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ABSTRACT

A generalized 10-dimensional Duffin-Kemmer-Petiau equation for spin 1 particle with anomalous magnetic moment is exam-

ined in cylindrical coordinates (¢, r, ¢, z) in the presence of the external uniform electric field oriented along the axis z. On solutions,

we diagonalize operators of the energy and third projection of the total angular momentum. First, we derive the system of 10

equations in partial derivatives for functions F;(r, z) = G,;(r)H;(z) (i = 1,10). The use of the method based on the projective oper-
ators permits us to express 10 variables G,(r) through only three different functions f;(r), f,(r), f5(r), which are solved in Bessel
functions. After that, we derive the system of 10 first-order differential equations for functions H,(z). This system reduces to one

independent equation for a separate function and to the system of two linked equations for two remaining primary functions. This

system after diagonalization of the mixing matrix gives two separated equations for new variables. All three equations for basic

functions are solved in terms of the confluent hypergeometric functions. Thus, the complete system of solutions with cylindrical

symmetry for the vector particle with anomalous magnetic moment in the presence of the external uniform electric field is found.

1 | Introduction

The quantum mechanical problem for particles in the external
magnetic and electric fields is the classical one for quantum
physics, for instance, see [1-4]. The particles of low spin values,
s =0,1/2, were studied in the first place. In the present paper,
we turn to a spin s = 1 particle. The study of such a particle has a
long history; for example, see in [5-20].

Below, we will adhere the general technics developed in [21-25].
A generalized 10-dimensional Duffin-Kemmer - Petiau equation
firstly was proposed by Shamaly and Capri [26, 27], they had

developed the theory for a vector particle with anomalous mag-
netic moment. This idea of generalization in order to take into
account additional electromagnetic characteristics of the parti-
cles has been developed in many of works; in particular, for par-
ticle with electric quadruple moment, in the presence of external
fields, uniform magnetic or electric, and Coulomb field; see in
[28-36].

Now, a spin 1 particle with the anomalous magnetic moment will
be examined in the presence of the external uniform electric field.
The main wave equation is specified in cylindrical coordinates
(t,r, ¢, z) and corresponding tetrad.! Solutions with cylindrical
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symmetry are searched. On solutions, we diagonalize the oper-
ators of the energy and the third projection of the total angular
momentum. For Duffin-Kemmer - Petiau matrices, we apply the
cyclic presentation.

First, we derive the system of 10 first-order differential equations
in partial derivatives for functions F;(r,z)= F;(r)F;(z), (j =
1,10). The use of the method by Fedorov-Gronskiy [37] permits
us to express all 10 functions F;(r) through only three different

ones f,(r), f5(r), f3(r).

After that, we derive the system of 10 differential equations
for functions F;(z) dependent on the coordinate z. This sys-
tem is resolved by means of the method which generalized
the known method applied in solving the similar problem in
Cartesian coordinates [32-35]. In this way, we derive the sys-
tem of three 2nd-order differential equations for three primary
functions which is divided into one independent equation for
a separate function and the system of two linked equations for
two functions. The last system after diaginalizing the mixing
matrix reduces to two separated equations for new functions.
All three equations are solved in terms of the confluent hyper-
geometric functions. When separating the variables within the
matrix approach, and in practical realization of the method by
Fedorov-Gronskiy. Numerical study of the obtained analytical
solutions is performed.

Thus, the complete system of solutions for the vector particle with
anomalous magnetic moment in the presence of the external uni-
form electric field has been constructed.

2 | Separation of the Variables

The wave equation for a spin 1 particle with anomalous magnetic
moment [21] has the form (assuming the use of the tetrad formal-
ism [2])

{ﬁ C [(e(ﬁc)aﬂ + %f”bmc(x)) - ieAC]

Lo O

+,11Faﬁ(x)j“ﬁ(x)P—M}\11=o, p= :
2 0 0

where the symbol P stands for the projective operator separating
the vector component in the complete wave function. In cylindri-
cal coordinates,

X =(tr,¢,z), dS*=dr*—dr*—r’d¢* —dz?,

and in the presence of the uniform electric field along the axis

z, A, =—-Ez, F,, = F;; = E, Equation (1) takes the form (for
brevity, we simplify the notation, eE = E)

d,+ J12
ﬂo(i +iEz> A Ny SIS o LY Vi
ot or 0z
¥ =0
@)

where the physical dimensions of the quantities are

[M]=1/L, T=ilE, [1=1/L, [E]l=1/L%

I' is the imaginary parameter referring to the anomalous mag-
netic moment of the particle.

