(car);

 if (companyService.updateCompany(company)) {

 System.out.println("---Удаление выполнено!---");

 }

 }

 }

 }

 public void updateCar() {

 System.out.println("---Изменение машины---");

 showCars();

 Company company = findCompanyByName();

 if (company != null) {

 System.out.print("Введите название машины: ");

 String nameForChange = in.nextLine();

 Car car = findCarInList(company, nameForChange);

 if (car != null) {

 System.out.print("Введите название: ");

 String name = in.nextLine();

 System.out.print("Введите год создания: ");

 String year = in.nextLine();

 System.out.print("Введите пробег: ");

 String distance = in.nextLine();

 System.out.print("Введите вид топлива: ");

 String fuel = in.nextLine();

 System.out.print("Введите расход: ");

 String fuelConsumption = in.nextLine();

 System.out.print("Введите цену: ");

 String price = in.nextLine();

 /* if (Validator.correctCar(name, year, distance, fuel,

fuelConsumption, price)) {

 if (Validator.correctFuel(fuel)) {*/

 car.setName(name);

53

 car.setYear(Integer.parseInt(year));

 car.setDistance(Integer.parseInt(distance));

 car.setFuel(fuel);

 car.setFuelConsumption(fuelConsumption);

 car.setPrice(Integer.parseInt(price));

 }

 else {

 System.out.println("Введите топливо: Бензин или

Дизель!");

 }

 /* }

 else {

 System.out.println("Данные некорректны!");

 }

 if (companyService.updateCompany(company)) {

 System.out.println("---Изменение выполнено!---");

 }*/

 // }

 }

 }

 public void findCarByName() {

 System.out.print("Введите название машины: ");

 String name = in.nextLine();

 Car car = null;

 for (Company company : getCompanies()) {

 car = findCarInList(company, name);

 if (car != null) {

 theHeaderForCar();

 theTableForCar(car);

 }

 }

 System.out.println(" ");

 }

 private Car findCarInList(Company company, String name) {

 Car car = null;

 if (!company.getCars().isEmpty()) {

 for (Car c : company.getCars()) {

 if (c.getName().equals(name)) {

 car = c;

 }

 }

 if (car == null) {

 System.out.println("Такой машины не найдено в компании " +

company.getCompanyName());

 }

 }

 return car;

 }

 public void showCarsFromOneCompany() {

 showCompanies();

 Company company = findCompanyByName();

 if (company != null) {

54

 if (!company.getCars().isEmpty()) {

 theHeaderForCar();

 for (Car c : company.getCars()) {

 theTableForCar(c);

 }

 System.out.println(" ");

 }

 else {

 System.out.println("Компания " + company.getCompanyName() + " не

имеет моделей!");

 }

 }

 }

 public void showCars() {

 List<Company> companies = getCompanies();

 if (companies.size() != 0) {

 theHeaderForCar();

 for (Company c: companies) {

 List<Car> cars = c.getCars();

 if (!cars.isEmpty()) {

 for (Car car : cars) {

 theTableForCar(car);

 }

 System.out.println(" ");

 }

 }

 }

 else {

 System.out.println("Нет пользователей!");

 }

 }

 private void theHeaderForCar() {

 System.out.format("%15s%20s%10s%10s%10s%15s%10s%20s", "ID |", "Название

|", "Год |", "Пробег |", "Топливо |",

 "Расход топлива |", "Цена |", " Компания|");

 }

 private void theTableForCar(Car car) {

 System.out.println(" ");

 System.out.format("%15s%20s%10s%10s%10s%16s%10s%20s", car.getCarId() + "

|", car.getName() + " |",

 car.getYear() + " |", car.getDistance() + " |", car.getFuel() +

" |",

 car.getFuelConsumption() + " |", car.getPrice() + " |",

car.getCompany().getCompanyName() + " |");

 }

}

Вернемся к классу LogIn и рассмотрим часть логики для регистрации.

Из данного класса направляемся в следующий слой архитектуры

приложения (рисунок 3.4).

55

Рисунок 3.4 – Уровень работы с бизнес-логикой

Данная часть отвечает за часть бизнес-логики, выполняемой системой. В

частности, мы должны обработать работу с Person. Рассмотрим PersonService.

package service;

import entity.Person;

import java.util.List;

public interface PersonService {

 boolean addPerson(Person person);

 boolean updatePerson(Person person);

 boolean deletePerson(int id);

 List<Person> showPeople();

 Person findPersonById(int id);

}

Если классы Menu, LogIn и т. д. отвечают за порядок предоставления

данных и связи пользовательского меню с обработкой действий системы, то

начиная с уровня сервисов, мы описываем полноценную бизнес-логику

приложения, как она работает с БД или иными источниками данных, как хранит

информацию и какие действия с этой информацией может выполнить.

Наш интерфейс хранит методы, и мы их должны переопределить в

PersonServiceImpl. Пока также мы рассматриваем часть – это первый метод.

package service.serviceImpl;

import dao.PersonDao;

import dao.daoImpl.PersonDaoImpl;

import entity.Person;

import exception.ShowException;

import org.hibernate.HibernateError;

import service.PersonService;

import java.util.List;

public class PersonServiceImpl implements PersonService {

56

 PersonDao personDao = new PersonDaoImpl();

 public PersonServiceImpl() {}

 @Override

 public boolean addPerson(Person person) {

 boolean isAdded = false;

 try {

 if (personDao.addPerson(person))

 isAdded = true;

 }

 catch (HibernateError e) {

 ShowException.showNotice(e);

 }

 return isAdded;

 }

 @Override

 public boolean updatePerson(Person person) {

 boolean isUpdated = false;

 try {

 if (personDao.updatePerson(person))

 isUpdated = true;

 }

 catch (HibernateError e) {

 ShowException.showNotice(e);

 }

 return isUpdated;

 }

 @Override

 public boolean deletePerson(int id) {

 boolean isDeleted = false;

 try {

 if (personDao.deletePerson(id))

 isDeleted = true;

 }

 catch (HibernateError e) {

 ShowException.showNotice(e);

 }

 return isDeleted;

 }

 @Override

 public List<Person> showPeople() {

 List<Person> people = null;

 try {

 people = personDao.showPeople();

 }

 catch (HibernateError e) {

 ShowException.showNotice(e);

 }

 return people;

 }

57

 @Override

 public Person findPersonById(int id) {

 Person person = null;

 try {

 person = personDao.findPersonById(id);

 }

 catch (HibernateError e) {

 ShowException.showNotice(e);

 }

 return person;

 }

}

Разберем данный класс.

Из этого следует, что мы переходим еще глубже в логику – в слой работы

с БД или, иными словами, DAO (data access object). Теперь становится ясным

понятие «Объектный язык программирования» – начиная с простой

инкапсуляции, POJO и уровнями архитектуры все завязано на этом

представлении объектов и их трансформации (рисунок 3.5).

Начнем с Entity.

Рисунок 3.5 – Entity-классы приложения

А именно с Person:

package entity;

import javax.persistence.*;

@Entity

@Table(name = "people")

public class Person {

 @Id

 @GeneratedValue (strategy = GenerationType.IDENTITY)

 @Column (name = "person_id")

 private int personId;

 @Column

 private String surname;

 @Column

 private String name;

58

 @Column

 private int age;

 @Column

 private String phone;

 @Column

 private String mail;

 @OneToOne(mappedBy = "person", cascade = CascadeType.ALL, orphanRemoval =

true)

 private User user;

/Конструкторы getters@setters

 }

}

И после этого перейдем уже в DAO (рисунок 3.6).

Рисунок 3.6 – Уровень работы с базой данных

В интерфейсе PersonDao:

package dao;

import entity.Person;

import entity.User;

import java.util.List;

public interface PersonDao {

 boolean addPerson(Person person);

 boolean updatePerson(Person person);

 boolean deletePerson(int id);

 List<Person> showPeople();

 Person findPersonById(int id);

}

И реализации Impl:

package dao.daoImpl;

import dao.PersonDao;

import entity.Person;

import org.hibernate.Query;

import org.hibernate.Session;

import org.hibernate.Transaction;

import sessionFactory.SessionFactoryImpl;

import javax.persistence.criteria.CriteriaBuilder;

import javax.persistence.criteria.CriteriaQuery;

import javax.persistence.criteria.Root;

import java.util.List;

59

public class PersonDaoImpl implements PersonDao {

 @Override

 public boolean addPerson(Person person) {

 boolean isAdded = false;

 try {

 Session session =

SessionFactoryImpl.getSessionFactory().openSession();

 Transaction tx = session.beginTransaction();

 session.save(person);

 tx.commit();

 session.close();

 isAdded = true;

 }

 catch (NoClassDefFoundError e) {

 System.out.println("Exception: " + e);

 }

 return isAdded;

 }

 @Override

 public boolean updatePerson(Person person) {

 boolean isUpdated = false;

 try {

 Session session =

SessionFactoryImpl.getSessionFactory().openSession();

 Transaction tx = session.beginTransaction();

 session.update(person);

 tx.commit();

 session.close();

 isUpdated = true;

 }

 catch (NoClassDefFoundError e) {

 System.out.println("Exception: " + e);

 }

 return isUpdated;

 }

 @Override

 public boolean deletePerson(int id) {

 boolean isDeleted = false;

 try {

 Session session =

SessionFactoryImpl.getSessionFactory().openSession();

 Person person = session.load(Person.class, id);

 Transaction tx = session.beginTransaction();

 session.delete(person);

 tx.commit();

 session.close();

 isDeleted = true;

 }

 catch (NoClassDefFoundError e) {

 System.out.println("Exception: " + e);

 }

 return isDeleted;

 }

60

 @Override

 public List<Person> showPeople() {

 List<Person> people =

(List<Person>)SessionFactoryImpl.getSessionFactory().openSession().createQuery("

FROM Person").list();

 return people;

 }

 @Override

 public Person findPersonById(int id) {

 Person person = null;

 try {

 Session session =

SessionFactoryImpl.getSessionFactory().openSession();

 Transaction tx = session.beginTransaction();

 CriteriaBuilder cb = session.getCriteriaBuilder();

 CriteriaQuery<Person> cr = cb.createQuery(Person.class);

 Root<Person> root = cr.from(Person.class);

 cr.select(root).where(cb.equal(root.get("personId"), id));

 person = session.createQuery(cr).getSingleResult();

 tx.commit();

 session.close();

 }

 catch (NoClassDefFoundError e) {

 System.out.println("Exception: " + e);

 }

 return person;

 }

}

И наконец, последний класс (рисунок 3.7).

Рисунок 3.7 – Уровень настройки Hibernate в реализации приложения

package sessionFactory;

import entity.Car;

import entity.Company;

import entity.Person;

import entity.User;

import org.hibernate.SessionFactory;

import org.hibernate.boot.registry.StandardServiceRegistryBuilder;

import org.hibernate.cfg.Configuration;

public class SessionFactoryImpl {

 private static SessionFactory sessionFactory;

 private SessionFactoryImpl() {}

 public static SessionFactory getSessionFactory() {

 if (sessionFactory == null) {

 try {

61

 Configuration configuration = new Configuration().configure();

 configuration.addAnnotatedClass(Company.class);

 configuration.addAnnotatedClass(Car.class);

 configuration.addAnnotatedClass(Person.class);

 configuration.addAnnotatedClass(User.class);

 StandardServiceRegistryBuilder builder = new

StandardServiceRegistryBuilder().applySettings(configuration.getProperties());

 sessionFactory =

configuration.buildSessionFactory(builder.build());

 } catch (Exception e) {

 System.out.println("Исключение!" + e);

 }

 }

 return sessionFactory;

 }

}

3.2 Структура БД

DROP SCHEMA IF EXISTS carshop;

CREATE SCHEMA carshop;

USE carshop;

 CREATE TABLE `companies` (

 `company_id` int NOT NULL AUTO_INCREMENT primary key,

 `company_name` varchar(45) NOT NULL,

 `company_country` varchar(45) NOT NULL);

 CREATE TABLE `cars` (

 `car_id` int NOT NULL AUTO_INCREMENT primary key,

 `name` varchar(45) NOT NULL,

 `year` int NOT NULL,

 `distance` int DEFAULT NULL,

 `fuel` varchar(45) NOT NULL DEFAULT 'Бензин',

 `fuel_consumption` varchar(45) NOT NULL,

 `price` int NOT NULL,

 `company_id` int NOT NULL,

 FOREIGN KEY (`company_id`) REFERENCES companies(`company_id`)

 ON delete cascade

);

CREATE TABLE `people` (

 `person_id` int NOT NULL primary key auto_increment,

 `surname` varchar(45) NOT NULL,

 `name` varchar(45) NOT NULL,

 `age` int NOT NULL,

 `phone` varchar(45) NOT NULL,

 `mail` varchar(45) NOT NULL

);

CREATE TABLE `users` (

 `user_id` int NOT NULL primary key auto_increment,

 `login` varchar(45) NOT NULL,

 `password` varchar(45) NOT NULL,

 `role` varchar(45) not null DEFAULT 'User',

 `person_id` int,

 constraint `fk_user_person` foreign key (`person_id`) references `people`

(`person_id`)

 on delete cascade

);

62

3.3 Создание Entity-классов для маппинга объектной и реляционной

модели

Рассмотрим БД и добавим Entity в проект.

Класс Car:

package entity;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.FetchType;

import javax.persistence.GeneratedValue;

import javax.persistence.GenerationType;

import javax.persistence.Id;

import javax.persistence.JoinColumn;

import javax.persistence.ManyToOne;

import javax.persistence.Table;

@Entity

@Table(name = "cars")

public class Car {

 @Id

 @GeneratedValue (strategy = GenerationType.IDENTITY)

 @Column(name = "car_id")

 private int carId;

 @Column(name = "name")

 private String name;

 @Column(name = "year")

 private int year;

 @Column(name = "distance")

 private int distance;

 @Column(name = "fuel")

 private String fuel;

 @Column(name = "fuel_consumption")

 private String fuelConsumption;

 @Column(name = "price")

 private int price;

 @ManyToOne(fetch = FetchType.LAZY)

 @JoinColumn(name = "company_id")

 private Company company;

/Конструкторы getters@setters@toString

 }

}

Класс Company:

package entity;

import javax.persistence.*;

import java.util.ArrayList;

import java.util.List;

@Entity

@Table (name = "companies")

public class Company {

63

 @Id

 @GeneratedValue (strategy = GenerationType.IDENTITY)

 @Column(name = "company_id")

 private int companyId;

 @Column(name = "company_name")

 private String companyName;

 @Column(name = "company_country")

 private String companyCountry;

 @OneToMany(mappedBy = "company", cascade = CascadeType.ALL, orphanRemoval =

true, fetch = FetchType.EAGER)

 private List<Car> cars;

/Конструкторы getters@setters@toString

 }

}

Класс User:

package entity;

import javax.persistence.*;

@Entity

@Table(name = "users")

public class User {

 @Id

 @GeneratedValue (strategy = GenerationType.IDENTITY)

 @Column(name = "user_id")

 private int userId;

 @Column

 private String login;

 @Column

 private String password;

 @Column

 private String role;

 @OneToOne

 @JoinColumn(name = "person_id")

 private Person person;

/Конструкторы getters@setters

 }

}

Создадим оставшиеся интерфейсы и классы. В качестве тренировки

реализуйте недостающие методы в классах сервис-слоя и работы с БД.

CompanyService:

package service;

import entity.Company;

import java.util.List;

public interface CompanyService {

 boolean addCompany(Company company);

 boolean updateCompany(Company company);

 boolean deleteCompany(int id);

 List<Company> showCompanies();

 Company findCompanyById(int id);

 Company findCompanyByName(String name);

}

64

CompanyDao:

package dao;

import entity.Company;

import java.util.List;

public interface CompanyDao {

 boolean addCompany(Company company);

 boolean updateCompany(Company company);

 boolean deleteCompany(int id);

 List<Company> showCompanies();

 Company findCompanyById(int id);

 Company findCompanyByName(String name);

}

ServiceCompanyImpl:

package service.serviceImpl;

import dao.CompanyDao;

import dao.daoImpl.CompanyDaoImpl;

import entity.Company;

import exception.ShowException;

import org.hibernate.HibernateError;

import service.CompanyService;

import java.util.List;

public class CompanyServiceImpl implements CompanyService {

 CompanyDao companyDao = new CompanyDaoImpl();

 public CompanyServiceImpl() {}

 @Override

 public boolean addCompany(Company company) {

 boolean isAdded = false;

 try {

 companyDao.addCompany(company);

 isAdded = true;

 }

 catch (HibernateError e) {

 ShowException.showNotice(e);

 }

 return isAdded;

 }

 @Override

 public boolean updateCompany(Company company) {

 boolean isUpdated = false;

 try {

 companyDao.updateCompany(company);

 isUpdated = true;

 }

 catch (HibernateError e) {

 ShowException.showNotice(e);

 }

 return isUpdated;

 }

65

 @Override

 public boolean deleteCompany(int id) {

 boolean isDeleted = false;

 try {

 companyDao.deleteCompany(id);

 isDeleted = true;

 }

 catch (HibernateError e) {

 ShowException.showNotice(e);

 }

 return isDeleted;

 }

 @Override

 public List<Company> showCompanies() {

 List<Company> companies = null;

 try {

 companies = companyDao.showCompanies();

 }

 catch (HibernateError e) {

 ShowException.showNotice(e);

 }

 return companies;

 }

 @Override

 public Company findCompanyById(int id) {

 Company company = null;

 try {

 company = companyDao.findCompanyById(id);

 }

 catch (HibernateError e) {

 ShowException.showNotice(e);

 }

 return company;

 }

 @Override

 public Company findCompanyByName(String name) {

 Company company = null;

 try {

 company = companyDao.findCompanyByName(name);

 }

 catch (HibernateError e) {

 ShowException.showNotice(e);

 }

 return company;

 }

}

CompanyDaoImpl:

package dao.daoImpl;

import dao.CompanyDao;

import entity.Company;

import java.util.List;

66

public class CompanyDaoImpl implements CompanyDao {

 public CompanyDaoImpl() {

 }

 @Override

 public boolean addCompany(Company company) {

 boolean isAdded = false;

 try {

 Session session =

SessionFactoryImpl.getSessionFactory().openSession();

 Transaction tx = session.beginTransaction();

 session.save(company);

 tx.commit();

 session.close();

 isAdded = true;

 }

 catch (NoClassDefFoundError e) {

 System.out.println("Exception: " + e);

 }

 return isAdded;

 }

 @Override

 public boolean updateCompany(Company company) {

 boolean isUpdated = false;

 try {

 Session session =

SessionFactoryImpl.getSessionFactory().openSession();

 Transaction tx = session.beginTransaction();

 session.update(company);

 tx.commit();

 session.close();

 isUpdated = true;

 }

 catch (NoClassDefFoundError e) {

 System.out.println("Exception: " + e);

 }

 return isUpdated;

 }

 @Override

 public boolean deleteCompany(int id) {

 boolean isDeleted = false;

 try {

 Session session =

SessionFactoryImpl.getSessionFactory().openSession();

 Company company = session.load(Company.class, id);

 Transaction tx = session.beginTransaction();

 session.delete(company);

 tx.commit();

 session.close();

 isDeleted = true;

 }

 catch (NoClassDefFoundError e) {

 System.out.println("Exception: " + e);

 }

 return isDeleted; }

67

 @Override

 public Company findCompanyById(int id) {

 Company company = null;

 try {

 Session session =

SessionFactoryImpl.getSessionFactory().openSession();

 Transaction tx = session.beginTransaction();

 CriteriaBuilder cb = session.getCriteriaBuilder();

 CriteriaQuery<Company> cr = cb.createQuery(Company.class);

 Root<Company> root = cr.from(Company.class);

 cr.select(root).where(cb.equal(root.get("companyId"), id));

 company = session.createQuery(cr).getSingleResult();

 tx.commit();

 session.close();

 }

 catch (NoClassDefFoundError e) {

 System.out.println("Exception: " + e);

 }

 return company;

 }

 @Override

 public Company findCompanyByName(String name) {

 Company company = null;

 try {

 Session session =

SessionFactoryImpl.getSessionFactory().openSession();

 Transaction tx = session.beginTransaction();

 CriteriaBuilder cb = session.getCriteriaBuilder();

 CriteriaQuery<Company> cr = cb.createQuery(Company.class);

 Root<Company> root = cr.from(Company.class);

 cr.select(root).where(cb.equal(root.get("companyName"),

name));

 company = session.createQuery(cr).getSingleResult();

 tx.commit();

 session.close();

 }

 catch (NoClassDefFoundError e) {

 System.out.println("Exception: " + e);

 }

 return company;

 }

 @Override

 public List<Company> showCompanies() {

 List<Company> companies =

(List<Company>)SessionFactoryImpl.getSessionFactory().openSession().createQuery(

"From Company").list();

 return companies;

 }

}

68

Создайте класс Validator:

package validator;

import java.util.regex.Pattern;

public class Validator {

 private static final Pattern STRING_PATTERN =

Pattern.compile("^[\\p{L}]+$");

 private static final Pattern NUMBER_PATTERN = Pattern.compile("\\d+");

 private static final Pattern FUEL_CONSUMPTION_PATTERN = Pattern.compile("\\-

?\\d+(\\.\\d{0,})?");

 public static boolean correctCompany(String name, String country) {

 boolean isCorrect = true;

 if (name.isBlank() || country.isBlank() ||

!STRING_PATTERN.matcher(country).matches()) {

 isCorrect = false;

 }

 return isCorrect;

 }

 public static boolean correctPerson(String name, String surname, String age,

String phone, String mail) {

 boolean isCorrect = true;

 if (name.isBlank() || surname.isBlank() || age.isBlank() ||

!NUMBER_PATTERN.matcher(age).matches() ||

 phone.isBlank() || mail.isBlank()) {

 isCorrect = false;

 }

 return isCorrect;

 }

 public static boolean correctUser(String login, String password) {

 boolean isCorrect = true;

 if (login.isBlank() || password.isBlank()) {

 isCorrect = false;

 }

 return isCorrect;

 }

 public static boolean correctRole(String role) {

 boolean isCorrect = true;

 if (!role.equals("User") || !role.equals("Admin")) {

 isCorrect = false;

 }

 return isCorrect;

 }

 public static boolean correctId(String id) {

 boolean isCorrect = true;

 if (id.isBlank() || !NUMBER_PATTERN.matcher(id).matches()) {

 isCorrect = false;

 }

 return isCorrect;

 }

69

 public static boolean correctCar(String name, String year, String distance,

 String fuel, String fuelConsumption, String

price) {

 boolean isCorrect = true;

 if (name.isBlank() || year.isBlank() ||

!NUMBER_PATTERN.matcher(year).matches() || distance.isBlank() ||

 !NUMBER_PATTERN.matcher(distance).matches() || fuel.isBlank() ||

fuelConsumption.isBlank() ||

 !FUEL_CONSUMPTION_PATTERN.matcher(fuelConsumption).matches() ||

price.isBlank() ||

 !NUMBER_PATTERN.matcher(price).matches()) {

 isCorrect = false;

 }

 return isCorrect;

 }

 public static boolean correctFuel(String fuel) {

 boolean isCorrect = false;

 if (fuel.equals("Бензин") || fuel.equals("Дизель")) {

 isCorrect = true;

 }

 return isCorrect;

 }

}

Тема 4. Реализация веб-приложения на основе Servlets

4.1 Конфигурация проекта

Создадим сервлет в среде разработки Idea. В зависимости от версии форма

окон может немного изменяться. Необходимо выбрать сборщик проекта, в

данном случае Maven, а также пункт Servlets.

В вашем варианте будет примерно так, как показано на рисунках 4.1 и 4.2.

Рисунок 4.1 – Инициализация проекта

70

Рисунок 4.2 – Выбор библиотек

Также вам будут предложены варианты версий Tomcat.

В старой версии Idea подключение можно выполнить таким способом

(рисунок 4.3).

Рисунок 4.3 – Подключение библиотек через архетип в старой версии Idea

Структура проекта будет следующая (рисунок 4.4).

71

Рисунок 4.4 – Структура проекта

Если вы используете Tomcat версии 10, то надо будет вместо javax.servlet

использовать jakarta.servlet и в pom.xml установить зависимость

<dependency>

<groupId>jakarta.servlet</groupId>

<artifactId>jakarta.servlet-api</artifactId>

<version>5.0.0</version>

<scope>provided</scope>

</dependency>

Добавим еще один New →Servlet. Назовем его LoginServlet (рисунок 4.5).

Рисунок 4.5 – Добавление сервлета

72

Чтобы создать сервлет, нам нужен суперкласс HttpServlet, который

определен в Java EE Web API. Нужные зависимости для поддержки сервлетов

уже есть в проекте (рисунок 4.6).

Рисунок 4.6 – Проверка зависимостей

Посмотрим на добавленный класс сервлета. У вас уже есть два

автоматически сгенерированных метода:

@WebServlet(name = "LoginServlet")

public class LoginServlet extends HttpServlet {

 protected void doPost(HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException {

 }

 protected void doGet(HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException {

 }

}

4.2 Жизненный цикл Servlets

Сервлеты выполняются на платформе веб-сервера как часть того же

процесса, что и сам веб-сервер. Веб-сервер отвечает за инициализацию, вызов и

уничтожение каждого экземпляра сервлета. Веб-сервер взаимодействует с

сервлетом через простой интерфейс: javax.servlet.Servlet.

Интерфейс javax.servlet.Servlet состоит из трех главных методов:

1) init();

2) service();

3) destroy().

И двух вспомогательных методов:

1) getServletConfig();

2) getServletInfo().

Сходство между интерфейсами сервлета и апплета Java очевидны. Именно

так и было спроектировано. Сервлеты являются для веб-серверов тем же самым,

73

чем являются апплеты для веб-браузеров. Апплет выполняется в веб-браузере,

совершая действия по его запросу через специальный интерфейс. Сервлет делает

то же самое, работая на веб-сервере.

Метод init()

При первой загрузке сервлета вызывается метод init(). Это дает

возможность сервлету выполнить любую работу по установке, например,

открытие файлов или установку соединений с их серверами. Если сервлет

установлен на сервере постоянно, он загружается при запуске сервера. В

противном случае сервер активизирует сервлет при получении первого запроса

от клиента на выполнение услуги, обеспечиваемой этим сервлетом.

Гарантируется, что метод init() закончится перед любым другим обращением к

сервлету, таким как, например, вызов метода service(). Обратите внимание, что

init() будет вызван только один раз; он не будет вызываться до тех пор, пока

сервлет не будет выгружен и затем загружен сервером снова. Метод init()

принимает один аргумент – ссылку на объект ServletConfig, который содержит

аргументы для инициализации сервлета. Этот объект имеет метод

getServletContext(), возвращающий объект ServletContext, который содержит

информацию об окружении сервлета.

Метод service()

Метод service() является сердцем сервлета. Каждый запрос от клиента

приводит к одному вызову метода service(). Этот метод читает запрос и

формирует ответное сообщение при помощи своих двух аргументов

ServletRequest и ServletResponse:

1) Объект ServletRequest содержит данные от клиента. Данные состоят из

пар «имя:значение» и InputStream. Существует несколько методов,

возвращающих информацию о параметрах клиента. InputStream может быть

получен при помощи метода getInputStream(). Этот метод возвращает объект

ServletInputStream, который можно использовать для получения дополнительных

данных от клиента. Если необходимо выполнить обработку символьных данных,

а не двоичных, то можно получить объект BufferedReader при помощи метода

getReader().

2) Объект ServletResponse содержит ответ сервлета клиенту. Во время

подготовки ответа прежде всего вызывается метод setContentType() для

установки типа MIME-ответа. Затем могут быть использованы методы

getOutputStream() или getWriter() для получения объектов и ServletOutputStream

или PrintWriter соответственно для передачи данных обратно клиенту.

Таким образом, существуют два способа передачи информации от клиента

к сервлету. Первый – через передачу значений в параметрах запроса. Значения

74

параметров могут быть вставлены в URL. Второй способ передачи информации

от клиента к сервлету осуществляется через InputStream (или Reader).

Работа метода service() по существу проста – он создает ответ на каждый

клиентский запрос, переданный ему с сервера. Однако необходимо помнить, что

могут существовать несколько параллельных запросов, обрабатываемых в одно

и то же время. Если метод service() требует каких-либо внешних ресурсов, таких

как файлы, базы данных, то необходимо гарантировать, чтобы доступ к ресурсам

являлся потокозащищенным.

Метод destroy()

Метод destroy() вызывается для освобождения всех ресурсов (например,

открытые файлы и соединения с базой данных) перед выгрузкой сервлета. Этот

метод может быть пустым, если нет необходимости выполнения каких-либо

завершающих операций. Перед вызовом метода destroy() сервер ждет либо

завершения всех обслуживающих операций, либо истечения определенного

времени. Это означает, что метод destroy() может быть вызван во время

выполнения какого-либо продолжительного метода service(). Важно оформить

метод destroy() таким образом, чтобы избежать закрытия необходимых ресурсов

до тех пор, пока все вызовы service() не завершатся.

Метод getServletConfig()

Метод getServletConfig() возвращает ссылку на объект, который реализует

интерфейс ServletConfig. Данный объект предоставляет доступ к информации о

конфигурации сервлета, т. е. доступ к параметрам инициализации сервлета и

объекту контекста сервлета ServletContext, который дает доступ к сервлету и его

окружению.

Метод getServletInfo()

Метод getServletInfo() определяется программистом, создающим сервлет,

для возврата строки, содержащей информацию о сервлете, например: автор и

версия сервлета.

Так, когда пользователь отправляет запрос Servlet, который создается в

момент получения первого запроса, одновременно вызывается метод init() в

Servlet, чтобы инициализировать его, init() вызывается один-единственный раз.

Метод destroy() используется для разрушения Servlet, вызывается единственный

раз когда вы отменяете развертывание (undeloy) веб-приложения или отключаете

(shutdown) Web Server (веб-сервер).

Поскольку для обработки всех запросов создается один экземпляр сервлета

и все обращения к нему идут в отдельных потоках, то не рекомендуется в классе

сервлета объявлять и использовать глобальные переменные, так как они не будут

потокобезопасными.

75

Когда пользователь вводит ссылку в браузере, то она будет отправлена в

WebContainer. WebContainer должен решить, какой Servlet будет обслуживать

этот запрос от пользователя. Для этого ему надо определить urlPatterns.

Servlet с urlPatterns = "/ "

Это Servlet по умолчанию и он будет использоваться для обработки запроса

(request), который имеет ссылку, не совпадающую ни с каким urlPatterns другого

Servlet, объявленного в вашем приложении.

Начиная с версии 3.0 можно конфигурировать Servlet, используя Annotation.

Поменяйте код на следующий:

package by.iba.servlet;

import javax.servlet.annotation.WebServlet;

@WebServlet(name = "LoginServlet", urlPatterns = "/LoginServlet")

public class LoginServlet extends HttpServlet {

 @Override

 protected void doGet(HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException {

 PrintWriter out = response.getWriter();

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Good morning </title>");

 out.println("</head>");

 out.println("<body>");

 out.println(" First Servlet");

 out.println("</body>");

 out.println("</html>");

 }

 @Override

 protected void doPost(HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException {

 }}

Перед определением класса указана аннотация WebServlet, которая

уточняет, с какой конечной точкой будет сопоставляться данный сервлет, т. е.

данный сервлет будет обрабатывать запросы по адресу "/LoginServlet".

Для обработки GET-запросов (например, при обращении к сервлету из

адресной строки браузера) сервлет должен переопределить метод doGet. В

данном случае GET-запрос по адресу "/LoginServlet" будет обрабатываться

методом doGet.

Этот метод принимает два параметра.

Параметр типа HttpServletRequest инкапсулирует всю информацию о

запросе, а параметр типа HttpServletResponse позволяет управлять ответом. С

помощью метода getWriter() объекта HttpServletResponse мы можем получить

76

объект PrintWriter, через который можно отправить какой-то определенный

ответ пользователю.

В данном случае через метод println() пользователю отправляется

простейший html-код. По завершении использования объекта

HttpServletResponse его необходимо закрыть с помощью метода close().

Зайдите в файл WEB-INF\web.xml и внесите изменения. Так как мы

используем аннотации, то настроек в дескрипторе развертывания нет.

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd"

 version="4.0">

 <welcome-file-list>

 <welcome-file>LoginServlet</welcome-file>

 </welcome-file-list>

</web-app>

Мы настроили welcome-файл логина.

Запустите проект (рисунок 4.7).

Рисунок 4.7 – Первый запуск приложения с GET-запросом

Мы определили метод doGet (запрос HttpServletRequest, ответ

HttpServletResponse) в LoginServlet. Метод doGet обрабатывает запросы GET к

шаблону URL "/LoginServlet".

Переопределите еще три метода жизненного цикла: init, destroy, service.

Итак, для обработки запроса в HttpServlet определен ряд методов, которые

мы можем переопределить в классе сервлета:

‒ doGet: обрабатывает запросы GET (получение данных);

‒ doPost: обрабатывает запросы POST (отправка данных);

‒ doPut: обрабатывает запросы PUT (отправка данных для изменения);

‒ doDelete: обрабатывает запросы DELETE (удаление данных);

‒ doHead: обрабатывает запросы HEAD.

77

Каждый метод обрабатывает определенный тип запросов HTTP и мы

можем определить все эти методы, но зачастую работа идет в основном с

методами doGet и doPost.

Когда вы вводите URL-адрес браузера, браузер создает HTTP-запрос GET.

Запрос HTTP GET получен веб-приложением, развернутым на сервере Tomcat.

Сервлеты. Контекст.

Сервлет может получать информацию о своем окружении в различное

время. Во время запуска сервлета доступна информация об инициализации;

информация о сервере доступна в любое время. Кроме этого, любой запрос

может содержать дополнительную специфическую информацию.

Информация об инициализации сервера

Информация об инициализации сервера передается сервлету при помощи

параметра ServletConfig метода init(). Каждый веб-сервер обеспечивает свой

способ передачи информации об инициализации в сервлет. Если, например,

класс сервера DatePrintServlet принимает аргумент инициализации timezone, то

необходимо определить следующие свойства в файле servlets.properties:

‒ servlet.dateprinter.code=DatePrinterServlet;

‒ servlet.dateprinter.timezone=PST.

Эта информация также может быть предоставлена административным

средством GUI. В следующем коде сервлет получает доступ к информации

timezone на этапе инициализации.

Информация о контексте сервера

Информация о контексте сервера доступна в любое время через объект

ServletContext. Сервлет может получить этот объект, вызывая метод

getServletContext() объекта ServletConfig. Необходимо помнить, что этот объект

передается сервлету во время инициализации. Грамотно написанный метод init()

сохраняет ссылку в переменной, имеющей тип доступа private. Интерфейс

ServletContext определяет несколько методов, представленных в таблице 4.1.

Таблица 4.1 – Описание методов контекста сервлета

Метод Описание

getAttribute () Гибкий способ получения информации о

сервере через пары атрибутов «имя:значение»

getMimeType () Возвращает тип MIME данного файла

getRealPath () Этот метод преобразует относительный или

виртуальный путь в новый путь относительно

месторасположения корня HTML-документов

сервера

78

Метод Описание

getServerInfo () Возвращает имя и версию сетевой службы, в

которой исполняется сервлет

getServlet () Возвращает объект Servlet указанного имени.

Полезен при доступе к службам других

сервлетов

getServletNames () Возвращает список имен сервлетов,

доступных в текущем пространстве имен

log () Записывает информацию в файл регистрации

сервлета. Имя файла регистрации и его

формат зависят от сервера

Следующий пример показывает, как сервлет использует веб-сервер для

записи сообщения в свой log-файл во время инициализации:

public HelloWorld implements Servlet

{

private ServletConfig config;

public void init (ServletConfig config) throws ServletException

{

this.config = config;

ServletContext sc = config.getServletContext();

sc.log("Started OK!");

} }

Контекст сервлета во время запроса на обслуживание

Каждый запрос на обслуживание может содержать информацию в форме

пар параметров «имя:значение», как ServletInputStream или BufferedReader. Эта

информация доступна при помощи объекта ServletRequest, который передается в

метод service(). Следующий код показывает, как получить информацию во время

работы метода service():

BufferedReader reader;

String param1;

String param2;

public void service(ServletRequest request,ServletResponse response)

{

reader = request.getReader();

param1 = request.getParameter("First");

param2 = request.getParameter("Second");

}

Существует также дополнительная информация, доступная сервлету через

объект ServletRequest. Она приведена в таблице 4.2.

79

Таблица 4.2 – Описание методов запроса на обслуживание сервлета

Метод Описание

getAttribute () Возвращает значение указанного атрибута

этого запроса

getContentLength () Размер запроса, если известен

getContentType () Возвращает тип MIME тела запроса

getInputStream () Возвращает InputStream для чтения двоичных

данных из тела запроса

GetParameterNames () Возвращает массив строк с именами всех

параметров

getParameterValues () Возвращает массив значений для указанного

параметра

getProtocol () Возвращает протокол и версию для запроса

как строку вида /..

getReader () Возвращает BufferedReader для получения

текста из тела запроса

getRealPath () Возвращает реальный путь для указанного

виртуального пути

getRemoteAddr () IP-адрес клиента, пославшего данный запрос

getRemoteHost () Имя хоста клиентской машины, пославшего

данный запрос

getScheme () Возвращает схему, используемую в URL

этого запроса (например, https, http, ftp и т. д.)

getServerName () Имя хоста сервера, принявшего данный

запрос

getServerPort () Возвращает номер порта, используемого для

приема этого запроса

Интерфейс HttpServletRequest

При каждом вызове методы doGet и doPost класса HttpServlet принимают в

качестве параметра объект, который реализует интерфейс HttpServletRequest.

Веб-сервер, который исполняет сервлет, создает объект HttpServletRequest и

передает его методу service сервлета, который в свою очередь передает его

методу doGet или doPost. Данный объект содержит запрос, поступивший от

клиента.

Имеется множество методов (таблица 4.3), дающих возможность сервлету

обрабатывать клиентский запрос. Некоторые из этих методов принадлежат

интерфейсу ServletRequest, который расширяется интерфейсом

HttpServletRequest. Ряд ключевых методов, использованных в примерах,

представлен в таблице 4.3. Полный список методов интерфейса

HttpServletRequest можно найти в документации компании Sun.

80

Таблица 4.3 – Описание методов обработки запросов сервлета

Метод Описание

String getParameter(String name) Получение из запроса значения параметра.

Наименование параметра определено

значением name

Enumeration getParameterNames() Получение из запроса имен всех параметров

String[] getParameterValues (String name) Для параметра с несколькими значениями

данный метод возвращает строковый массив

Cookie[] getCookies () Получение массива объектов Cookie,

сохраненных на компьютере клиента

HttpSession getSession(boolean create) Возвращает объект HttpSession текущего

сеанса клиента

Интерфейс HttpServletResponse

При каждом обращении к сервлету методы doGet и doPost класса

HttpServlet принимают объект, который реализует интерфейс

HttpServletResponse. Веб-сервер, который исполняет сервлет, создает объект

HttpServletResponse и передает его методу service сервлета. Объект

HttpServletResponse описывает ответ клиенту.

Имеется множество методов (таблица 4.4), дающих возможность сервлету

сформировать ответ клиенту. Некоторые из этих методов принадлежат

интерфейсу ServletResponse, расширяемому интерфейсом HttpServletResponse.

Таблица 4.4 – Описание методов ответа сервлета

Метод Описание

void addCookie (Cookie cookie) Метод используется для добавления Cookie в

заголовок ответа клиенту. Установленный

максимальный возвраст Cookie, а также

разрешение клиентом хранения Cookie

определяют, будут ли Cookies сохранены на

клиенте и время их хранения

ServletOutputStream getOutputStream() Получение бинарного потока вывода для

отправления бинарных данных клиенту

PrintWriter getWriter Получение символьного потока вывода для

отправления текстовых данных клиенту

void setContentType(String type) Определение MIME-типа ответа браузеру.