Let us search solutions in the form (we will apply the block struc-
ture of the wave function and the matrices)

/’lo(r, z)
Y = et pime hi(r. 2) — et pimg Hy(r,2) a_ 0 L¢ 3)
E(r,z) H,(r, z) K® 0
B;(r,z)
Correspondingly, the system of equations reads
i 12
[LO(—ie+iEz)+ e +L2M + Lsi]
ar r 0z
Hz+ij3H1 =MH, )

im +j}2

[KO(—is+iEz)+K1% + K? +K3%} H, = MH,.

First, we assume the use of the Cartesian basis for
Duffin-Kemmer-Petiau matrices

0 0 0000 ~1000 0 0
o1 0 0000 ,, 000000

0 -1 0000 000 0 1

0 0 -1000 000 -10

0-100 00 00-10 00
p_fp0o0o0o0- , fooo 0 410

0000O00O 000 -1 0 0

00 0+10 0 000 0 00

0+l 0 0 -10 0 0

0 0+l 0 00 0 0
o0 0 0F |00 0 o

0 0 0 00 0 0

0 0 0 00 0 -1

0 0 0 00+1 0

0 00 0 0 00

-1 00 0 0 00
o| 0 00 0 L -1 0 00

0 00 +1 0-10

0 00 +1 00

0-10 0 0 00

The needed generators in Cartesian basis are given by the
formulas
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000 0 0001 Taking in mind the matrices
0010 4 0000 ,
"lo1o0 o " Joooof ——ﬁoo 0 o
000 0 1000 V2
0 0 1
. . ~ab .
J$'Hy = j{"Hy + Hyjy",  H, = {E,, B}, L 49 0
C,=|V2 V2 ,
0-1000 O 00 00 10 -4 L
0 0 0 % v 0
10 000 O 00 0-100 0 0 00 0 i
j2_[00 000 o 5 00 00 0O 0 0 0~ Lo
@ loo oo0-10 ® jo-100 00 .
00 010 0 10 00 00 ——= 0% 0 00
V2
00 0O 0 00 00 OO i i
v 0 W 0 0 O
ot =0 1o 0 0o |
For the following, it will be more convenient to apply the cyclic 0 00 — 0 —-—
. . . 1 V2 V2
basis. It is defined by the requirement that the generator j;* for 0 00 1y L
vector field H, = (¥,) be diagonal. The needed transformation is V2 V2
given as follows: H, = U H,, where 0 00 0 -0
we get
1 0 0 0 1 0 0 O
0 -L Lo 0o-L o0 L
U= Y V2 o2 5) 0 0 0 000
0? 01 °-% %% F0_|-10 0 000
1 = N
O %o 0 0 1 0 0 -10 000
0O 0 -1000
Correspondingly, the needed generators for vector and tensor L 0-—=0 0 O
. .. . —ab \/5 \/E
transform to the cyclic basis in accordance with the rules, j, = .
ujstut, ;Zb =f‘lzb ®I+I®711b.1n this way, we get ' = 0 00 0 vz 0 ,
o oo --o -1
V2 V2
0o 00 0o Lo
-10000 0 ‘ V2
i i
— 0 —=0 O 0
00 0O 0 000O0 O VE NG 0-10000
FRo0 o0 gy 0 01000y 2_[0 00 0 %o i _f00 000 -1
0000 0 0010 O o o il 00 0000
000 0 0000 O V2 V2
0 00 0 i 0 00 0100
0 0000 -1 NG
0 0000 -1 0100
0010 0 0000 O 0010
3 (0000 3 |0 0010 0 —0 0001
‘/1 = R 12 = . K = B
1000 0 0100 O 0000
0000O0 0 000O0 O 0000
-10000 O 0000
L o 0 o -—0 0 o0
V2 V2
Also, we should transform to cyclic basis the matrices f*: 0 0 0 0 0o
1 i
g=[v’ " Yl rew Y ,
J— —_— 1
H,=UH,, U=C,, H,=UQ®U)H,=C,H,, 0 0 5 0 0 0 5 0
—a _ 0 Lo L 0 LA -4
0oL | 0 C,LC;! V2 1 V2 V2o 2
—a = . . e N
K 0 G KCy 0 0 0 7 0 0 0 7 0
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oSO = O O O