MIME-тип помогает браузеру определить,

как отображать данные. Например, MIME-

тип «text/html» указывает, что ответ является

HTML-документом, поэтому браузер

отображает HTML-страницу

81

4.3 Добавление JSP

Cервлеты позволяют получать запросы от клиента, совершать некоторую

работу и выводить результаты на экран. Сервлет работает до того момента, пока

речь идет об обработке информации, т. е. до вывода информации на экран. В

сервлет можно вставить достаточно сложную логику, сделать вызовы к базе

данных и многое другое, что необходимо для приложения. Но вот осуществлять

вывод на экран внутри самого сервлета – очень неудобно.

Технология проектирования Java Server Pages (JSP) – это одна из

технологий JavaEE, которая представляет собой расширение технологии

сервлетов для упрощения работы с веб-содержимым. Страницы JSP позволяют

легко разделить веб-содержимое на статическую и динамическую часть,

допускающую многократное использование ранее определенных компонентов.

Разработчики Java Server Pages могут использовать компоненты JavaBeans и

создавать собственные библиотеки нестандартных тегов, которые

инкапсулируют сложные динамические функциональные средства.

Во многих случаях сервлеты и JSP-страницы являются

взаимозаменяемыми. Подобно сервлетам, JSP-страницы обычно выполняются

на стороне веб-сервера, который называют контейнером JSP.

Когда веб-сервер, поддерживающий технологию JSP, принимает первый

запрос на JSP-страницу, контейнер JSP транслирует эту JSP-страницу в сервлет

Java, который обслуживает текущий запрос и все последующие запросы к этой

странице. Если при компиляции нового сервлета возникают ошибки, эти ошибки

приводят к ошибкам на этапе компиляции. Контейнер JSP на этапе трансляции

помещает операторы Java, которые реализуют ответ JSP-страницы, в метод

jspService. Если сервлет компилируется без ошибок, контейнер JSP вызывает

метод jspService для обработки запроса.

JSP-страница может обработать запрос непосредственно либо вызвать

другие компоненты веб-приложения, чтобы содействовать обработке запроса.

Любые ошибки, которые возникают в процессе обработки, вызывают

исключительную ситуацию в веб-сервере на этапе запроса.

Весь статический текст HTML, называемый в документации JSP-шаблоном

HTML (template HTML), сразу направляется в выходной поток. Выходной поток

страницы буферизуется. Буферизацию обеспечивает класс JspWriter,

расширяющий класс Writer.

Таким образом, достаточно написать страницу JSP, сохранить ее в файле с

расширением jsp и установить файл в контейнер, так же как и страницу HTML,

не заботясь о компиляции. При установке можно задать начальные параметры

страницы JSP так же, как и начальные параметры сервлета.

82

Архитектура JSP-страницы

Страница JSP располагается на веб-сервере в среде виртуальной Java-

машины. Доступ к страницам JSP, как и в случае сервлета, осуществляется через

Web с использованием протокола HTTP.

Страница JSP функционирует под управлением JSP Engine (среды

исполнения JSP). Страница JSP может взаимодействовать с программным

окружением с помощью компонентов JavaBeans, получая и устанавливая его

параметры, используя теги:<jsp:useBean>, <jsp:getProperty>, <jsp:setProperty>.

Компонент JavaBean сам может участвовать в других процессах, предоставляя

результаты в виде своих параметров, доступных страницам JSP, участвующим в

сеансе, а через них – всем пользователям, запрашивающим эти страницы JSP.

Основные модели архитектуры JSP

Возможны различные подходы к использованию технологии JSP. Два

основных архитектурных подхода, нашедшие применение при реализации

приложений уровня предприятия, имеют специальные названия:

1) JSP Model 1 (Первая модель архитектуры JSP);

2) JSP Model 2 (Вторая модель архитектуры JSP).

Первая модель архитектуры JSP

JSP Model 1 (Первая модель архитектуры JSP) практически реализует

базовую архитектуру JSP.

В архитектурном решении JSP Model 1 полностью отвечает за получение

запроса от клиента, его обработку, подготовку ответа и доставку ответа

пользователю. Разделение представления и динамического содержания

обеспечивается тем, что доступ к данным осуществляется через компоненты

JavaBeans.

В сценарии JSP Model 1 предполагается следующая последовательность

действий (рисунок 4.8):

1) запрос пользователя посылается через веб-браузер странице JSP;

2) страница JSP компилируется в сервлет (при первом обращении) ;

3) скомпилированный сервлет обращается к некоторому компоненту

JavaBean, запрашивая у него информацию;

4) компонент JavaBean, в свою очередь, осуществляет доступ к

информационным ресурсам (непосредственно или через компонент Enterprise

JavaBeans);

5) полученная информация отображается в свойствах компонента

JavaBeans, доступных на странице JSP;

6) формируется ответ в виде страницы HTML с комбинированным

содержанием (статическое, динамическое).

83

Рисунок 4.8 – Порядок работы JSP Model 1

Архитектура JSP Model 1 может с успехом применяться для небольших

приложений. Однако использование данной модели для более сложных задач

вызывает определенные трудности и не является технологичным из-за большого

объема встроенных в страницу программных фрагментов. Для сложных

корпоративных приложений рекомендуется применение второй модели

архитектуры JSP.

Вторая модель архитектуры JSP

JSP Model 2 (Вторая модель архитектуры JSP) реализует гибридный

подход к обслуживанию динамического содержания веб-страницы, при котором

совместно используется сервлет и страница JSP.

Эта модель позволяет эффективно использовать преимущества обеих

технологий: сервлет поддерживает задачи, связанные с обработкой запроса и

созданием объектов JavaBeans, используемых JSP, а страница JSP отвечает за

визуальное представление информации. Сервлет используется как управляющее

устройство (контроллер). Схематично вторая модель представлена на рисунке 4.9.

Сценарий JSP Model 2, как правило, реализует следующую типовую

последовательность действий (рисунок 4.9):

1) запрос пользователя посылается через веб-браузер сервлету;

2) сервлет обрабатывает запрос, создает и инициализирует объект

JavaBean или другие объекты, используемые страницей JSP, и запрашивает

динамическое содержание у компонента JavaBean;

3) компонент JavaBean осуществляет доступ к информации

непосредственно или через компонент Enterprise JavaBeans;

4) сервлет, направляющий запрос, вызывает сервлет, скомпилированный

из страницы JSP;

84

5) сервлет, скомпилированный из страницы JSP, встраивает динамическое

содержание в статический контекст HTML-страницы и отправляет ответ

пользователю.

Рисунок 4.9 – Порядок работы JSP Model 2

Необходимо отметить, что в рамках этой модели страница JSP сама не

реализует никакую логику, это входит в функции сервлета-контроллера.

Страница JSP отвечает только за получение информации от компонента

JavaBean, который был предварительно создан сервлетом, и за визуальное

представление этой информации в удобном для клиента виде.

Архитектуры JSP Model 2 в большей степени, чем архитектура JSP Model 1,

соответствует идее отделения представления от содержания. Эта модель

позволяет четко выделить отдельные части приложения и связанные с ними роли

и обязанности персонала, занятого в разработке.

Чем сложнее разрабатываемая система, тем заметнее становятся

преимущества архитектуры JSP Model 2.

Функционирование JSP

Работа со страницей JSP становится возможной только после ее

преобразования в сервлет. В процессе трансляции как статическая, так и

динамическая части JSP преобразуются в Java-код сервлета, который передает

преобразованное содержимое браузеру через выходной поток веб-сервера.

Технология JSP является технологией серверной стороны, поэтому все

процессы обработки JSP протекают на стороне сервера. Страница JSP –

текстовый документ, который в соответствии со спецификацией JSP проходит

две фазы:

1) фазу трансляции;

2) фазу выполнения.

При трансляции, которая выполняется один раз для каждой страницы JSP,

создается или локализуется класс типа Servlet, реализующий JSP. Трансляция

85

JSP может производиться как отдельно, до ее использования, так и в процессе

размещения JSP на веб-сервере или сервере приложений. Во второй фазе

осуществляется обработка запросов и подготовка ответов.

Синтаксис JSP-страницы

Страницы JSP имеют комбинированный синтаксис: объединение

стандартного синтаксиса, соответствующего спецификации HTML, и синтаксиса

JSP, определенного спецификацией Java Server Pages. Синтаксис JSP определяет

правила записи страниц JSP, состоящих из стандартных тегов HTML и тегов JSP.

Страницы JSP, кроме HTML-тегов, содержат теги JSP следующих

категорий:

1) директивы (directives);

2) страницы (pages);

3) библиотеки тегов (taglib);

4) включения (include);

5) объявления (declarations);

6) скриптлеты (scriptlets);

7) выражения (expressions);

8) комментарии (comments).

Директивы JSP

Директивы обеспечивают глобальную информацию, касаются конкретных

запросов, направляемых в JSP, и предоставляют информацию, необходимую на

стадии трансляции.

Директивы всегда помещаются в начале JSP-страницы до всех остальных

тегов, чтобы parser (анализатор) JSP при разборе текста в самом начале выделил

глобальные инструкции. Таким образом, JSP Engine (среда исполнения JSP),

анализируя код, создает из JSP сервлет. Директивы представляют собой

сообщения контейнеру JSP.

Синтаксис директив JSP выглядит следующим образом:

<%@ директива имяАтрибута="значение" %>

Синтаксис задания директив на XML:

<jsp:directive.директива имяАтрибута="значение" />

Директива может иметь несколько атрибутов. В этом случае директива

может быть повторена для каждого из атрибутов. В то же время пары

«имяАтрибута=значение» могут располагаться под одной директивой с

пробелом в качестве разделителя.

86

Существует три типа директив:

1) page (страница);

2) taglib (библиотека тегов);

3) include (включение).

Директива page

Директива page определяет свойства страницы JSP, которые воздействуют

на транслятор. Порядок следования атрибутов в директиве page не имеет

значения. Нарушение синтаксиса или наличие нераспознанных атрибутов

приводит к ошибке трансляции. Примером директивы page может служить

следующий код:

<%@ page buffer="none" isThreadSafe="yes" errorPage="/error.jsp" %>

Эта директива объявляет, что данная страница JSP не использует

буферизацию, что возможно одновременное обращение к данной странице JSP

многих пользователей и что поддерживается страница ошибок с именем

error.jsp. Директива page может содержать информацию о странице:

<%@ page info = "JSP Sample 1" %>

Директива taglib

Директива taglib объявляет, что данная страница JSP использует

библиотеку тегов, уникальным образом идентифицируя ее с помощью URI, и

ставит в соответствие префикс тега, с помощью которого возможны действия в

библиотеке.

Директива taglib имеет следующий синтаксис:

<%@ taglib uri="URI включаемой библиотеки тегов" prefix="имяПрефикса" %>

Префикс "имяПрефикса" используется при обращении к библиотеке.

Пример использования библиотеки тегов mytags:

<%@ taglib uri="http://www.taglib/mytags" prefix="customs" %>

. . .

<customs:myTag>

В данном примере библиотека тегов имеет URI-адрес:

http://www.taglib/mytags, в качестве префикса назначена строка customs, которая

используется в странице JSP при обращении к элементам библиотеки тегов.

87

Директива include

Директива include позволяет вставлять текст или код в процессе

трансляции страницы JSP в сервлет. Синтаксис директивы include имеет

следующий вид:

<%@ include file="Относительный URI включаемой страницы" %>

Директива include имеет один атрибут – file. Она включает текст

специфицированного ресурса в файл JSP. Эту директиву можно использовать

для размещения стандартного заголовка об авторских правах на каждой

странице JSP:

<%@ include file="copyright.html" %>

Контейнер JSP получает доступ к включаемому файлу. Если включаемый

файл изменился, контейнер может перекомпилировать страницу JSP. Директива

include рассматривает ресурс, например, страницу JSP, как статический объект.

Заданный URI обычно интерпретируется относительно JSP-страницы, на

которой расположена ссылка, но, как и при использовании любых других

относительных URI, можно задать системе положение интересующего ресурса

относительно домашнего каталога веб-сервера добавлением в начало URI

символа "/". Содержимое подключаемого файла обрабатывается как обычный

текст JSP и поэтому может включать такие элементы, как статический HTML,

элементы скриптов, директивы и действия.

Многие сайты используют небольшую панель навигации на каждой

странице. В связи с проблемами использования фреймов HTML часто эта задача

решается размещением небольшой таблицы сверху или в левой половине

страницы, HTML-код которой многократно повторяется для каждой страницы

сайта. Директива include – это наиболее естественный способ решения данной

задачи, избавляющий разработчика от рутины копирования HTML в каждый

отдельный файл.

Поскольку директива include подключает файлы в ходе трансляции

страницы, то после внесения изменений в панель навигации требуется повторная

трансляция всех использующих ее JSP-страниц. Если же подключенные файлы

меняются довольно часто, можно использовать действие jsp:include, которое

подключает файл в процессе обращения к JSP-странице.

Выражения JSP

Выражение в странице JSP – это исполняемое выражение, написанное на

языке скрипта, указанного в объявлении language (как правило, Java). Результат

88

выражения JSP, имеющий обязательный тип String, направляется в стандартный

поток вывода out с помощью текущего объекта JspWriter. Если результат

выражения не может быть приведен к типу String, возникает либо ошибка

трансляции, если проблема была выявлена на этапе трансляции, либо

инициируется исключение ClassCastException, если несоответствие было

выявлено в процессе выполнения запроса. Выражение имеет следующий

синтаксис:

<%= текст выражения %>

Альтернативный синтаксис для выражений JSP при использовании XML:

<jsp:expression> текст выражения </jsp:expression>

Порядок выполнения выражений в странице JSP – слева направо. Если

выражение появляется более чем в одном атрибуте времени выполнения, то оно

выполняется слева направо в данном теге. Выражение должно быть полным

выражением на определенном скрипте (как правило, Java).

Выражения выполняются во время работы протокола HTTP. Значение

выражения преобразуется в строку и включается в соответствующую позицию

файла JSP.

Выражения обычно используются для того, чтобы вычислить и вывести на

экран строковое представление переменных и методов, определенных в блоке

объявлений страницы JSP или полученных от компонентов JavaBeans, которые

доступны из JSP. Следующий код выражения служит для отображения даты и

времени запроса данной страницы:

Текущее время: <%= new java.util.Date () %>

Для того чтобы упростить выражения, существует несколько заранее

определенных переменных, которые можно использовать. Наиболее часто

используемые переменные:

1) request, HttpServletRequest;

2) response, HttpServletResponse;

3) session, HttpSession – ассоциируется с запросом, если таковой имеется;

4) out, PrintWriter – буферизированный вариант типа JspWriter для отсылки

данных клиенту.

89

Неявные объекты

Неявные объекты (implicit objects) – это объекты, автоматически доступные

как часть стандарта JSP без их специального объявления или импорта. Эти объекты,

список которых представлен в таблице 4.5, можно использовать в коде JSP.

Таблица 4.5 – Неявные объекты

Наименование

объекта
Тип объекта Назначение

request (запрос) javax.servlet.HttpServletRequest Запрос, требующий обслуживания.

Область видимости – запрос. Основные

методы: getAttribute, getParameter,

getParameterNames, getParameterValues.

Таким образом, запрос request

обеспечивает обращение к параметрам

запроса через метод getParameter, типу

запроса и входящим HTTP-заголовкам

response (ответ) javax.servlet.HttpServletResponse Ответ на запрос. Область видимости –

страница. Поскольку поток вывода

(см. out далее) буферизован, можно

изменять коды состояния HTTP

и заголовки ответов, даже если это

недопустимо в обычном сервлете, но

лишь в том случае, если какие-то данные

вывода уже были отправлены клиенту

out (вывод) javax.servlet.jsp.JspWriter Объект, который пишет в выходной

поток. Область видимости – страница.

Основные методы: clear, clearBuffer, flush,

getBufferSize, getRemaining. Необходимо

помнить, размер буфера можно изменять

и даже отключить буферизацию, изменяя

значение атрибута buffer директивы page.

Также необходимо обратить внимание,

что out используется практически

исключительно скриплетами, поскольку

выражения JSP автоматически

помещаются в поток вывода, что

избавляет от необходимости явного

обращения к out

pageContext

(содержание

страницы)

javax.servlet.jsp.pageContext Содержимое JSP-страницы. Область

видимости – страница. pageContext

поддерживает доступ к полезным объектам

и методам, обеспечивающим явный доступ

реализации JSP к специфическим объектам.

Основные методы: getSession, getPage,

findAttribute, getAttribute, getAttributeScope,

getAttributeNamesInScope, getException

90

Наименование

объекта
Тип объекта Назначение

session (сеанс) javax.servlet.HttpSession Объект типа Session, создаваемый для

клиента, приславшего запрос. Область

видимости – страница. Основные методы

getId, getValue, getValueNames, putValue.

Сессии создаются автоматически,

и переменная session существует, даже

если нет ссылок на входящие сессии.

Единственным исключением является

ситуация, когда разработчик отключает

использование сессий, используя атрибут

session директивы page. В этом случае

ссылки на переменную session приводят к

возникновению ошибок при трансляции

JSP-страницы в сервлет

application

(приложение)

javax.servlet.ServletContext Контекст сервлета, полученный

из объекта конфигурации сервлета

при вызове методов: getServletConfig или

getContext.

Область видимости – приложение.

Основные методы: getMimeType,

getRealPath

config

(конфигурация)

javax.servlet.ServletConfig Объект ServletConfig текущей страницы

JSP. Область видимости – страница.

Основные методы: getInitParameter,

getInitParameterNames

page

(страница)

java.lang.Object Экземпляр класса реализации текущей

страницы JSP, обрабатывающий запрос.

Область видимости – страница. Объект

доступен, но, как правило, используется

редко. По сути, является синонимом

для this и не нужен при работе с Java

exception

(исключение)

java.lang.Throwable Объект Throwable, выводимый в страницу

ошибок error-page. Область видимости –

страница. Основные методы:

printStackTrace, toString, getMessage,

getLocalizedMessage

91

Создайте папку views в WEB-INF и в ней login.jsp (рисунок 4.10).

Рисунок 4.10 – Структура проекта

 Создание JSP-страницы:

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

<html>

<head><title>Title</title></head>

<body>

First JSP

<p>Today <%= new java.util.Date() %></p>

</body>

</html>

Изменим наш сервлет и получим (рисунок 4.11):

@Override

protected void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

 request.getRequestDispatcher("/WEB-INF/views/login.jsp").forward(request,

response);

}

92

Рисунок 4.11 – Страница c динамической информацией

Пересылка запроса (forward)

Когда запрос (request) браузера отправлен к Servlet, он может переслать

запрос на другую страницу (или другой Servlet). Адрес в браузере пользователя

также является ссылкой на первую страницу, но содержание страницы создается

страницей пересылки. Пересылающая страница обязательно должна быть одной

страницей (или Servlet) в вашем веб-приложении.

С пересылкой запроса (forward) вы можете использовать request.setAttribute()

для передачи данных от страницы 1 к странице 2 (рисунок 4.12).

Рисунок 4.12 – Применение forward

Перенаправление (redirect) позволяет вам перенаправлять запросы на

другие страницы, включая те, что за пределами веб-сайта.

Перенаправление запроса (redirect)

 Когда запрос (request) отправлен от пользователя к Servlet (страница А),

этот Servlet может направить запрос на другую страницу (страница B) и завершить

свою задачу. Страница может быть перенаправлена на другую страницу в вашем

приложении. Адрес в браузере пользователя теперь отображает ссылку на

93

страницу B. В отличие от пересылки (forward) с перенаправлением запроса

(redirect) вы не можете использовать request.setAttribute() для передачи данных

от страницы А на страницу B (рисунок 4.13).

Рисунок 4.13 – Применение SendRedirect

Метод forward() целесообразно применять в следующих случаях:

1) когда мы используем метод forward(), запрос передается другому

ресурсу на том же сервере для дальнейшей обработки;

2) в случае пересылки веб-контейнер обрабатывает весь процесс внутри,

а клиент или браузер не задействованы;

3) когда forward() вызывается на объект requestdispatcher, мы передаем

объекты запроса и ответа, чтобы наш старый объект запроса присутствовал на

новом ресурсе, который будет обрабатывать наш запрос;

4) визуально мы не можем видеть перенаправленный адрес, он прозрачен.

5) использование метода forward() выполняется быстрее, чем

перенаправление отправки;

6) когда мы перенаправляем с помощью forward() и хотим использовать

одни и те же данные в новом ресурсе, мы можем использовать

request.setAttribute(), поскольку у нас есть объект запроса.

Метод sendRedirect() целесообразно применять в следующих случаях:

1) в случае sendRedirect() запрос передается другому ресурсу на другой

домен или на другой сервер для дальнейшей обработки;

94

2) при использовании sendRedirect() контейнер передает запрос клиенту

или браузеру, поэтому URL-адрес, указанный внутри метода sendRedirect(),

отображается как новый запрос клиенту;

3) в случае вызова sendRedirect() старые объекты запроса и ответа

теряются, поскольку он рассматривается браузером как новый запрос;

4) в адресной строке мы можем видеть новый перенаправленный адрес.

Его непрозрачность;

5) sendRedirect() медленнее, потому что требуется один дополнительный

переход по представленной ссылке;

6) но в sendRedirect(), если мы хотим его использовать, мы должны хранить

данные в сеансе или передавать вместе с URL.

Если вы хотите, чтобы управление передавалось на новый сервер или

контекст, и оно рассматривалось как совершенно новая задача, тогда мы

отправляемся на sendRedirect(). Как правило, переадресация должна

использоваться, если операция может быть безопасно повторена при

перезагрузке веб-страницы браузером, и это не повлияет на результат.

4.4 Передача параметров HTTP-запроса

В этом подразделе научимся получать параметры из HTTP-запроса.

Допустим, мы хотели бы показать значение на JSP. Установим их как атрибут

запроса. Атрибуты запроса могут быть доступны из представления.

В LoginServlet.java пишем следующее:

@Override

protected void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

 request.setAttribute("name", "I.O. Dima");

 request.setAttribute("password", "1111");

 request.getRequestDispatcher("/WEB-INF/views/login.jsp").forward(request,

response);

}

Допишите в WEB-INF\views\login.jsp

My name is <%= request.getAttribute("name") %> and password is <%=

request.getAttribute("password") %>

95

Запускаем и проверяем результат (рисунок 4.14).

Рисунок 4.14 – Проверка работы с передачей параметров запроса

Страницы JSP могут получать отправленные данные, например, через

параметры или в виде отправленных форм, так же как это происходит в сервлете.

Для этого внутри страницы JSP доступен объект request, который позволяет

получить данные посредством следующих методов:

‒ getParameter(String param): возвращает значение определенного

параметра, название которого передается в метод. Если указанного параметра в

запросе нет, то возвращается значение null;

‒ getParameterValues(String param): возвращает массив значений, который

представляет определенный параметр. Если указанного параметра в запросе нет,

то возвращается значение null.

<!DOCTYPE html> <html> <head> <meta charset="UTF-8" />

<title>User Info</title>

</head>

<body>

<p>Name: <%= request.getParameter("username") %></p>

<p>Country: <%= request.getParameter("country") %></p>

<p>Gender: <%= request.getParameter("gender") %></p>

 <h4>Selected courses</h4>

 <% String[] courses = request.getParameterValues("courses");

for(String course: courses){ out.println("" + course + ""); } %>

</body>

</html>

Передача данных из сервлета в JSP

Нередко страница JSP обрабатывает запрос вместе с сервлетом. В этом

случае сервлет определяет логику, а JSP – визуальную часть. И при обработке

запроса сервлет может перенаправить дальнейшую обработку странице JSP.

Соответственно может возникнуть вопрос, как передать данные из сервлета

в JSP?

96

Есть несколько способов передачи данных из сервлета в JSP, которые

заключаются в использовании определенного контекста или scope.

Есть несколько контекстов для передачи данных:

‒ request (контекст запроса): данные сохраняются в HttpServletRequest;

‒ session (контекст сессии): данные сохраняются в HttpSession;

‒ application (контекст приложения): данные сохраняются в ServletContext.

Данные из контекста запроса доступны только в пределах текущего

запроса. Данные из контекста сессии доступны только в пределах текущего

сеанса, а данные из контекста приложения доступны постоянно, пока работает

приложение.

Но вне зависимости от выбранного способа передача данных

осуществляется с помощью метода setAttribute(name, value), где name – строковое

название данных, а value – сами данные, которые могут представлять различные

данные.

Наиболее распространенный способ передачи данных из сервлета в JSP

представляют атрибуты запроса, т. е. вызывается метод setAttribute() у объекта

HttpServletRequest, который передается в сервлет. Этот метод устанавливает

атрибут, который можно получить в JSP.

Для вывода атрибутов применяется специальный синтаксис

Expression Language (EL). В фигурные скобки {} заключается выводимое значение:

<p>Name: ${name}</p> <p>Age: ${age}</p>

Expression Language

Expression Language (или сокращенно EL) представляет собой компактный

синтаксис для обращения к массивам, коллекциям, объектам и их свойствам

внутри страницы JSP. Он довольн прост. Вставку открывает знак «$», затем в

фигурные скобки {} заключается выводимое значение.

Откуда эти данные берутся? EL пытается найти значения для этих данных

во всех доступных контекстах.

И EL просматривает все эти контексты в следующем порядке:

1) контекст страницы (данные сохраняются в PageContext);

2) контекст запроса;

3) контекст сессии;

4) контекст приложения.

Соответственно, если контексты запроса и сессии содержат атрибут с

одним и тем же именем, то будет использоваться атрибут из контекста запроса.

97

Затем найденное значение конвертируется в строку и выводится.

<% pageContext.setAttribute("name", "Tom"); %>

<!DOCTYPE html>

<html>

<head> <meta charset="UTF-8">

<title>JSP Application</title>

</head>

<body>

<p>Name: ${name}</p>

</body>

</html>

Однако может сложиться ситуация, что сразу в нескольких контекстах

одновременно содержатся данные с одним и тем же именем, например, "name".

Соответственно EL будет получать данные в порядке просмотра контекстов, но,

возможно, нам захочется выводить данные из какого-то определенного

контекста. В этом случае перед названием данных мы можем указать название

контекста: pageScope, requestScope, sessionScope или applicationScope. Например:

<% pageContext.setAttribute("name", "Bob"); %>

<!DOCTYPE html>

<html>

<head> <meta charset="UTF-8">

<title>JSP Application</title>

</head>

<body>

<p>Name: ${requestScope.name}</p>

</body>

</html>

Встроенные объекты Expression Language

По умолчанию Expression Language предоставляет ряд встроенных

объектов, которые позволяют использовать различные аспекты запроса:

‒ param: объект, который хранит все переданные странице параметры;

‒ paramValues: хранит массив значений для определенного параметра;

‒ header: хранит все заголовки запроса;

‒ headerValues: предоставляет массив значений для определенного

заголовка запроса;

‒ cookie: предоставляет доступ к временным пользовательским данным в

отправленном запросе;

‒ initParam: возвращает значение для определенного параметра из

элемента context-param из файла web.xml;

‒ pageContext: предоставляет доступ к объекту PageContext, который

представляет контекст текущей страницы JSP.

98

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>User Info</title>

</head>

<body>

<p>Name: ${param.name}</p>

<p>Age: ${param.age}</p>

</body> </html>

Через объект param здесь получаем из запроса значения параметров name

и age. Значения для параметров можно передать как через строку запроса, так и

через отправку формы.

4.5 Добавление форм фронт-составляющей

В файл WEB-INF\views\login.jsp добавим форму. Пользователь будет

вводить данные. И по нажатии кнопки данные формы уходят в сервлет:

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

<html>

<head><title>Title</title></head>

<body>

<form action="LoginServlet" method="POST">

 Name : <input name="name" type="text"/>

 <input type="submit"/></form>

</body>

</html>

Добавляем еще одну JSP. WEB-INF\views\welcome.jsp:

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

<html>

<head><title> Welcome</title>

</head>

<body>

Welcome, ${name}

</body>

</html>

В LoginServlet.java измените код:

@Override

protected void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

 request.getRequestDispatcher("/WEB-INF/views/login.jsp").forward(request,

response);}

99

@Override

protected void doPost(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

 request.setCharacterEncoding("UTF-8");

 request.setAttribute("name", request.getParameter("name"));

 request.getRequestDispatcher("/WEB-INF/views/welcome.jsp").forward(request,

response);

}

Проверим работу динамической формы ввода (рисунки 4.15 и 4.16).

Рисунок 4.15 – Ввод значения формы запроса

Рисунок 4.16 – Результат обработки запроса

4.6 Внедрение проверок

Добавим следующие функции. Пользователь вводит логин и пароль.

Сервлет LoginServlet.java проверяет и перенаправляет на страницу приветствия,

в случае ввода неверного значения выводит ошибку и выполняет переход на

страницу ввода логина.

Добавим метод проверки в LoginServlet.java.

public boolean validateUser(String user, String password) {

 return user.equalsIgnoreCase("admin") && password.equals("admin");

}

Перепишем doPost в LoginServlet.java

@Override

protected void doPost(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

 String name = request.getParameter("name");

 String password = request.getParameter("password");

100

 if (validateUser(name, password)) {

 request.getSession().setAttribute("name", name);

 request.getRequestDispatcher("/WEB-

INF/views/welcome.jsp").forward(request, response);

 } else {

 request.setAttribute("errorMessage", "Invalid Login and password!!");

 request.getRequestDispatcher("/WEB-

INF/views/login.jsp").forward(request, response);

 }

}

Изменим содержимое login.jsp. Добавим ввод пароля:

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

<html>

<head>

 <title>Title</title>

</head>

<body>

<p>${errorMessage}

</p>

<form action="LoginServlet" method="POST">

 <p>Name : <input name="name" type="text"/>

 </p>

 <p> Password : <input name="password" type="password"/>

 </p>

 <input type="submit"/></form>

</body>

</html>

Проверка отправки значений входа и регистрации пользователя

(рисунки 4.17–4.19).

Рисунок 4.17 – Ввод значения формы запроса

101

Рисунок 4.18 – Результат обработки запроса

Рисунок 4.19 – Результат обработки запроса с ошибкой

Java Bean

Компоненты JavaBeans – это многократно используемые классы Java,

позволяющие разработчикам существенно ускорять процесс разработкии веб-

приложений путем их сборки из программных компонентов. JavaBeans и другие

компонентные технологии привели к появлению нового типа программирования –

сборки приложений из компонентов, при котором разработчик должен знать

только сервисы компонентов; детали реализации компонентов не играют

никакой роли.

Компоненты JavaBeans – это одноуровневые объекты, использующиеся

для того, чтобы инкапсулировать в одном объекте сложный код, данные или

и то, и другое. Компонент JavaBean может иметь свойства, методы и события,

открытые для удаленного доступа.

Компонент JavaBean – это Java-класс, удовлетворяющий определенным

соглашениям о наименовании методов и экспортируемых событий. Одним из

важных понятий технологии JavaBeans является внешний интерфейс properties

(свойства). Property – это пара методов (getter и setter), обеспечивающих доступ

к информации о внутреннем состоянии компонента JavaBean.

102

Для обращения к компонентам JavaBeans на странице JSP необходимо

использовать следующее описание тега в разделе head:

<jsp:useBean id="BeanID" [scope="page | request | session | application"]

class="BeanClass" />

BeanID определяет имя компонента JavaBean, являющееся уникальным в

области видимости, заданной атрибутом scope. По умолчанию принимается

область видимости scope="page", т. е. текущая страница JSP.

Обязательный атрибут класса компонента class может быть описан

следующим способом:

class="имя класса" [type="полное имя суперкласса"]

Свойство компонента JavaBean с именем myBean устанавливается тегом:

<jsp:setProperty name="myBean" property="Имя свойства" value="Строка или

выражение JSP" />

Для чтения свойства компонента JavaBean с именем myBean используется

тег:

<jsp:getProperty name="myBean" property="Имя свойства"/>

В следующем листинге приведен пример компонента JavaBean,

содержащего строку mystr, используемую в качестве свойств.

4.7 Работа с возвратом списка

Создадим список объектов типа Person и будем возвращать его на странице

welcome.jsp для авторизованного пользователя.

Добавим пакет model и класс Person (рисунок 4.20).

Рисунок 4.20 – Уровень объектной модели

103

public class Person {

 private String name;

 private String phone;

 private String email;

}

Сгенерируйте set, get, конструкторы, переопределите метод toString .

Затем создайте класс ListService:

package by.iba.model;

import java.util.ArrayList;

import java.util.List;

public class ListService {

 private static List<Person> groupList = new ArrayList();

 static {

 groupList.add(new Person("Anna", "+375291234567",

"anna.1.18@gmail.com"));

 }

 static public List<Person> retrieveList() {

 return groupList;

 }}

Добавим в LoginServlet следующий код:

@Override

protected void doPost(HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException {

 String name = request.getParameter("name");

 String password = request.getParameter("password");

 if (validateUser(name, password)) {

 request.getSession().setAttribute("name", name);

 request.setAttribute("group", ListService.retrieveList());

 request.getRequestDispatcher("/WEB-INF/views/welcome.jsp")

 .forward(request, response);

 } else {

 request.setAttribute("errorMessage", "Invalid Login and

password!!");

 request.getRequestDispatcher("/WEB-INF/views/login.jsp")

 .forward(request, response);

 }}

Изменим welcome.jsp:

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

<html>

<head>

<title> Welcome</title>

</head>

<body>

<H2>Welcome ${name}</H2>

</body>

</html>

104

В результате получим следующее (рисунок 4.21).

Рисунок 4.21 – Получение результата объектной модели

JSTL

JSP Standard Tag Library (JSTL) является стандартной библиотекой тегов,

которая обеспечивает теги для управления поведением страницы, повторения

команд управления, интернационализации тегов и тегов SQL.

JSTL является частью JavaEE API и большинства контейнеров Servlet.

Но чтобы использовать JSTL в ваших страницах JSP, необходимо скачать

библиотеки JSTL для вашего контейнера Servlet.

Обзор функций JSTL

На основании функций JSTL они делятся на пять категорий (таблица 4.6).

Таблица 4.6 – Функции JSTL

Функция Описание

 XML Tags XML-теги используются для работы с XML-документами, например,

для анализа XML, преобразования XML-данных и оценки выражений

XPath

<%@ taglib uri="http://java.sun.com/jsp/jstl/xml" prefix="x" %>

JSTL Functions

Tags
Теги JSTL предоставляют ряд функций, которые можно использовать

для выполнения стандартных операций

<%@ taglib uri="http://java.sun.com/jsp/jstl/functions" prefix="fn" %>

Core Tags Основные теги обеспечивают поддержку итерации, условной логики,

исключения перехвата, URL, пересылки или перенаправления ответа и

т. д.

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

Formattingand

Localization Tags
Эти теги предназначены для форматирования чисел, дат и поддержки

i18n через локали и пакеты ресурсов

<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt" %>

SQL Tags Теги JSTL SQL обеспечивают поддержку взаимодействия с

реляционными базами данных, такими как Oracle, MySql и т. д.

Используя теги SQL, вы можете выполнять запросы к базе данных

<%@ taglib uri="http://java.sun.com/jsp/jstl/sql" prefix="sql" %>

http://java.sun.com/jsp/jstl/xml
http://java.sun.com/jsp/jstl/functions
http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/fmt
http://java.sun.com/jsp/jstl/sql

105

Стандартные теги JSTL (JSTL Core Tags)

Таблица 4.7 – Теги JSTL

Тег Описание

<c:out> Чтобы написать что-либо на странице JSP, вы также можете

использовать EL с этим тегом

<c:import> То же самое, что и <jsp:include> или директива include

<c:redirect> Перенаправить запрос на другой ресурс

<c:set> Чтобы установить значение переменной в заданной области действия

<c:remove> Чтобы удалить значение переменной в заданной области действия

<c:catch> Чтобы перехватить исключение и поместить его в объект

<c:if> Простая условная логика, используемая с EL, и вы можете

использовать ее для обработки исключения из <c:catch>

<c:choose> Простой условный тег, который устанавливает контекст для

взаимоисключающих условных операций, отмеченных <c:when>

и <c:otherwise>

<c:when> Подтег <c:choose>, который включает его тело, если его условие

оценивается как «истина»

<c:otherwise> Подтег <c:choose>, который включает его тело, если его условие

оценивается как «ложь»

<c:forEach> Для итерации по коллекции

<c:forTokens> Для итерации по токенам, разделенным разделителем

<c:param> Используется с <c:import> для передачи параметров

<c:url> Для создания URL с дополнительными параметрами строки запроса

4.8 Добавление JSTL

Предыдущий вывод можно сделать немного лучше, используя библиотеку

тегов. Сначала необходимо подключить библиотеку. Она доступна по ссылке

https://search.maven.org/artifact/org.glassfish.web/jakarta.servlet.jsp.jstl.

Скопируйте зависимость и разместите ее в файл pom.xml вашего проекта в

раздел зависимостей и синхронизируйте файл.

https://search.maven.org/artifact/org.glassfish.web/jakarta.servlet.jsp.jstl

106

Изменяем стартовую страницу:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

<title> Title</title>

</head>

<body>

<H2>Welcome ${name}</H2>

<div>

 <table border="1">

 <caption>Список вашей группы</caption>

 <tr>

 <th>Имя</th>

 <th>Телефон</th>

 <th>email</th>

 </tr>

 <c:forEach items="${group}" var="person">

 <tr><td>${person.name}</td>

 <td>${person.phone}</td>

 <td>${person.email}</td>

 </tr>

 </c:forEach>

 </table>

</div>

</body>

</html>

Результат обработки формы (рисунок 4.22).

Рисунок 4.22 – Обработка формы

4.9 Реализация перенаправления между сервлетами

Плохо, что сервлет выполняет много работы: проверку прав пользователя

и возврат списка. Разделим ответственность и создадим другой сервлет, который

будет возвращать список группы. Взаимодействие будет следующим: если

пользователь авторизовался в LoginServlet, LoginServlet перенаправляет запрос к

новому сервлету GroupListServlet, который возвращает список группы.

107

Создадим сервлет GroupListServlet:

@WebServlet(name = "GroupListServlet", value = "/GroupListServlet")

public class GroupListServlet extends HttpServlet {

 private static final long serialVersionUID = 1L;

 private ListService todoService = new ListService();

 @Override

 protected void doGet(HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException {

 request.setAttribute("group", ListService.retrieveList());

 request.getRequestDispatcher("/WEB-INF/views/welcome.jsp")

 .forward(request, response);

 }

 @Override

 protected void doPost(HttpServletRequest request, HttpServletResponse

response)

 throws ServletException, IOException {

 String nname = request.getParameter("nname");

 String nphone = request.getParameter("nphone");

 String nemail = request.getParameter("nemail");

 if (("".equals(nname)) || ("".equals(nphone)) || ("".equals(nemail))) {

 request.setAttribute("errorMessage", "Заполните все поля");

 } else {

 ListService.addPerson(new Person(nname, nphone, nemail));

 }

 request.setAttribute("group", ListService.retrieveList());

 request.getRequestDispatcher("/WEB-

INF/views/welcome.jsp").forward(request, response);

 }

}

Для взаимодействия сервлетов можно использовать два варианта.

Forward – работает внутри контейнера. Для браузера URL не меняется и

кто реально отработал запрос, браузер не знает.

Redirect – браузеру посылается в ответе заголовок Location, в результате

чего браузер делает новый запрос по переданному ему в этом заголовке URL,

т. е. URL для браузера может меняться. Соответственно, теряется весь контекст,

наработанный во время обработки до отправки Redirect.