oSO O © ©

Therefore, in cyclic basis, we have the system

—0 —1 —2 — —3
[—i(e Bl + L L+ 1 m+ 7+ 2T ]
or r 0z
H,+T7 H, = MH,,

[ —0 —19 1=2 —12 b5}

— 37— —
—ie—EnK +K 2+ 1K im+] +—K]H - MH,.
ite ) or r (im+j,) 0z ! 2

(6)

Below, for brevity, we will omit the bar symbol over the variables.

After the needed calculation, we find the system of 10 partial
differential equations in the variables r and z:

L(i_ (m—l))El_L<i+(m+1))
\/5 or r \/5 or r

0
E; — £E2+Iﬁh2 = Mh,,

0

1 /0
B —Ez)E, — —B;=Mh
(2 ) or - L,
_ Ll (o mtDy\p 1 (0 (m-D
\/5 or r ! \/5 or r
B, +i(e — Ez)E, +Thy = Mh,,
1 /0 m J
—(=-=)B,+i(e— Ez)E.+ —B, = Mh.,
ﬁ(()r r) 2 +ile 2) 3+6z ! 3
%(; ™ Yk +i(Ez — )y = ME,,
-
+i(Ez—€)h2—%h0=ME2,
%<aﬁ @)ho +i(Ez— e)hy = MEs,
1 (0 m 0
7(6_ —>h2+£h3=MBl,
1 (0 m-1) 1 (0 (m+1
— | = - h+—( = hy = M B,,
\/—<a r >1+\/§(6r+ r )3 2
1

Jd  m 0
- _<a_ _>h2_ ~hy= MB,.

\/’

With the use of the notations

" \/5 o r 2\/5 or r
a _L(i m+1) b _L(i_m—l)
ml \/5 or A \/5 or r /)

we can present these equations shorter (the prime stands for the
derivative in z)
b_1E; — — E)+Thy = Mhy, a,B, +i(-W)E;

i1 E3 - BQ =Mh;,

~ @41 By — b, By — iW E, +Thy = Mhy, b, B, —iWE; + B, = Mhj;

auhg +iWhy = ME|,+iW hy — ) = ME,, b, hy+iW hy = M Es,

—b,hy+ Ry =MBy, b, 1hy +a,,hy=MB,, —a,h, —h} =MB;.
®)

For studying the dependence of the functions on the variable r,
we will apply the method by Fedorov-Gronskiy [37]. To this end,
let us introduce the matrix of the third projection of the spin,
Y = —i712; we readily verify that it obeys the minimal equation
Y —1)(Y + 1) = 0. This minimal equation permits us to intro-
duce three projective operators
=Y -,

P =P P, = P+1=—Y(Y+1)