108

Внесем изменения в LoginServlet в метод Post:

if (validateUser(name, password)) {

 request.getSession().setAttribute("name", name);

 response.sendRedirect(request.getContextPath() +

"/GroupListServlet");

// НЕТ ПАРАМЕТРОВ - всегда использует метод get

request.getRequestDispatcher("/GroupServlet")

//.forward(request, response);

4.10 Редактирование списка

Добавим новый метод addPerson для добавления объекта в список в классе

ListService:

static public void addPerson(Person person) {

 groupList.add(new Person(person));

}

В класс Person добавим конструктор:

public Person(Person person) {

 name = person.name;

 phone = person.phone;

 email = person.email;

}

В класс GroupListServlet дописываем метод doPost:

@Override

protected void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 String nname = request.getParameter("nname");

 String nphone = request.getParameter("nphone");

 String nemail = request.getParameter("nemail");

 if (("".equals(nname)) || ("".equals(nphone)) || ("".equals(nemail))) {

 request.setAttribute("errorMessage", "Заполните все поля");

 } else {

 ListService.addPerson(new Person(nname, nphone, nemail));

 }

 request.setAttribute("group", ListService.retrieveList());

 request.getRequestDispatcher("/WEB-INF/views/welcome.jsp").forward(request,

response);

}

В методе проверяем, что все поля заполнены. Если так, добавляем новый

объект к списку.

109

Изменяем welcome.jsp. Теперь снизу надо добавить еще одну форму для

ввода информации.

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

<html>

<head>

 <title> Title</title>

 <link href="webjars/bootstrap/4.3.1/css/bootstrap.min.css"

 rel="stylesheet">

 <style>

 .footer {

 position: absolute; bottom: 0;

 width: 100%;

 height: 60px;

 background-color: #f5f5f5;

 }

 .footer .container {

 width: auto;

 max-width: 680px;

 padding: 0 15px;

 }

 </style>

</head>

<body>

<nav role="navigation" class="navbar navbar-default">

 <div class="">

 <img src =

"https://www.kv.by/sites/default/files/user7743/logo_iba_group.jpg" width="50"

height="50">

 </div>

 <div class="navbar-collapse">

 <ul class="nav navbar-nav">

 <li class="active">Home

 <ul class="nav navbar-nav navbar-right">

 Login

 </div>

</nav>

<div class="container">

 <H2>Welcome ${name}</H2>

 <table border="1">

 <caption>Список вашей группы</caption>

 <tr>

 <th>Имя</th>

 <th>Телефон</th>

 <th>email</th>

 </tr>

 <c:forEach items="${group}" var="person">

 <tr><td> ${person.name}</td>

 <td> ${person.phone}</td>

110

 <td> ${person.email}</td>

 </tr>

 </c:forEach>

 </td>

 </td>

 </table>

 <p>${errorMessage}</p>

 <form method="POST" action="GroupListServlet"> Новый :

 <p> Введите имя <input name="nname" type="text" /> </p>

 <p> Введите телефон <input name="nphone" type="text" /> </p>

 <p> Введите email <input name="nemail" type="text" /> </p>

 <input name="add" type="submit" />

 </form>

</div>

<footer class="footer">

 <div class="container">

 <p>2021 Все права защищены</p>

 </div>

</footer>

<script src="webjars/jquery/3.3.1/jquery.min.js"></script>

<script src="webjars/bootstrap/4.3.1/js/bootstrap.min.js"></script>

</body>

</html>

Получим следующий результат обработки запросов (рисунки 4.23 и 4.24).

Рисунок 4.23 – Заполнение полей списка

111

Рисунок 4.24 – Проверка заполнения полей формы

4.11 Добавление JQuery и Bootstrap

Если у вас нет Bootstrap и JQuery, скопируйте из репозитория Maven

зависимости и добавьте в pom.xml (рисунки 4.25 и 4.26).

Рисунок 4.25 – Библиотека JQuery

112

Рисунок 4.26 – Библиотека Bootstrap

Перепишем welcome.jsp. Вы можете сделать все на ваше усмотрение.

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

<html>

<head>

 <title> Title</title>

 <link href="webjars/bootstrap/4.3.1/css/bootstrap.min.css"

 rel="stylesheet">

 <style>

 .footer {

 position: absolute; bottom: 0;

 width: 100%;

 height: 60px;

 background-color: #f5f5f5;

 }

 .footer .container {

 width: auto;

 max-width: 680px;

 padding: 0 15px;

 }

 </style>

</head>

<body>

<nav role="navigation" class="navbar navbar-default">

 <div class="">

 <img src =

113

"https://www.kv.by/sites/default/files/user7743/logo_iba_group.jpg"

width="50" height="50">

 </div>

 <div class="navbar-collapse">

 <ul class="nav navbar-nav">

 <li class="active">Home

 <ul class="nav navbar-nav navbar-right">

 Login

 </div>

</nav>

<div class="container">

 <H2>Welcome ${name}</H2>

 <table border="1">

 <caption>Список вашей группы</caption>

 <tr>

 <th>Имя</th>

 <th>Телефон</th>

 <th>email</th>

 </tr>

 <c:forEach items="${group}" var="person">

 <tr><td>${person.name}</td>

 <td> ${person.phone}</td>

 <td> ${person.email}</td>

 </tr>

 </c:forEach>

 </td>

 </td>

 </table>

 <p>${errorMessage}</p>

 <form method="POST" action="GroupListServlet"> Новый :

 <p> Введите имя <input name="nname" type="text" /> </p>

 <p> Введите телефон <input name="nphone" type="text" /> </p>

 <p> Введите email <input name="nemail" type="text" /> </p>

 <input name="add" type="submit" />

 </form>

</div>

<footer class="footer">

 <div class="container">

 <p>2021 Все права защищены</p>

 </div>

</footer>

<script src="webjars/jquery/3.3.1/jquery.min.js"></script>

<script src="webjars/bootstrap/4.3.1/js/bootstrap.min.js"></script>

</body>

</html>

114

Проверка переходов формы (рисунок 4.27).

Рисунок 4.27 – Работа страницы с подключенными библиотеками

Назначение фильтров

Мы можем использовать фильтры для следующих задач:

‒ работа с ответами сервера перед тем, как они будут переданы клиенту;

‒ перехватывание запросов от клиента перед тем, как они будут

отправлены на сервер.

Обычно, когда пользователь запрашивает веб-страницу, запрос будет

отправлен на сервер (Server). Он должен проходить через фильтры (Filter) до

того, как дойти до запрошенной страницы, как показано на рисунках 4.28 и 4.29.

Рисунок 4.28 – Работа без применения фильтра

115

Однако существуют ситуации запроса пользователя, которые не

проходят все уровни Filter.

Рисунок 4.29 – Работа с применением фильтра

Ситуация, когда пользователь отправляет запрос одной страницы (page 1),

этот запрос проходит через Filter.

Пример ситуации:

1) Пользователь посылает запрос, чтобы посмотреть страницу с личной

информацией.

2) Запрос будет отправлен на Server.

3) Запрос проходит Filter, который записывает информацию в файл log.

4) Запрос к Filter проверяет, вошел ли пользователь в систему.

Filter проверил и увидел, что пользователь не вошел в систему, тогда он

перенаправляет запрос на страницу входа в систему пользователя (рисунок 4.30).

Рисунок 4.30 – Последовательность срабатывания фильтра

116

На самом деле Filter может быть использован для кодирования веб-сайта

(encoding). Например, установить кодировку UTF-8 для страницы. Открыть

и закрыть соединение к Database и подготовить транзакцию

JDBC (JDBC Transaction).

Сервлетные фильтры

Сервлетный фильтр, в соответствии со спецификацией, это Java-код,

пригодный для повторного использования и позволяющий преобразовать

содержание HTTP-запросов, HTTP-ответов и информацию, содержащуюся в

заголовках HTML. Сервлетный фильтр занимается предварительной обработкой

запроса, прежде чем тот попадает в сервлет, и/или последующей обработкой

ответа, исходящего из сервлета.

Сервлетные фильтры могут:

‒ перехватывать инициацию сервлета прежде, чем сервлет будет

инициирован;

‒ определить содержание запроса прежде, чем сервлет будет

инициирован;

‒ модифицировать заголовки и данные запроса, в которые упаковывается

поступающий запрос;

‒ модифицировать заголовки и данные ответа, в которые упаковывается

получаемый ответ;

‒ перехватывать инициацию сервлета после обращения к сервлету.

Сервлетный фильтр может быть конфигурирован так, что он будет

работать с одним сервлетом или группой сервлетов. Основой для

формирования фильтров служит интерфейс javax.servlet.Filter, который

реализует три метода:

‒ void init (FilterConfig config) throws ServletException;

‒ void destroy();

‒ void doFilter (ServletRequest request, ServletResponse response,

FilterChain chain) throws IOException, ServletException.

Метод init вызывается прежде, чем фильтр начинает работать,

и настраивает конфигурационный объект фильтра. Метод doFilter выполняет

непосредственно работу фильтра. Таким образом, сервер вызывает init один раз,

чтобы запустить фильтр в работу, а затем вызывает doFilter столько раз, сколько

запросов будет сделано непосредственно к данному фильтру. После того как

фильтр заканчивает свою работу, вызывается метод destroy.

117

Пример простого фильтра:

package common;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class FilterConnect implements Filter {

 private FilterConfig config = null;

 private boolean active = false;

public void init (FilterConfig config) throws ServletException

 {

 this.config = config;

 String act = config.getInitParameter("active");

 if (act != null)

 active = (act.toUpperCase().equals("TRUE"));

 }

public void doFilter (ServletRequest request, ServletResponse response,

 FilterChain chain)throws IOException,

 ServletException

 {

 if (active) {

// Здесь можно вставить код для обработки

 }

 chain.doFilter(request, response);

 }

public void destroy()

 {

 config = null;

 }

}

Интерфейс FilterConfig содержит метод для получения имени фильтра, его

параметров инициации и контекста активного в данный момент сервлета.

С помощью своего метода doFilter каждый фильтр получает текущий

запрос request и ответ response, а также FilterChain, содержащий список

фильтров, предназначенных для обработки.

В doFilter фильтр может выполнять с запросом и ответом следующие

действия: собирать данные или упаковывать объекты для придания им

нового поведения. Затем фильтр вызывает chain.doFilter, чтобы передать

управление следующему фильтру. После возвращения этого вызова фильтр

может по окончании работы своего метода doFilter выполнить дополнительную

работу над полученным ответом. К примеру, сохранить регистрационную

информацию об этом ответе.

118

После того как класс-фильтр откомпилирован, его необходимо установить

в контейнер и «приписать» (map) к одному или нескольким сервлетам.

Объявление и подключение фильтра отмечается в дескрипторе поставки web.xml

внутри элементов <filter> и <filter-mapping>. Для подключения фильтра к

сервлету необходимо использовать вложенные элементы <filter-name> и

<servlet-name>.

Объявление фильтра:

<filter>

 <filter-name>FilterName</filter-name>

 <filter-class>FilterConnect</filter-class>

 <init-param>

 <param-name>active</param-name>

 <param-value>true</param-true>

 </init-param>

</filter>

Подключение фильтра к сервлету.

<filter-mapping>

 <filter-name>FilterName</filter-name>

 <servlet-name>ServletName</servlet-name>

</filter-mapping>

В представленном коде дескриптора поставки web.xml объявлен

класс-фильтр FilterConnect с именем FilterName. Фильтр имеет параметр

инициализации active, которому присвивается значение true. Фильтр FilterName

в разделе <filter-mapping> подключен к сервлету ServletName.

Порядок, в котором контейнер строит цепочку фильтров для запроса,

определяется следующими правилами:

‒ цепочка, определяемая urlPattern, выстраивается в том порядке, в

котором встречаются соответствующие описания фильтров в web.xml;

‒ последовательность сервлетов, определенных с помощью <servlet-name>,

также выполняется в той последовательности, в которой эти элементы

встречаются в дескрипторе поставки web.xml.

Для связи фильтра со страницами HTML или группой сервлетов

необходимо использовать тег <url-pattern>.

119

Для подключения фильтра к HTML-страницам используем следующий код:

<filter-mapping>

 <filter-name>FilterName</filter-name>

 <url-pattern>*.html</url-pattern>

</filter-mapping>

Использование дополнительных ресурсов

В отдельных случаях недостаточно вставить в сервлет фильтр или даже

цепочку фильтров, а необходимо обратиться к другому сервлету, странице JSP,

документу HTML, XML или другому ресурсу. Если требуемый ресурс находится

в том же контексте, что и сервлет, который его вызывает, то для получения

ресурса необходимо использовать метод

public RequestDispatcher getRequestDispatcher(String path);

представленный в интерфейсе ServletRequest. Здесь path – это путь к ресурсу

относительно контекста. Например, необходимо обратиться к сервлету Connect:

RequestDispatcher rd = request.getRequestDispatcher("Connect");

Если ресурс находится в другом контексте, то необходимо предварительно

получить контекст методом

public ServletContext getContext(String uripath);

интерфейса ServletContext, а потом использовать метод

public RequestDispatcher getRequestDispatcher (String uripath);

интерфейса ServletContext. Здесь путь uripath должен быть абсолютным, т. е.

начинаться с наклонной черты /. Например,

RequestDispatcher rd = config.getServletContext() .getContext("/prod").

getRequestDispatcher("/prod/Customer");

Если требуемый ресурс – сервлет, помещенный в контекст под своим

именем, то для его получения можно обратиться к методу

RequestDispatcher getNamedDispatcher (String name);

120

Все три метода возвращают null, если ресурс недоступен или сервер не

реализует интерфейс RequestDispatcher. Как видно из описания методов, к

другим ресурсам можно обратиться только через объект типа

RequestDispatcher, который предлагает два метода обращения к ресурсу. Первый

метод

public void forward (ServletRequest request, ServletResponse response);

просто передает управление другому ресурсу, предоставив ему свои аргументы

request и response. Вызывающий сервлет выполняет предварительную обработку

объектов request и response и передает их вызванному сервлету или другому

ресурсу, который окончательно формирует ответ response и отправляет его

клиенту, или опять вызывает другой ресурс. Например:

if (rd != null)

rd.forward

(request, response); else

response.sendError (HttpServletResponse.SC_NO_CONTENT);

Вызывающий сервлет не должен выполнять какую-либо отправку клиенту

до обращения к методу forward(), иначе будет выброшено исключение класса

IllegalStateException. Если же вызывающий сервлет уже что-то отправлял

клиенту, то следует обратиться ко второму методу:

public void include (ServletRequest request, ServletResponse response);

Этот метод вызывает ресурс, который на основании объекта request может

изменить тело объекта response. Но вызванный ресурс не может изменить

заголовки и код ответа объекта response. Это естественное ограничение,

поскольку вызывающий сервлет мог уже отправить заголовки клиенту. Попытка

вызванного ресурса изменить заголовок будет просто проигнорирована. Можно

сказать, что метод include выполняет такую же работу, как вставки на стороне

сервера SSI (Server Side Include).

4.12 Реализация фильтра

Сделайте следующее. Запустите приложение и на открывшейся странице

вы получите данные списка группы, чего не должно быть без ввода пароля.

121

Фильтр гарантирует, что пользователь не может попасть на страницу

списка группы без входа в систему. Сделаем это, добавляя фильтр для перехвата

всех запросов, соответствующих шаблону.

Создайте пакет для фильтров Filter (рисунки 4.31 и 4.32).

Рисунок 4.31 – Структура пакета фильтра

И создайте такой фильтр.

Рисунок 4.32 – Добавление фильтра

122

Должен появиться сгенерированный код:

@WebFilter(filterName = "LoginRequiredFilter")

public class LoginRequiredFilter implements Filter {

 public void destroy() {

 }

 public void doFilter(ServletRequest req, ServletResponse resp, FilterChain

chain) throws ServletException, IOException {

 chain.doFilter(req, resp);

 }

 public void init(FilterConfig config) throws ServletException {

 }

}

Фильтр должен сработать перед сервлетом GroupListServlet. Будем проверять

имя пользователя. Если оно соответствует admin, пропускаем дальше (т. е. на

сервлет GroupListServlet), если нет – переходим на LoginServlet.

Заменим код фильтра:

@WebFilter(filterName = "LoginRequiredFilter", urlPatterns =

"/GroupListServlet")

public class LoginRequiredFilter implements Filter {

 public void destroy() {

 }

 public void doFilter(ServletRequest req, ServletResponse resp, FilterChain

chain) throws ServletException, IOException {

 HttpServletRequest request = (HttpServletRequest) req;

 if ("admin".equals(request.getSession().getAttribute("name"))) {

 chain.doFilter(req, resp);

 } else {

 request.getSession().invalidate();

 request.getRequestDispatcher("LoginServlet").forward(req, resp);

 }

 }

 public void init(FilterConfig config) throws ServletException {

 }

}

Проверим.

Как видите, адресация у GroupListServlet не проходит без авторизации

(рисунок 4.33).

123

Рисунок 4.33 – Проверка фильтра на странице авторизации

Пользователь должен иметь возможность выйти. Поэтому допишем еще

один серевлет Logout (рисунок 4.34).

Рисунок 4.34 – Создание сервлета Logout

Добавим код:

@WebServlet(name = "LogoutServlet", value = "/LogoutServlet")

public class LogoutServlet extends HttpServlet {

 @Override

 protected void doGet(HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException {

 request.getSession().invalidate();

 request.getRequestDispatcher("/WEB-INF/views/login.jsp").forward(

 request, response);

 }

 @Override

 protected void doPost(HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException {

 }

}

124

Добавим ссылку для выхода на welcome.jsp.

ul class="nav navbar-nav navbar-right">

Logout

4.13 Конфигурация БД

Создадим БД, используя следующий скрипт:

USE infodb;

CREATE TABLE users (

id INTEGER AUTO_INCREMENT PRIMARY KEY,

login VARCHAR(20),

passw VARCHAR(12));

INSERT INTO users (login, passw) VALUES ('admin', 'admin');

Подключим БД с применением конфигурационого файла Resource Bandle

(рисунки 4.35–4.37).

Рисунок 4.35 – Выбор Resource Bandle

125

Рисунок 4.36 – Присвоение имени Resource Bandle

Рисунок 4.37 – Проверка создания Resource Bandle

Класс ConnectorDB использует файл ресурсов db.properties, в котором

хранятся, как правило, параметры подключения к БД, такие, как логин и пароль

доступа. Например:

db.driver = com.mysql.jdbc.Driver

db.user = root

db.password = root

db.poolsize = 32

db.url = jdbc:mysql://localhost:3306/infodb

После этого создайте пакет util и в нем класс ConnectorDB (рисунок 4.38).

Рисунок 4.38 – Слой подключения к БД

126

 public static Connection getConnection() throws SQLException {

 ResourceBundle resource = ResourceBundle.getBundle("db",

 Locale.getDefault());

 String url = resource.getString("db.url");

 String user = resource.getString("db.user");

 String pass = resource.getString("db.password");

 return DriverManager.getConnection(url, user, pass);

 }

}

В таком случае получение соединения с БД сведется к вызову.

Connection cn = ConnectorDB.getConnection();

Когда мы будем проверять валидность пользователя, нам понадобится

объект User. Создайте пакет model (рисунок 4.39):

Рисунок 4.39 – Создание объектной модели

package by.iba.model;

public class User {

 private int id; private String login; private String passw;

 public User(int id, String login, String passw) {

 this.id = id; this.login = login; this.passw = passw;

 }

/Конструкторы getters@setters

 }

}

Осуществим оптимизацию кода посредством библиотеки Lombok,

позволяющей сократить количество шаблонного кода, который нужно писать

на Java.

Добавление в проект очень простое, достаточно добавить зависимости

(рисунок 4.40).

127

<dependency>

 <groupId>org.projectlombok</groupId>

 <artifactId>lombok</artifactId>

 <version>1.18.18</version>

 <scope>provided</scope>

</dependency>

Затем подключить plugin. При использовании Lombok наш исходный код

не будет валидным кодом Java. Поэтому потребуется установить плагин для IDE,

иначе среда разработки не поймет, с чем имеет дело.

Рисунок 4.40 – Проверка плагина Lombok

Перечень аннотаций, используемых плагином Lombok:

@Data – просто удобная аннотация, которая применяет сразу несколько

аннотаций Lombok.

@ToString генерирует реализацию для метода toString(), которая состоит

из аккуратного представления объекта: имя класса, все поля и их значения.

@EqualsAndHashCode генерирует реализации equals и hashCode, которые

по умолчанию используют нестатические и нестационарные поля, но

настраиваются.

@Getter / @Setter генерирует геттеры и сеттеры для частных полей.

@RequiredArgsConstructor создает конструктор с требуемыми

аргументами, где обязательными являются окончательные поля и поля с

аннотацией @NonNull (подробнее об этом ниже).

128

package by.iba.model;

import lombok.AllArgsConstructor;

import lombok.Data;

import lombok.NoArgsConstructor;

import lombok.ToString;

@Data

public class User {

 private int id;

 private String login;

 private String passw;

}

Создайте пакет dao (рисунок 4.41).

Рисунок 4.41 – Уровень работы с БД

public class UserDao {

 private Connection connection;

 public UserDao() {

 try {

 connection = ConnectorDB.getConnection();

 } catch (SQLException e) {

 e.printStackTrace();

 }}

 public void closeConnection() {

 try {

 if (connection != null) {

 connection.close();

 }

 } catch (Exception e) {

 e.printStackTrace();

 }}

 public boolean isValidUser(final String login, final String password)

{

 PreparedStatement ps = null;

 try {

 ps = connection.prepareStatement("select login,passw from

users where login=? and passw=?");

 ps.setString(1, login);

 ps.setString(2, password);

 ResultSet rs = ps.executeQuery();

 while (rs.next()) {

 return true;

 }

129

 } catch (SQLException e) {

 e.printStackTrace();

 }

 return false;

 }

}

Меняем содержимое LoginServlet:

package by.iba.servlet;

import by.iba.dao.UserDao;

import by.iba.model.ListService;

import javax.servlet.ServletException;

import javax.servlet.ServletRequest;

import javax.servlet.ServletResponse;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import java.io.IOException;

import java.io.PrintWriter;

@WebServlet(name = "LoginServlet", urlPatterns = "/LoginServlet")

public class LoginServlet extends HttpServlet {

 @Override

 protected void doGet(HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException {

 request.getRequestDispatcher("/WEB-

INF/views/login.jsp").forward(request, response);

 }

 @Override

 protected void doPost(HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException {

 String name = request.getParameter("name");

 String password = request.getParameter("password");

 UserDao daoUser = new UserDao();

 if (daoUser.isValidUser(name, password)) {

 request.getSession().setAttribute("name", name);

 response.sendRedirect(request.getContextPath() +

"/GroupListServlet");

// НЕТ ПАРАМЕТРОВ - всегда использует метод get

request.getRequestDispatcher("/GroupServlet")

//.forward(request, response);

 } else {

130

 request.setAttribute("errorMessage", "Invalid Login and

password!!");

 request.getRequestDispatcher("/WEB-INF/views/login.jsp")

 .forward(request, response);

 }

 }

 @Override

 public void destroy() {

 super.destroy();

 System.out.println("destroy");

 }

 @Override

 public void init() throws ServletException {

 super.init();

 System.out.println("init");

 }

 @Override

 public void service(ServletRequest req, ServletResponse res) throws

ServletException, IOException {

 super.service(req, res);

 System.out.println("service");

 }

}

Если не работает, то у вас случилась проблема – не упаковывает драйвер.

Добавьте в класс подключения:

DriverManager.registerDriver(new com.mysql.jdbc.Driver());

Обязательно добавляем cj, если драйвер выше 8 версии.

Улучшим код, изменив следующую часть:

finally {

 if (ps != null) { try {

 ps.close();

 } catch (SQLException e) { e.printStackTrace();

 }}

}

В методе isValidUser используется строка. Все строки лучше делать

константами и размещать в начале класса.

package by.iba.dao;

import by.iba.util.ConnectorDB;

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.sql.SQLException;

131

public class UserDao {

 private final static String SQL_GET_USER = "select login,passw from users

where login=? and passw=?";

 private Connection connection;

 public UserDao() {

 try {

 connection = ConnectorDB.getConnection();

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

 public void closeConnection() {

 try {

 if (connection != null) {

 connection.close();

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 public boolean isValidUser(final String login, final String password) {

 PreparedStatement ps = null;

 try {

 ps = connection.prepareStatement(SQL_GET_USER);

 ps.setString(1, login);

 ps.setString(2, password);

 ResultSet rs = ps.executeQuery();

 while (rs.next()) {

 return true;

 }

 } catch (SQLException e) {

 e.printStackTrace();

 } finally {

 if (ps != null) {

 try {

 ps.close();

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

 }

 return false;

 }

}

132

Если будут ошибки, добавьте еще следующее:

db.url = jdbc:mysql://localhost:3306/infodb?useSSL=true

Установление SSL-соединения без проверки подлинности сервера

не рекомендуется.

В соответствии с требованиями MySQL 5.5.45+, 5.6.26+ и 5.7.6+

SSL-соединение должно быть установлено по умолчанию, если явный параметр

не задан. Для соответствия существующим приложениям, не использующим SSL,

свойство verifyServerCertificate имеет значение false. Вам нужно либо явно

отключить SSL, установив useSSL = false, либо установить useSSL = true и

предоставить доверительное хранилище для проверки сертификата сервера.

Еще одна проблема будет с фильтром LoginRequiredFilter.

Перепишем его на такой:

package by.iba.filter;

import javax.servlet.*;

import javax.servlet.annotation.WebFilter;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpSession;

import java.io.IOException;

@WebFilter(filterName = "LoginRequiredFilter", urlPatterns =

"/GroupListServlet")

public class LoginRequiredFilter implements Filter {

 public void destroy() {

 }

 @Override

 public void doFilter(ServletRequest request, ServletResponse response,

FilterChain chain) throws ServletException, IOException {

 HttpServletRequest httpReq = (HttpServletRequest) request;

 HttpServletResponse httpResp = (HttpServletResponse) response;

 HttpSession session = httpReq.getSession();

 if (session.getAttribute("name")!=null) {

 chain.doFilter(request, response);

 }

 else {

 session.invalidate();

 request.getRequestDispatcher("LoginServlet").forward(request,

 response);

 }

 }

 public void init (FilterConfig config) throws ServletException {

 }

 }

133

4.14 Работа с регистрацией

Допишем Login.jsp.

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

<html>

<head>

 <title>Title</title>

</head>

<body>

<p>${errorMessage}

</p>

<form action="LoginServlet" method="POST">

 <p>Name : <input name="name" type="text"/>

 </p>

 <p> Password : <input name="password" type="password"/>

 </p>

 <input type="submit"/></form>

<div>

 <form action="RegisterServlet" method="GET">

 <input class ="button-main-page" type="submit" value="Регистрация"/>

 </form>

</div>

</body>

</html>

Так как управление в приложении организовано через сервлеты, сделаем

переход на сервлет RegisterServlet.

Проверим (рисунок 4.42).

Рисунок 4.42 – Проверка недоступности RegisterServlet

Можно добавить к странице готовый css. Cоздайте папку css и разместите

там стиль style.css (рисунок 4.43).

134

Рисунок 4.43 – Структура папок стилей

Подправим форму.

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

<html>

<head>

 <link rel="stylesheet" type="text/css" href="css/style.css" />

 <title>Title</title>

</head>

<body>

<div class ="container">

 <section id="content">

 <p>${errorMessage}</p>

 <form action="LoginServlet" method="POST">

 <h1> Вход в систему</h1>

 <div>

 <input placeholder="Имя" required="" id ="username" name="name"

type="text" />

 </div>

 <div>

 <input placeholder="Пароль" required=""id ="password"

name="password" type="password" />

 </div>

 <div>

 <input type="submit" value="Войти" />

 </div>

 <div>

 Регистрация

 </div>

 </form>

 </section>

</div>

</body>

</html>

135

Получим применение стилей к странице входа (рисунок 4.44).

Рисунок 4.44 – Применение стилей к странице входа

Для регистрации пользователя напишите register.jsp, на которой пользователь

должен ввести логин и пароль (рисунок 4.45).

Рисунок 4.45 – Структура страниц

Добавим страницы последовательно в структуру:

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

<html>

<head>

 <link rel="stylesheet" type="text/css" href="css/style.css" />

 <title>Title</title>

</head>

<body>

136

<div class ="container">

 <section id="content">

 <p>${errorRegister}</p>

 <form action="RegisterServlet" method="POST">

 <h1> Регистрация нового пользователя </h1>

 <div>

 <input placeholder="Введите имя" required=""name="newLoginName"

type="text" />

 </div>

 <div>

 <input placeholder="Введите пароль" id ="password" required=""

name="newPassword" type="password" />

 </div>

 <div>

 <input type="submit" value="Зарегистрировать"/>

 </div>

 </form>

 </section>

</div>

</body>

</html>

В методе doGet cервлет RegisterServlet выполняет переход на register.jsp.

В методе doPost читаем параметры с формы, получаем соединение через

UserDao. Потом надо добавить пользователя через вызов

daoUser.insertUser(user). Если метод возвращает true, то переходим на страницу

входа. Если нет – выводим сообщение пользователю о том, что такой логин

существует.

package by.iba.servlet;

import by.iba.dao.UserDao;

import by.iba.model.User;

@WebServlet(urlPatterns = "/RegisterServlet")

public class RegisterServlet extends HttpServlet {

 protected void doPost(HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException {

 String name = request.getParameter("newLoginName");

 String password = request.getParameter("newPassword");

 UserDao daoUser = new UserDao();

 User user = new User(name, password);

 if (daoUser.insertUser(user)) {

 request.getRequestDispatcher("/WEB-

INF/views/login.jsp").forward(request, response);

 } else {

 request.setAttribute("errorRegister", "Выберите другое имя,

такой пользователь существует");

 request.getRequestDispatcher("/WEB-INF/views/register.jsp")

 .forward(request, response); }}

137

protected void doGet(HttpServletRequest request, HttpServletResponse

response)

 throws ServletException, IOException {

 request

 .getRequestDispatcher("/WEB-INF/views/register.jsp")

 .forward(request, response);

 }

}

Допишите в класс UserDao метод добавления нового пользователя.

Нам понадобится запрос проверки логина и вставки нового пользователя.

Один из возможных вариантов:

private final static String SQL_CHECK_LOGIN = "SELECT login FROM users WHERE

login = ?";

private final static String SQL_INSERT_USER = "INSERT INTO users(login ,passw)

VALUES (? , ?)";

Можно написать сразу вставку с проверкой WHERE NOT EXISTS.

При добавлении пользователя надо проверить логин, если такой есть –

метод вернет false, иначе добавляем:

public boolean insertUser(User user) {

 try {

 PreparedStatement preparedStatement =

 connection.prepareStatement(SQL_CHECK_LOGIN);

preparedStatement.setString(1, user.getLogin()); ResultSet result =

preparedStatement.executeQuery();

 if (result.next()){ preparedStatement.close(); return false;

 }

 else {

 preparedStatement = connection.prepareStatement(SQL_INSERT_USER);

 preparedStatement.setString(1, user.getLogin());

preparedStatement.setString(2, user.getPassw());

 preparedStatement.executeUpdate(); preparedStatement.close();

 }

 } catch (SQLException e) { e.printStackTrace();

 }

 return true;

}

138

При необходимости добавьте конструктор для User с двумя параметрами:

public User(String name, String password) {

 this.login = name;

 this.passw = password;

}

Получим шаблон страницы проекта (рисунки 4.46–4.50).

Рисунок 4.46 – Главная страница

Рисунок 4.47 – Окно регистрации

139

Рисунок 4.48 – Проверка регистрации и заполнения полей

Рисунок 4.49 – Проверка ввода информации

140

Рисунок 4.50 – Результат успешной регистрации и входа

4.15 Хеширование паролей

Hash = хеш-функция (свертка) – функция однозначного отображения

строки (любой длины) на конечное множество (строку заданной длины). Само

число (строка) хеш – результат вычисления хеш-функции над данными.

Существуют криптографические и некриптографические хеш-функции.

В веб-приложениях хеш-функции используются для безопасного хранения

паролей в базе данных. Хеширование паролей необходимо, чтобы пароли не

хранились в базе в открытом виде. В случае компрометации БД реальное

значение паролей может быть похищено. Если это будут хеши, то для получения

реальных паролей эти хеши нужно еще взломать.

Хеш в базе должен удовлетворять следующим условиям:

1) стойкость к атакам перебора (прямой перебор и перебор по словарю);

2) невозможность поиска одинаковых паролей разных пользователей по

хешам.

Для выполнения первого требования нужно использовать стойкие в

настоящее время хеш-функции. Нужно выбирать более стойкий к взлому

алгоритм (SHA2 вместо SHA1 или MD5 и др.).

Для выполнения второго – к паролю перед хешированием добавляется

случайная строка (соль). Таким образом, у двух пользователей с паролем

«123456» будут разные соли. И соль, и сам хеш хранятся в базе данных.

141

Сделаем упрощенный вариант. Добавьте класс HashPassword в пакет util.

В классе нам будет нужен один статический метод getHash для

хеширования строки.

Класс MessageDigest предоставляет приложениям функциональность

алгоритма дайджеста сообщений, такого как SHA-1, MD5 или SHA-256.

Дайджесты – это безопасные однонаправленные хеш-функции, которые

принимают данные произвольного размера и выводят хеш-значение

фиксированной длины.

Внесем изменения. Сначала поменяем тип пароля в базе данных. Зайдите

в Workbench или Heidi и измените тип на blob (рисунок 4.51).

Рисунок 4.51 – Изменение типа пароля для хеширования

Отключите разрешение использования нулевых значений в поле, как

представлено ниже (рисунок 4.52).

Рисунок 4.52 – Настройка полей пароля пользователя

Зайдите в класс User и поменяйте тип для пароля на byte:

package by.iba.model;

import lombok.AllArgsConstructor;

import lombok.Data;

import lombok.NoArgsConstructor;

import lombok.ToString;

142

@Data

public class User {

 private int id;

 private String login;

 private byte[] passw;

 public User(String name, byte[] password) {

 this.login = name;

 this.passw = password;

 }

}

Также в UserDao.

Методы isValid и insert будут содержать byte-данные.

package by.iba.dao;

import by.iba.model.User;

import by.iba.util.ConnectorDB;

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.sql.SQLException;

public class UserDao {

 private final static String SQL_GET_USER = "select login,passw from

users where login=? and passw=?";

 private final static String SQL_CHECK_LOGIN = "SELECT login FROM users

WHERE login = ?";

 private final static String SQL_INSERT_USER = "INSERT INTO users(login

,passw) VALUES (? , ?)";

 private Connection connection;

 public UserDao() {

 try {

 connection = ConnectorDB.getConnection();

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

 public void closeConnection() {

 try {

 if (connection != null) {

 connection.close();

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

}

143

public boolean isValidUser(final String login, final byte[] password)

{

 PreparedStatement ps = null;

 try {

 ps = connection.prepareStatement(SQL_GET_USER);

 ps.setString(1, login);

 ps.setBytes(2, password);

 ResultSet rs = ps.executeQuery();

 while (rs.next()) {

 return true;

 }

 } catch (SQLException e) {

 e.printStackTrace();

 } finally {

 if (ps != null) {

 try {

 ps.close();

 } catch (SQLException e) {

 e.printStackTrace();

 }}

 }

 return false;

 }

 public boolean insertUser(User user) {

 try {

 PreparedStatement preparedStatement =

 connection.prepareStatement(SQL_CHECK_LOGIN);

preparedStatement.setString(1, user.getLogin()); ResultSet result =

preparedStatement.executeQuery();

 if (result.next()){ preparedStatement.close(); return false;

 }

 else {

 preparedStatement =

connection.prepareStatement(SQL_INSERT_USER);

 preparedStatement.setString(1, user.getLogin());

preparedStatement.setBytes(2, user.getPassw());

 preparedStatement.executeUpdate(); preparedStatement.close();

 }

 } catch (SQLException e) { e.printStackTrace(); }

 return true;

 }

}

В LoginServlet при проверке пользователя передавать надо хеш-значение

if (daoUser.isValidUser(name, HashPassword.getHash(password)))

В RegisterServlet аналогично:

User user = new User(name, HashPassword.getHash(password));

144

Добавим класс HashPassword в пакет util:

package by.iba.util;

import java.io.UnsupportedEncodingException;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

public class HashPassword {

 public static byte[] getHash(String passStr) {

 MessageDigest digest = null;

 byte[] hash = null;

 try {

 digest = MessageDigest.getInstance("MD5");

 digest.reset();

 hash = digest.digest(passStr.getBytes("UTF-8"));

 } catch (NoSuchAlgorithmException e) {

 e.printStackTrace();

 } catch (UnsupportedEncodingException e) {

 e.printStackTrace();

 }

 return hash;

 }

}

Очистите БД и пересоздайте запись через проект (рисунок 4.53).

Рисунок 4.53 – Проверка шифрования пароля

В зависимости от кодировки увидите такую ситуацию.

Управление списком студентов

Так же как и для пользователей User, надо добавить хранение, извлечение

и добавление персон в БД. Для этого добавим новую таблицу в базу данных

(рисунок 4.54).

145

Рисунок 4.54 – Структура сущностей БД

Создадим PersonDao (рисунок 4.55).

Рисунок 4.55 – Модификация объектной модели и уровня работы с БД

package by.iba.dao;

import by.iba.model.Person;

import by.iba.util.ConnectorDB;

import java.sql.*;

import java.util.LinkedList;

import java.util.List;

public class PersonDao {

 private final static String SQL_GET_PERSONS = "SELECT * FROM persons";

 private final static String SQL_INSERT_PERSONS = "INSERT INTO persons(pname,

phone, email) VALUES (?,?,?)";

 private static Connection connection;

 public PersonDao() {

 try {

 if (connection == null) {

 connection = ConnectorDB.getConnection();

 }

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

 public void closeConnection() {

 try {

 if (connection != null) {

 connection.close();

 }

 } catch (Exception e) {

 e.printStackTrace();

 } }

146

 public void insertPerson(Person person) {

 try {

 PreparedStatement preparedStatement =

 connection.prepareStatement(SQL_INSERT_PERSONS);

 preparedStatement.setString(1, person.getName());

 preparedStatement.setString(2, person.getPhone());

 preparedStatement.setString(3, person.getEmail());

 preparedStatement.executeUpdate();

 preparedStatement.close();

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

 public List<Person> getPersons() {

 List<Person> persons = new LinkedList<Person>();

 try {

 Statement statement = connection.createStatement();

 ResultSet resultSet = statement.executeQuery(SQL_GET_PERSONS);

 Person person = null;

 while (resultSet.next()) {

 person = new Person();

 person.setName(resultSet.getString("pname"));

 person.setPhone(resultSet.getString("phone"));

 person.setEmail(resultSet.getString("email"));

 persons.add(person);

 }

 resultSet.close();

 statement.close();

 } catch (SQLException e) {

 e.printStackTrace();

 }

 return persons;

 }}

Перепишите GroupListServlet для работы с PersonDao.

Обязательно добавляем новую зависимость в pom.xml.

<dependency>

 <groupId>org.apache.commons</groupId>

 <artifactId>commons-lang3</artifactId>

 <version>3.11</version>

</dependency>

Модифицируем класс GroupListServlet для обработки запросов к БД.

package by.iba.servlet;

import by.iba.dao.PersonDao;

import by.iba.model.ListService;

import by.iba.model.Person;

147

@WebServlet(name = "GroupListServlet", value = "/GroupListServlet")

public class GroupListServlet extends HttpServlet {

 private static final long serialVersionUID = 1L;

 protected void doPost(HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException {

 PersonDao daoPerson = new PersonDao();

 String nname = request.getParameter("nname");

 String nphone = request.getParameter("nphone");

 String nemail = request.getParameter("nemail");

 if (nname.isEmpty() || nphone.isEmpty() || nemail.isEmpty()) {

 request.setAttribute("errorMessage", "Заполните все поля");

 } else {

 daoPerson.insertPerson(new Person(nname, nphone, nemail));

 }

 request.setAttribute("group", daoPerson.getPersons());

 request.getRequestDispatcher("/WEB-

INF/views/welcome.jsp").forward(request, response);

 }

 protected void doGet(HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException {

 PersonDao daoPerson = new PersonDao();

 request.setAttribute("group", daoPerson.getPersons());

 request.getRequestDispatcher("/WEB-INF/views/welcome.jsp")

 .forward(request, response);

 }

}

Проверяем (рисунок 4.56).