P,=P=1-Y?
with the needed properties

B} =P, P =P, P, =P, P+P,+P,=1

So the complete wave function can be decomposed into the sum
of three parts

Y=¥Y+¥Y,+¥Y,, ¥Y,=PY¥, oc=0+1, -1
Explicitly, these operators read

0000000O0O0O0OO 0000000O0O0OO

000000O0O0O0CO 01000000O00O0

000000O0O0OO0O 000000O0O0O0O

0001000000O0 0000000O0O0OO
P1=0000000000,P2—0000100000

000000O0O0OO0CO 000000OO0O0O0O0O

000000100O00O0 0000000O0O0O0OO

0000000100 000000OO0O0O00O

000000O0O0OO0CO 000000OO0O0O00O

0000000O0O0O0OO0 00000000O0T1

100000000O00O0

0000000O0O0OO

001000000O0O0

000000O0O0O00O
PS:OOOOOOOOOO

000001000O0O0

000000O0O0O00O

0000000O0O0O0OO

0000000O01O0

000000O0O0O0C0O

Extending the method by Fedorov-Gronskiy [37], we assume
that each projective constituent is defined by only one function
of the variable r:
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0 0
0 hy(2)
0 0
h;(2) 0
Ey(2)
Wi(r,z) = fir), W)= fo(r)
E;(2) 0
B,(2) 0
0 0
0 Bs(z)
(10)
ho(z)
0
hy(2)
0
WY3(r, 2) = Ey2) f3(r)
0
0
B,(2)
0
Thus, we are to apply the following substitutions:
h3(r, 2) = f1(Nh3(2), hy(r,2) = [(Nh(2), ho(r, 2) = f3(Mhy(2),
Es(r,z) = f1(nNEs(2), Ei(r,z) = f,(NE(2), hy(r,z)= f3(r)hy(2),
By (r,2) = f1(rB1(2), Bs(r,z) = f5(r)B3(2), Ey(r,z) = f3(r)Ey(2),
By(r, z) = f3(r)By(2).
(11

Taking these into account, from (8), we obtain the equations
(they are collected into three groups; besides, we impose some
differential constraints on the functions)
Py,
b, f3By(2) —iW f1E5(2) + Z f1B1(2) = M f1h3(z) > b, f3 =Cf1,
—b, f3ho(z) +iW f1(Nhs(z) = M f1(NE3(z) = b,f3=Cf,

=buf3h,(2) + Z f1h3(z) = M f1B1(z) = b, f35=Cf1;

Py,

af3By(2) = iW L E\(2) = Z [, B3(2) = M frh((2) = a,f3=C,f,

a, f3hy(z) +iW fLh(z) = M fLE|(z) = a,f3)=C,f,
—ayf3hy(2) = Zf)h(2) = M f,B3(2) = a,f3=Cf5
P,
b1 [2E(2) = 4y [1E5(2) — Z f3E5(2) + T'f3h,(2) = M f3ho(2)
= b, 1/2=Csf3 A [1(r) =Cyfs,
=041 f1(r)By(2) = b,,,_1 [, B3(2) — iW f3 E,(2)
+Lf3h(2) = M f3h,(2)
bu-1f2=Csfss @pif1 =Cufs,
+W f3hy(2) — Z f3h(2) = M f3E(2),

by1f(Nh1(2) + @yppq f175(2) = M f3B,(2)
= by 1/ =Cfs /1 =Cfs

After reducing the total multipliers in all equations, we arrive at
the differential system in the variable z:

C,B, - iWE;+ B, = Mh;, —Cyh,
+iWhy = ME;, —Cyhy + hl, = M By;
C,B, —iWE, — B, = Mh,, Cyh,
+iWh, = ME|, —Cyh, — h = M By; (12)

C3E, — C,E; — E, +Thy = Mh,
—C,B, — C3B, — iWE, +Thy= Mh,,
iWh, — b, = ME,, Csh,+C4h, = MB,.

Collect the constrains together

b, f5=Cfi1,
a,f3=C, [,

Ay f1=
by_1fr =

C,fs. let C,=Cy;
13)
Cifs, let C,=C,.

From (13), we readily derive the 2nd-order equations for separate
functions

(bmam+1 12)f1(r) =0
(@yby_y — C2) fo(r) =0

CP)f3(n =0
C3) f3(r) =

(am+l bm -

14
(bm—lam ( )

Allowing for the identities

(d_2+11_<m+1>2>

dr?  rdr r2
4 1d _m

dr?  rdr r?

& 1d -1
dr?  rdr r2
4 1d _m

dr?  rdr r?

we rewrite the above equations differently

b a

mAm+1 =

ambmfl =

m—=1%m

1
2
1
am+1bm = 5
1
2
1
2

2 1d (m+1)7? )
—_—t - -2C
(dr2+rdr r? 1
d*> 1d m
drz  rdr r?
@ 1d -1y
dr2  rdr r2 2
& 1d _m
dr2  rdr r?

sothat C} = C; = C.In the variable x = i\/2C r, they take on the

Bessel form

d? 1d
e
<dx2 x dx

d? 1d
<ﬁ+;d_x

> 1d
e
(dx2 xdx

(m + 1)?