Рисунок 4.56 – Результат вывода информации из БД

148

4.16 Добавление поддержки Cookie

Для хранения информации на компьютере клиента используются

возможности класса javax.servlet.http.Cookie.

Cookie – это небольшие блоки текстовой информации, которые сервер

посылает клиенту для сохранения в файлах Cookies. Клиент может запретить

браузеру прием файлов Cookies. Браузер возвращает информацию обратно на

сервер как часть заголовка HTTP, когда клиент повторно заходит на тот же веб-

ресурс.

Cookies могут быть ассоциированы не только с сервером, но и также с

доменом, в этом случае браузер посылает их на все серверы указанного домена.

Этот принцип лежит в основе одного из протоколов обеспечения единой

идентификации пользователя (Single Signon), где серверы одного домена

обмениваются идентификационными маркерами (token) с помощью общих

Сookies. Cookie были созданы в компании Netscape как средства отладки, но

теперь используются повсеместно.

Файл Cookie – это файл небольшого размера для хранения информации,

который создается серверным приложением и размещается на компьютере

пользователя. Браузеры накладывают ограничения на размер файла Cookie и

общее количество Cookie, которые могут быть установлены на пользовательском

компьютере приложениями одного веб-сервера. Чтобы послать Cookie клиенту,

сервлет должен создать объект класса Cookie, указав конструктору имя и

значение блока, и добавить их в объект response. Конструктор использует имя

блока в качестве первого параметра, а его значение – в качестве второго.

Cookie cookie = new Cookie("model", "Canon D7000"); response.addCookie

(cookie);

Извлечь информацию Cookie из запроса можно с помощью метода

getCookies() объекта HttpServletRequest, который возвращает массив объектов,

составляющих этот файл.

Cookie[] cookies = request.getCookies();

После этого для каждого объекта класса Cookie можно вызвать метод

getValue(), который возвращает строку String c содержимым блока Cookie.

Экземпляр Cookie имеет целый ряд параметров: путь, домен, номер версии,

время жизни, комментарий. Одним из ключевых является срок жизни в секундах

от момента первой отправки клиенту, определить который следует методом

149

setMaxAge(long sec). Если параметр не указан, то Cookie существует только до

момента прерывания контакта клиента с приложением.

Добавим работу с файлом Cookie, который хранит последнее время

обращения на сервер (name time). При авторизации пользователя выводится

приветствие и строка с временем последнего входа.

Сервлет LoginServlet добавляет Cookie к объекту-ответа:

package by.iba.servlet;

import by.iba.dao.UserDao;

import by.iba.model.ListService;

import by.iba.util.HashPassword;

import javax.servlet.ServletException;

import javax.servlet.ServletRequest;

import javax.servlet.ServletResponse;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.Cookie;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import java.io.IOException;

import java.io.PrintWriter;

import java.time.LocalDateTime;

@WebServlet(name = "LoginServlet", urlPatterns = "/LoginServlet")

public class LoginServlet extends HttpServlet {

 @Override

 protected void doGet(HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException {

 request.getRequestDispatcher("/WEB-

INF/views/login.jsp").forward(request, response);

 }

 @Override

 protected void doPost(HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException {

 String name = request.getParameter("name");

 String password = request.getParameter("password");

 UserDao daoUser = new UserDao();

 if (daoUser.isValidUser(name, HashPassword.getHash(password))) {

 request.getSession().setAttribute("name", name);

 Cookie[] cookies = request.getCookies();

 if (cookies != null) {

 for (Cookie c : cookies) { Cookie cookie = c;

 System.out.println(cookie.getName() + cookie.getValue());

 if (name.equals(cookie.getName())) {

150

 request. getSession().setAttribute("lastdate",

 cookie.getValue());

 }

 }

 }

 Cookie userCookie = new Cookie(name,

LocalDateTime.now().toString());

 userCookie.setMaxAge(60 * 60 * 24 * 365); //хранить куки год

 response.addCookie(userCookie);

 response.sendRedirect(request.getContextPath() +

"/GroupListServlet");

request.getRequestDispatcher("/GroupServlet")

 } else {

 request.setAttribute("errorMessage", "Invalid Login and

password!!");

 request.getRequestDispatcher("/WEB-INF/views/login.jsp")

 .forward(request, response);

 }

 }

 @Override

 public void destroy() {

 super.destroy();

 System.out.println("destroy");

 }

 @Override

 public void init() throws ServletException {

 super.init();

 System.out.println("init");

 }

 @Override

 public void service(ServletRequest req, ServletResponse res) throws

ServletException, IOException {

 super.service(req, res);

 System.out.println("service");

 }

}

Чтобы посмотреть, что вы сохранили в браузере, в данном случае в

Chrome:

1) Нажмите значок с тремя точками в правом верхнем углу экрана

«Настройки».

2) Внизу выберите пункт меню «Дополнительные».

3) В разделе «Конфиденциальность и безопасность» нажмите пункт

«Настройки контента».

4) Выберите файлы Сookie и найдите окно «localhost» (рисунок 4.57).

151

Рисунок 4.57 – Проверка сохранения Cookies

Добавьте СSS (рисунок 4.58).

Рисунок 4.58 – Применение стиля к форме страницы

152

Java-программы – это очень часто большие серверные приложения без

UI, консоли и т. д. Они обрабатывают одновременно запросы тысяч

пользователей, и нередко при этом возникают различные ошибки. Особенно,

когда разные нити начинают друг другу мешать.

Фактически, единственным способом поиска редко воспроизводимых

ошибок и сбоев в такой ситуации является запись в лог-файл всего, что

происходит в каждой нити.

Чаще всего в лог пишется информация о параметрах метода, с которыми

он был вызван, все перехваченные ошибки и еще много промежуточной

информации.

Чем полнее лог, тем легче восстановить последовательность событий и

отследить причины возникновения сбоя или ошибки.

Логирование – это возможность следить за процессом выполнения бизнес-

логики проекта. Вы можете выводить нужные вам логи в отдельный файл. Для

этого нужно реализовать свою систему логирования, где вы сможете указать,

какие из логов необходимо выводить.

Изначально в Java не было своего логгера, что привело к написанию

нескольких независимых логгеров. В Java для этого используется:

‒ JUL – java.util.logging.

‒ log4j.

‒ JCL – jakarta commons logging.

‒ Logback.

‒ SLF4J – simple logging facade for java.

Самым распространенным из них стал Log4j. Будем использовать Log4j.

Данный фреймворк на текущий момент имеет уже вторую версию, которая не

совместима с первой. Для использования Log4j2 вам необходимо подключить

библиотеки log4j-api-2.x и log4j-core-2.x.

Найдите в Maven-репозитории и добавьте к проекту новые зависимости.

<dependency>

 <groupId>org.apache.logging.log4j</groupId>

 <artifactId>log4j-core</artifactId>

 <version>2.14.1</version>

</dependency>

<dependency>

 <groupId>org.apache.logging.log4j</groupId>

 <artifactId>log4j-api</artifactId>

 <version>2.14.1</version>

</dependency>

http://logging.apache.org/log4j/2.0/download.html

153

Чтобы гибко управлять логированием, создайте в папке

resources/ файл log4j2.properties (рисунок 4.59).

Рисунок 4.59 – Файл настройки логирования

Поскольку разные приложения предъявляют разные требования к ведению

журнала, вы можете настроить Log4j2 соответствующим образом. Кроме того,

вам часто придется изменять конфигурации Log4j2 приложения на протяжении

всего жизненного цикла развертывания.

Во время локальной разработки вы можете работать с консольным

приложением, чтобы избежать накладных расходов на ввод-вывод файлов, а в

других средах развертывания установить файловый аппендер или какое-либо

другое постоянное место назначения для сохранения сообщений журнала.

Настроить Log4J2 можно программно или через файлы конфигурации,

такие как свойства, XML, JSON и YAML, находящиеся в пути к классам вашего

проекта. Благодаря использованию файлов конфигурации, у вас есть

возможность изменять различные параметры конфигурации без изменения кода

вашего приложения.

В этом проекте у нас будет файл свойств. log4j2.properties представляет

собой набор пар «ключ:значение» с параметрами для настройки различных

компонентов, таких как регистраторы, приложения и макеты.

name=PropertiesConfig

property.filename = logs

appenders = console, file

appender.console.type=Console

appender.console.name = STDOUT

appender.console.layout.type = PatternLayout

appender.console.layout.pattern=%d{yyyy-MM-dd HH:mm:ss} %-5p %c{1}:%L -

%m%n

appender.file.type=File

appender.file.name = LOGFILE

appender.file.fileName=${filename}/appservlet.log

appender.file.layout.type=PatternLayout

appender.file.layout.pattern=[%-5level] %d{yyyy-MM-dd HH:mm:ss.SSS} [%t]

154

%c{1} -

%msg%n

loggers=file

logger.file.name=by.iba

logger.file.level = debug

logger.file.appenderRefs = file

logger.file.appenderRef.file.ref=LOGFILE

rootLogger.level=debug

rootLogger.appenderRefs = stdout

rootLogger.appenderRef.stdout.ref = STDOUT

Обычно у каждого лог-сообщения есть своя степень важности и, используя

ее, можно часть этих сообщений отбрасывать.

Степени важности (рисунок 4.60).

Рисунок 4.60 – Степени важности и очередность логирования

Если выставить уровень логирования в WARN, то все сообщения, менее

важные, чем WARN, будут отброшены: TRACE, DEBUG, INFO.

Если выставить уровень фильтрации в FATAL, то будут отброшены даже

ERROR.

Есть еще два уровня важности, которые используются при фильтрации –

это OFF – отбросить все сообщения и ALL – показать все сообщения

(не отбрасывать ничего).

155

Добавим:

import org.apache.logging.log4j.LogManager;

import org.apache.logging.log4j.Logger;

и сам класс:

public class ConnectorDB {

 private static final Logger logger =LogManager.getLogger(ConnectorDB.class);

 public static Connection getConnection() throws SQLException {

 DriverManager.registerDriver(new com.mysql.cj.jdbc.Driver());

 ResourceBundle resource = ResourceBundle.getBundle("db",

Locale.getDefault());

 String url = resource.getString("db.url");

 String user = resource.getString("db.user");

 String pass = resource.getString("db.password");

 logger.info("connection establish");

 return DriverManager.getConnection(url, user, pass);

 }}

Результат создания лога запуска приложения с применением атрибутов

конфигурации представлен в консоли (рисунки 4.61 и 4.62).

Рисунок 4.61 – Результат логирования в консоли

Результат логирования информации в файл представлен на рисунке 4.61.

Рисунок 4.62 – Результат логирования в файле

156

Добавим логирование в PersonDao:

package by.iba.dao;

import org.apache.logging.log4j.LogManager;

import by.iba.model.Person;

import by.iba.util.ConnectorDB;

import java.sql.*;

import java.util.LinkedList;

import java.util.List;

public class PersonDao {

 private static final Logger logger =

LogManager.getLogger(PersonDao.class);

 private final static String SQL_GET_PERSONS = "SELECT * FROM persons";

 private final static String SQL_INSERT_PERSONS = "INSERT INTO

persons(pname, phone, email) VALUES (?,?,?)";

 private static Connection connection;

 public PersonDao() {

 try {

 if (connection == null) {

 connection = ConnectorDB.getConnection();

 logger.info("get connection");

 }

 } catch (SQLException e) {

 e.printStackTrace();

 }}

 public void closeConnection() {

 try {

 if (connection != null) {

 connection.close();

 logger.info("close connection");

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 public void insertPerson(Person person) {

 try {

 PreparedStatement preparedStatement =

 connection.prepareStatement(SQL_INSERT_PERSONS);

 preparedStatement.setString(1, person.getName());

 preparedStatement.setString(2, person.getPhone());

 preparedStatement.setString(3, person.getEmail());

 preparedStatement.executeUpdate();

 preparedStatement.close();

 logger.info("New Person " + person.getName() +" inserted");

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

157

 public List<Person> getPersons() {

 List<Person> persons = new LinkedList<Person>();

 try {

 Statement statement = connection.createStatement();

 ResultSet resultSet = statement.executeQuery(SQL_GET_PERSONS);

 Person person = null;

 while (resultSet.next()) {

 person = new Person();

 person.setName(resultSet.getString("pname"));

 person.setPhone(resultSet.getString("phone"));

 person.setEmail(resultSet.getString("email"));

 persons.add(person);

 }

 resultSet.close();

 statement.close();

 } catch (SQLException e) {

 e.printStackTrace();

 }

 return persons;

 }}

Тема 5. Основы Spring Framework

5.1 Конфигурация проекта

Для начала необходимо создать проект в среде разработки (IntelliJ

(желательно), NetBeans, Eclipse). File->New->Project.

Переходим в Maven и выбираем архетип (рисунки 5.1–5.4).

Рисунок 5.1 – Выбор архетипа

Далее задаем GroupId с указанием доменной зоны и фамилии через точку.

В поле ArtifactId задаем имя проекта. Version оставляем как есть (рисунок 5.2).

Рисунок 5.2 – Инициализация проекта

158

Проверяем правильность внесенных данных (рисунок 5.3).

Рисунок 5.3 – Проверка правильности конфигурации проекта

Задаем имя проекту (рисунок 5.4).

Рисунок 5.4 – Указание имени проекта

Для начала несколько слов о том, что же такое Spring. В настоящее время

под термином Spring часто подразумевают целое семейство проектов. В

большинстве своем они развиваются и курируются компанией Pivotal и силами

сообщества. Ключевые (но не все) проекты семейства Spring представлены ниже.

Spring Framework (или Spring Core)

Ядро платформы, предоставляет базовые средства для создания

приложений – управление компонентами (бинами, beans), внедрение

зависимостей, MVC-фреймворк, транзакции, базовый доступ к БД. В основном

это низкоуровневые компоненты и абстракции. По сути, неявно используется

всеми другими компонентами.

Spring MVC (часть Spring Framework)

Spring оперирует понятиями контроллеров, маппингов запросов,

различными HTTP-абстракциями и т. п. Со Spring MVC интегрированы

нормальные шаблонные движки, типа Thymeleaf, Freemaker, Mustache, а также

есть сторонние интеграции с множеством других.

159

Spring Data

Доступ к данным: реляционные и нереляционные БД, KV-хранилища и т. п.

Spring Cloud

Много полезного для микросервисной архитектуры – service discovery,

трассировка и диагностика, балансировщики запросов, circuit breaker, роутеры

и т. п.

Spring Security

Авторизация и аутентификация, доступ к данным, методам и т. п.

OAuth, LDAP и множество разных провайдеров.

Spring Integration

Обработка данных из разных источников. Если надо раз в час брать файл с

ФТП, разбивать его на строки, которые потом фильтровать, а дальше отправлять

в определенную очередь – это к Spring Integration.

Плюсы Spring:

‒ Spring можно использовать для построение любого приложения на языке

Java, что выгодно отличает его от многих других платформ (таких как

Apache Struts);

‒ для использования ядра Spring нужно внести минимальные изменения в

код приложения (принцип философии Spring – минимальное воздействие);

‒ Spring является модульной средой и позволяет использовать отдельные

свои части без необходимости вводить остальные;

‒ возможность работы с POJO (без контейнеров EJB);

‒ существует большое количество расширений Spring для построения

приложений на Java Enterprise-платформе;

‒ сообщество Spring – одно из лучших сообществ из всех проектов с

открытым исходным кодом, списки рассылки и форумы всегда активны;

‒ у Spring отличная подробная документация.

Spring обеспечивает решение многих задач, с которыми сталкиваются

Java-разработчики и организации, которые хотят создать информационную

систему, основанную на платформе Java. Из-за широкой функциональности

трудно определить наиболее значимые структурные элементы, из которых он

состоит. Spring не всецело связан с платформой Java Enterprise, несмотря на его

масштабную интеграцию с ней, что является важной причиной его

популярности.

https://ru.wikipedia.org/wiki/Java
https://ru.wikipedia.org/wiki/J2EE

160

Spring, вероятно, наиболее известен как источник расширений (features),

нужных для эффективной разработки сложных бизнес-приложений вне

тяжеловесных программных моделей, которые исторически были

доминирующими в промышленности. Еще одно его достоинство в том, что он

ввел ранее неиспользуемые функциональные возможности в сегодняшние

господствующие методы разработки, даже вне платформы Java.

Этот фреймворк предлагает последовательную модель и делает ее

применимой к большинству типов приложений, которые уже созданы на основе

платформы Java. Считается, что Spring реализует модель разработки,

основанную на лучших стандартах индустрии, и делает ее доступной во многих

областях Java.

Возможности Spring:

‒ использование внедрения зависимостей (DI);

‒ поддержка аспектно-ориентированного программирования (в том числе

интеграция с AspectJ);

‒ язык выражений Spring (SpEL) – позволяет приложению

манипулировать объектами Java во время выполнения;

‒ встроенная поддержка Bean Validation API – позволяет один раз описать

логику проверки достоверности данных и использовать ее как в

пользовательском интерфейсе, так и на уровне работы с БД;

‒ Spring обеспечивает хорошую интеграцию с большинством

инструментов доступа к данным (JDBC, Hibernate, MyBatis, JDO, JPA и т. п.);

‒ поддержка Object to XML Mapping – преобразование компонентов

JavaBean в XML и наоборот (как правило, используется для обмена данными с

другими системами);

‒ интеграция с JEE – внедрение бинов Spring в компоненты EJB;

‒ MVC на веб-уровне;

‒ поддержка электронной почты;

‒ поддержка планирования заданий;

‒ поддержка динамических сценариев (Groovy, JRuby, BeanShell).

Spring Annotation

Вначале был EJB 2.1 с его огромным количеством XML-файлов. Не будет

особым преувеличением, если сказать, что на одну строку кода для бизнес-

логики нужно было написать по крайней мере 10 строк кода от фреймворка

и две страницы XML, содержащие локальные и удаленные интерфейсы, ручной

JNDI-lookup, многоуровневые try-catch, проверки на RemoteException. Потом

создали Spring Framework.

http://springframework.org/

161

Прошло время и Sun провела работу над ошибками. EJB 3.0 был даже

проще Spring, XML-free, с аннотациями, dependency injection, EJB 3.1 стал еще

одним огромным шагом в сторону упрощения.

По логике, EJB сейчас можно рассматривать как часть того, что предлагает

Spring, почему нет реализации EJB в plain Spring, учитывая его поддержку из-

коробки JPA 1.0/2.0, JSR-250, JSR-330, JAX-WS/RS и прочего. Spring Framework

сегодня воспринимается как медленный, тяжелый и сложный для поддержки

фреймворк, в основном из-за XML-дескрипторов.

Уход от XML рассмотрим во втором примере теоретической части.

Существует множество аннотаций:

@Component – аннотация для любого компонента фреймворка;

@Service (cервис-слой приложения) – аннотация, объявляющая, что этот

класс представляет собой сервис – компонент сервис-слоя. Сервис является

подтипом класса @Component. Использование данной аннотации позволит

искать бины-сервисы автоматически;

@Repository (доменный слой) – аннотация показывает, что класс

функционирует как репозиторий и требует наличия прозрачной трансляции

исключений. Преимуществом трансляции исключений является то, что слой

сервиса будет иметь дело с общей иерархией исключений от Spring

(DataAccessException) вне зависимости от используемых технологий доступа к

данным в слое данных;

@Controller (слой представления) – аннотация для маркировки java-класса,

как класса контроллера. Данный класс представляет собой компонент, похожий

на обычный сервлет (HttpServlet) (работающий с объектами HttpServletRequest и

HttpServletResponse), но с расширенными возможностями от Spring Framework;

@ResponseBody – аннотация показывает, что данный метод может

возвращать кастомный объект в виде xml, json;

@RestController – аннотация аккумулирует поведение двух аннотаций

@Controller и @ResponseBody;

@Transactional – перед выполнением метода, помеченного данной

аннотацией, начинается транзакция, после выполнения метода осуществляется

коммит транзакции, а при выбрасывании RuntimeException – ее возвращение в

первоначальное состояние;

@Autowired – аннотация позволяет автоматически установить значение поля;

@RequestMapping – аннотация используется для маппинга URL-адреса

запроса на указанный метод или класс. Можно указывать конкретный

HTTP-метод, который будет обрабатываться (GET/POST), передавать параметры

запроса;

162

@ModelAttribute – аннотация, связывающая параметр метода или

возвращаемое значение метода с атрибутом модели, которая будет

использоваться при выводе JSP-страницы;

@PathVariable – аннотация, которая показывает, что параметр метода

должен быть связан с переменной из URL-адреса;

@Scope – аннотация для установки области жизни бина: singleton (только

один экземпляр бина создается для IoC контейнера; значение по умолчанию),

prototype (создается новый экземпляр бина, когда приходит запрос на его

создание), request (один экземпляр бина для каждого HTTP-запроса), session

(один экземпляр бина для каждой сессии), globalSession (один экземпляр бина

для каждой глобальной сессии);

@PostConstruct – аннотация для метода, который будет вызван после

вызова конструктора бина;

@PreDestroy – аннотация для метода, который будет вызван перед

уничтожением бина;

@Profile – аннотация для создания профилей конфигурации проекта.

Может применяться как к бинам, так и к конфигурационным классам.

5.2 Основы Spring Core

Рассмотрим приложение, которое выводит в консоль строки, состоящие из

букв и цифр, размещенных в рандомном порядке (количество строк, количество

символов в строке и интервалы выбирает пользователь).

163

Структура проекта представлена ниже (рисунок 5.5).

Рисунок 5.5 – Структура проекта

В файле pom.xml нужно подключить зависимости, необходимые для

работы со Spring (spring-core и spring-context):

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.bsuir.spring</groupId>

 <artifactId>BsuirSpringXML</artifactId>

 <version>1.0-SNAPSHOT</version>

 <build>

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-compiler-plugin</artifactId>

 <configuration>

 <source>1.8</source>

 <target>1.8</target>

 </configuration>

 </plugin>

 </plugins>

 </build>

164

 <properties>

 <spring.version>4.3.9.RELEASE</spring.version>

 </properties>

 <dependencies>

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-core</artifactId>

 <version>${spring.version}</version>

 </dependency>

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-context</artifactId>

 <version>${spring.version}</version>

 </dependency>

 </dependencies>

</project>

Создадим интерфейс StringGenerator единственным методом, который

осуществляет генерацию строки.

package com.bsuir.spring.generator;

public interface StringGenerator {

 String EMPTY_STRING = "";

 String generate(int count);

}

Реализуем данный интерфейс двумя способами.

С генерацией строки букв:

package com.bsuir.spring.generator;

import java.util.Random;

public class AlphanumericStringGenerator implements StringGenerator {

 private static final Random RANDOM = new Random();

 private String source;

 public AlphanumericStringGenerator(String source) {

 this.source = source;

 }

 @Override

 public String generate(int count) {

 if (source == null || source.isEmpty()) {

 return EMPTY_STRING;

 }

 if (count < 0) {

 throw new IllegalArgumentException("Length of generated string must

be positive.");

 }

165

 StringBuilder result = new StringBuilder();

 for (int index = 0; index < count; index++) {

 int sourceIndex = RANDOM.nextInt(source.length());

 result.append(source.charAt(sourceIndex));

 }

 return result.toString(); }

}

С генерацией строки цифр:

package com.bsuir.spring.generator;

import java.util.Random;

public class DelimitedIntegerStringGenerator implements StringGenerator {

 private static final Random RANDOM = new Random();

 private String delimiter;

 private int endInclusive;

 public DelimitedIntegerStringGenerator(String delimiter, int endInclusive) {

 this.delimiter = delimiter;

 this.endInclusive = endInclusive;

 }

 @Override

 public String generate(int count) {

 if (endInclusive <= 0) {

 throw new IllegalArgumentException("Property endInclusive must be

positive integer.");

 }

 if (count < 0) {

 throw new IllegalArgumentException("Length of generated string must

be positive.");

 }

 StringBuilder result = new StringBuilder();

 for (int index = 0; index < count; index++) {

 result.append(RANDOM.nextInt(endInclusive)).append(delimiter);

 }

 return result.deleteCharAt(count - 1).toString();

 }

}

Создадим класс-сервис, осуществляющий генерацию текста и цифр, а

также содержащий геттеры и сеттеры.

package com.bsuir.spring.service;

import com.bsuir.spring.generator.StringGenerator;

import java.util.ArrayList;

import java.util.List;

166

public class GeneratorService {

 private StringGenerator stringGenerator;

 private int stringsCount;

 private int length;

public GeneratorService() {

}

 public GeneratorService(StringGenerator stringGenerator, int stringsCount,

int length) {

 this.stringGenerator = stringGenerator;

 this.stringsCount = stringsCount;

 this.length = length;

 }

 public List<String> generateStrings() {

 List<String> strings = new ArrayList<>();

 for (int count = 0; count < stringsCount; count++) {

 strings.add(stringGenerator.generate(length));

 }

 return strings;

 }

 public StringGenerator getStringGenerator() {

 return stringGenerator;

 }

 public int getStringsCount() {

 return stringsCount;

 }

 public void setStringGenerator(StringGenerator stringGenerator) {

 this.stringGenerator = stringGenerator;

 }

 public void setStringsCount(int stringsCount) {

 this.stringsCount = stringsCount;

 }

 public int getLength() {

 return length;

 }

 public void setLength(int length) {

 this.length = length;

 }

}

167

Создадим бины, соответствующие данным классам, и сконфигурируем их.

Опишем конфигурацию в файле string.xml.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd">

 <!--Создание бина для класса AlphanumericStringGenerator.-->

 <bean id="alphanumericStringGenerator"

class="com.bsuir.spring.generator.AlphanumericStringGenerator">

 <!--Внедрение значения "append" типа String как аргумент конструктора-->

 <constructor-arg type="java.lang.String"

value="abcdefghijkABCDEFGHIJK123467890" />

 </bean>

 <!--Создание бина для класса DelimitedIntegerStringGenerator.-->

 <bean id="delimitedIntegerStringGenerator"

class="com.bsuir.spring.generator.DelimitedIntegerStringGenerator">

 <!--Внедрение полей класса при помощи сеттеров-->

 <constructor-arg type="java.lang.String" value="," />

 <constructor-arg type="int" value="10" />

 </bean>

 <!--Создание бина для класса GeneratorService.-->

 <bean id="generatorService"

class="com.bsuir.spring.service.GeneratorService">

 <!--Внедрение бина с id "alphanumericStringGenerator" как поле

stringGenerator с использованием сеттера-->

 <property name="stringGenerator" ref="delimitedIntegerStringGenerator"/>

 <!--Внедрение значения 20 в поле "text" с использованием сеттера-->

 <property name="stringsCount" value="1" />

 <property name="length" value="5" />

 </bean>

</beans>

Внедрять свойства через конструктор можно тегом <constructor-arg/>.

При использовании этого метода внедрения в классе, для которого создается бин,

происходит вызов конструктора с параметрами тех типов, которые заданы в

атрибуте type. Так, например, при генерировании первого бина будет вызван

конструктор AlphanumericStringGenerator(), куда будет передано значение

«abcdefghijkABCDEFGHIJK123467890». Отметим, что тегов <constructor-arg />

для одного бина может быть объявлено несколько: произойдет вызов

конструктора с несколькими параметрами. В то же время, если ни одного тега

<constructor-arg /> не задано, будет вызван конструктор без параметров

(как, например, в третьем бине).

168

При внедрении значений через свойства используется тег <property />, где

определяется название поля для внедрения и значение, которое необходимо

передать в метод set, который должен иметь атрибут доступа public. Так в бине с

GeneratorService вначале с использованием конструктора без параметров будет

создан экземпляр класса GeneratorService, а затем будут вызваны методы

setStringGenerator, куда будет передана ссылка на бин с

delimitedIntegerStringGenerator, и методы setStringsCount со значением

параметра 1 и setLength со значением 5.

Также заметим, что для внедрения стандартных типов можно использовать

атрибут value, куда передается строковое значение, в дальнейшем преобразуемое

в объект необходимого типа. Если же необходимо внедрить ссылку на бин

контекста, нужно использовать атрибут ref, куда передать идентификатор бина.

Еще одним способом внедрения зависимостей является использование

фабричного метода. Если данный метод является статическим, то необходимо в

атрибуте class указать имя класса, содержащего данный метод, а в атрибуте

factory-method указать имя метода.

Создадим класс Main с точкой входа.

package com.bsuir.spring.main;

import com.bsuir.spring.service.GeneratorService;

import org.springframework.context.ApplicationContext;

import org.springframework.context.support.ClassPathXmlApplicationContext;

import java.util.List;

public class Main {

 private static final String CONFIGURATION_PATH = "context.xml";

 public static void main(String[] args) {

 ApplicationContext context = new

ClassPathXmlApplicationContext(CONFIGURATION_PATH);

 GeneratorService service = (GeneratorService)

context.getBean("generatorService");

 List<String> generated = service.generateStrings();

 for (String s : generated) {

 System.out.println(s);

 }

 }

}

169

Результат выполнения кода со значением бина

id="delimitedIntegerStringGenerator" представлен на рисунке 5.6.

Рисунок 5.6 – Результат выполнения delimitedIntegerStringGenerator

Результат выполнения кода со значением бина

id="alphanumericStringGenerator" представлен на рисунке 5.7.

Рисунок 5.7 – Результат выполнения alphanumericStringGenerator

170

5.3 Интеграция Spring Boot

Структура проекта (рисунок 5.8).

Рисунок 5.8 – Структура проекта

По аналогии создадим pom.xml.

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.bsuir.spring</groupId>

 <artifactId>BsuirSpringAnnotations</artifactId>

 <version>1.0-SNAPSHOT</version>

 <build>

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-jar-plugin</artifactId>

 <configuration>

 <archive>

 <manifest>

 <addClasspath>true</addClasspath>

 <mainClass>com.bsuir.spring.main.Main</mainClass>

 <classpathPrefix>dependency-jars/</classpathPrefix>

 </manifest>

 </archive>

 </configuration>

 </plugin>

171

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-dependency-plugin</artifactId>

 <executions>

 <execution>

 <id>copy-dependencies</id>

 <phase>package</phase>

 <goals>

 <goal>copy-dependencies</goal>

 </goals>

 <configuration>

 <outputDirectory>

 ${project.build.directory}/dependency-jars/

 </outputDirectory>

 </configuration>

 </execution>

 </executions>

 </plugin>

 </plugins>

 </build>

 <properties>

 <spring.version>4.3.9.RELEASE</spring.version>

 </properties>

 <dependencies>

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-core</artifactId>

 <version>${spring.version}</version>

 </dependency>

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-context</artifactId>

 <version>${spring.version}</version>

 </dependency>

 </dependencies>

</project>

Свойства, необходимые для работы программы, объявлены в файле

application.properties. Их применение рассмотрим далее.

generator.integer.endInclusive:30

generator.integer.delimiter:,

generator.alphanumeric.source:abcdefghijkABCDEFGHIJK123467890

generator.service.strings.count:1

generator.service.string.length:5

172

Пример реализации интерфейса:

С генерацией строки текста:

package com.bsuir.spring.generator;

@Component("alphanumericStringGenerator")

public class AlphanumericStringGenerator implements StringGenerator {

 private static final Random RANDOM = new Random();

 @Value("${generator.alphanumeric.source:abcABC123}")

 private String source

 @Override

 public String generate(int count) {

 if (source == null || source.isEmpty()) {

 return EMPTY_STRING;

 }

 if (count < 0) {

 throw new IllegalArgumentException("Length of generated string must

be positive.");

 }

 StringBuilder result = new StringBuilder();

 for (int index = 0; index < count; index++) {

 int sourceIndex = RANDOM.nextInt(source.length());

 result.append(source.charAt(sourceIndex)); }

 return result.toString();

 }}

С генерацией строки цифр:

package com.bsuir.spring.generator;

@Service("delimitedIntegerStringGenerator")

public class DelimitedIntegerStringGenerator implements StringGenerator {

 private static final Random RANDOM = new Random();

 @Value("${generator.integer.delimiter:,}")

 private String delimiter;

 @Value("${generator.integer.endInclusive:999}")

 private int endInclusive;

 @Override

 public String generate(int count) {

 if (endInclusive <= 0) {

 throw new IllegalArgumentException("Property endInclusive must be

positive integer."); }

 if (count < 0) {

 throw new IllegalArgumentException("Length of generated string must

be positive.");

 }

 StringBuilder result = new StringBuilder();

 for (int index = 0; index < count; index++) {

 result.append(RANDOM.nextInt(endInclusive)).append(delimiter);

 }

 return result.deleteCharAt(count - 1).toString(); }

}

173

Для создания бинов с помощью аннотаций необходимо добавить к классу

одну из следующих аннотаций: @Component, @Repository, @Service или

@Controller. При этом аннотация @Component является самой общей, а

аннотации @Repository, @Service и @Controller различаются семантическим

значением. Они используются для уровня персистенции, сервисного уровня и

уровня представления соответственно. Но, несмотря на различия, они имеют

одинаковое действие: сообщают контексту, что необходимо создать бин

соответствующего класса. Для рассматриваемого класса будем использовать

аннотацию @Service. Для связывания свойств используется аннотация @Value.

В ней можно указать непосредственно значение, которое необходимо поставить,

либо, используя специальный синтаксис, можно подставить значение из файла

*.property.

Создадим класс-сервис, осуществляющий прибавление строки к тексту.

package com.bsuir.spring.service;

import com.bsuir.spring.generator.StringGenerator;

import org.springframework.stereotype.Service;

@Service

public class GeneratorService {

 @Autowired

 @Qualifier("alphanumericStringGenerator")

 private StringGenerator stringGenerator;

 @Value("${generator.service.strings.count}")

 private int stringsCount;

 @Value("${generator.service.string.length}")

 private int length;

 public List<String> generateStrings() {

 List<String> strings = new ArrayList<>();

 for (int count = 0; count < stringsCount; count++) {

 strings.add(stringGenerator.generate(length));

 }

 return strings;

 }

}

Внедрение ссылки на бин осуществляется с помощью аннотации

@Autowired. Данная аннотация осуществляет связывание по типу, т. е. будет

внедрен бин, реализующий интерфейс StringGenerator. Если же в контексте

зарегистрировано несколько бинов, подходящих под указанный тип, будет

сгенерировано исключение NoUniqueBeanDefinitionException. Чтобы этого

избежать, используется аннотация @Qualifier, в которой указывается id бина,

который необходимо подставить в поле. В данном случае будет подставлен бин

174

с alphanumericStringGenerator. Заметим, что для бинов, созданных с помощью

аннотаций, id генерируется автоматически как имя класса, записанное с

маленькой буквы.

Создадим класс Main с точкой входа.

package com.bsuir.spring.main;

import com.bsuir.spring.service.GeneratorService;

import org.springframework.context.ApplicationContext;

import

org.springframework.context.annotation.AnnotationConfigApplicationContext;

import org.springframework.context.annotation.PropertySource;

import org.springframework.stereotype.Component;

import java.util.List;

@Component

@PropertySource("application.properties")

public class Main {

 private static final String BASE_PACKAGE = "com.bsuir.spring";

 public static void main(String[] args) {

 ApplicationContext context = new

AnnotationConfigApplicationContext(BASE_PACKAGE);

 GeneratorService service = context.getBean(GeneratorService.class);

 List<String> generated = service.generateStrings();

 for (String s : generated) {

 System.out.println(s);

 }

 }

}

В данном классе содержится точка входа (метод Main). В данном методе

конфигурируется контекст, при этом для всех классов, находящихся внутри

пакета на любом уровне вложенности и отмеченных аннотациями или

@Component, @Repository, @Service и @Component, будут созданы бины.

Результат работы зависит от указания id бина (alphanumericStringGenerator

или delimitedIntegerStringGenerator) в аннотации @Qualifier.

Также отметим, что все свойства, используемые для подстановки с

помощью аннотации @Value, задаются в файле application.properties, который

подключается здесь же с использованием аннотации @PropertySource. Для того

чтобы свойства загрузились корректно, экземпляр данного класса Main также

должен быть бином и регистрироваться в контексте, что и делается с помощью

аннотации @Component.

175

Список использованных источников

1 Гонсалвес, Э. Изучаем Java EE 7 / Э. Гонсалвес. – СПб. : Питер, 2014. –

640 с.

2 Шилдт, Г. Java. Полное руководство / Г. Шилдт. – М. : Вильямс, 2012. –

1104 с.

3 Хелм, Р. Приемы объектно-ориентированного проектирования. Паттерны

проектирования / Р. Хелм, Э. Гамма. – СПб. : Питер, 2013. – 368 с.

4 Хорстманн, К. С. Java. Библиотека профессионала : в 2 т. /

К. С. Хортсманн. – 10-е изд. – М. : Вильямс, 2016. – Т. 2 : Расширенные средства

программирования. – 864 с.

5 Уоллс, К. Spring в действии / К. Уоллс. – 2-е изд. – М. : ДМК Пресс,

2013. – 752 с.

6 Раджпут, Д. Spring. Все паттерны проектирования / Д. Раджпут. – СПб. :

Питер, 2019. – 320 с.

7 Шефер, К. Spring 4 для профессионалов / К. Шефер, Х. О. Кларенс,

Р. Харроп. – 4-е изд. – М. : Вильямс, 2015. –752 с.

8 Машнин, Т. С. Web-сервисы Java / Т. С. Машнин [Электронный ресурс]. –

СПб. : БХВ-Петербург, 2012. – 560 с. – Режим доступа:

https://bookland.com/download/1/10/108012/sample.pdf. – Дата доступа: 21.06.2022.

9 Блинов, И. Н. Java. Методы программирования : учеб.-метод. пособие /

И. Н. Блинов, В. С. Романчик. – Минск : Четыре четверти, 2013. – 896 с.

10 Заяц, А. М. Проектирование и разработка WEB-приложений. Введение

в frontend и backend разработку на JavaScript и node.js : учеб. пособие /

А. М. Заяц, Н. П. Васильев. – СПб. : Лань, 2019. – 120 c.

11 Курняван, Б. Создание web-приложений на языке Java с помощью

сервлетов, JSP и EJB / Б. Курняван. – М. : Лори, 2012. – 880 с.

12 Козмина, Ю. Spring 5 для профессионалов / Ю. Козмина, Р. Хаппорт,

К. Шефер, К. Хо ; пер. с англ. – СПб. : Диалектика, 2019. – 1120 с.

13 Таненбаум, Э. Распределенные системы. Принципы и парадигмы /

Э. Таненбаум, М. ван Стеен. – СПб. : Питер, 2003. – 877 с.

14 Миковски, М. С. Разработка одностраничных веб-приложений /

М. С. Миковски, Д. К. Пауэлл. – М. : ДМК Пресс, 2014. – 512 c.

15 Эспозито, Д. Разработка современных веб-приложений: анализ

предметных областей и технологий / Д. Эспозито. – М. : Вильямс, 2017. – 464 c.

176

Св. план 2024, поз. 18

Учебное издание

Петрович Никита Олегович

Голда Ольга

Сторожев Дмитрий Алексеевич

СОВРЕМЕННЫЕ ТЕХНОЛОГИИ РАЗРАБОТКИ

СЕРВЕРНОЙ ЧАСТИ ПРОГРАММНЫХ ПРИЛОЖЕНИЙ

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ

Редактор Л. И. Артёмова

Корректор Е. Н. Батурчик

Компьютерная правка, оригинал-макет Е. Г. Бабичева

Подписано в печать 14.01.2026. Формат 60×84 1/16. Бумага офсетная. Гарнитура «Таймс».

Отпечатано на ризографе. Усл. печ. л. 10,35. Уч.-изд. л. 11,0. Тираж 100 экз. Заказ 63.

Издатель и полиграфическое исполнение: учреждение образования

«Белорусский государственный университет информатики и радиоэлектроники».

Свидетельство о государственной регистрации издателя, изготовителя,

распространителя печатных изданий №1/238 от 24.03.2014,

№2/113 от 07.04.2014, №3/615 от 07.04.2014.

Ул. П. Бровки, 6, 220013, г. Минск