)fl =0, fl(x) m+1(x)
b1 )>f2—0 Fo(0) = Jyy (0 (15)

2
%)fg =0, f3(x)=J,x).
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3 | Solving the System in z Variable

Now, we turn to the system (12):

CB, —iW E; + B] = Mhy, =Chy +iWhy; = ME;, —Ch, + h; = M B,,
CB, —iWE, — By =Mh,, Chy+iWh, = ME,, —-Ch, — h} = M B;,
CE, —CEy— E)+Thy = Mhy,, -CB, — CB; —iW E, + Thy = Mh,,

iWhy = h, = ME,, Chy +Chy = MB,.

(16)
Let us compare the system (16) with the system derived in [32]
when solving the similar problem in Cartesian coordinates

— iaE, — ibE, +Thy — E, = Mh,,

CE, — CE;+Th,— E, = Mhj,

— ibBy — iWE, + B, = Mh,,

CB, - iWE, - B,=Mhy,

iaBy—iWE,— B, = Mh,,

CB, - iWE;+ B, = Mhj,

ibB, — iaB, — iW E5 + Thy = Mhs,

— CB, -~ CB; —iWE,+Thy= Mh,,

— iahy+i(Ez—e)hy = ME,,

Chy+iWh, = ME,,

— ibhy +i(Ez — €)h, = ME,,

— Chy+iWhy = ME;,

iWhy — hy = M E;,

+ iWhy — hl = ME,,

ibhy — h, = M By,

— Chy+h,= MB,,

— iahs + h}, = M B,,

— Chy—h} = MB;,

— ibh, + iah, = M B,
Ch, +Chy = M B,.

We can see that transition from the left-side system to the
right-side one is reached by the formal changes

hy= hyy hy=>hy, hy=hy, hy=hy,
E,>E, E,=>E, E,=E,
B, =B, B,=>B, B,=>B,

Therefore, in the new system, we can try the same method as in
[32]. So we will consider the variables h,, hy, E,, B, as primary
ones. First, we resolve the subsystem of six equations

CE, - CEy+Th, — E, = Mh,,
—CB,—CBy—iWE,+Thy= Mh,,
Chy+iWh, = ME,, —Chy+iWh;,=ME,,

—Chy+h, = MB,, —Ch,—h,=MB,

as algebraic with respect to the functions h, h,, E;, E;, B, Bs;
this results in

hy = %{M [(2C* = M?)E} +TC(h) - h,)|

—iW|C(2C* = M?)(hy — hy) + TM?E,]},

b= = S (MW (M2 - 2C) E, + TC g - 1)

+C(2C% — M?)(h - h,) + TME}},

1.

E = ﬁ{zw[cz(zcz — M?)h;,
+hy (2C* =3C*M?* + M* —-T’M?*) ~TCM’E,|
+CM [(2C* — M?)E, +T'C(h, - h})]}.
1.

Ey= m{:w[cz(zcz - M?)hy
+hy(2C* = 3C°M? + M* —T°M?) + TCM’E,|
—CM|[(2C* = M*)E, +TC(h} - h})]}.

B, = ﬁ{(zc“ —-3C*°M* + M* —T°M?)h,

+C[iMW [(M? = 2C*)E, +I'C(hy — ;)|
+C(2C* = M*) 1, +TM’E}] },

B, = ﬁ{—iCMW[(zc2 — M?)E, +TC(hy = hy)]
+C2(M? = 2C?) I, + (—2C* +3C2M? — M* + T2 M?)
R, +TCM?*E}},

and then substitute these expressions into the remaining four
equations

CB,—iWE, - B,=Mh,, CB,—iWE;+B,=Mh,

+iWh, —hy=ME,, Ch,+Ch;= MB,.

In this way, we obtain four 2nd-order equations:

L.
-TCMW?+iC(2C* - M?)W'
CB, + >
(M?—2C?)" -I*M?
E, - rcMm £

(M2 - 202) - M?

C2((2C* - M )W? —iTMW') N

M(M? - 2C?)* —T>M?
C?(2C* - M?)

"
3

M(M?-2C?)* —>M?
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(=(M*=202M)* +iTC2 MW’ + W?(2C* = 3C M2 + M* T2 M?) + T2 M*)
hl

“+
M(M? -2¢2)* -T2 M3
(2t =3C*M? + M* -T?M?)
+ > n! =o,
M(M?-2C?)" -T*M?
(TCMW? —iC(2C? - M*)W')
CB, + >
(M?—2C%)" -T*M?
E, + rem E”
(M2 —202) -T2 M?
C*((2c* = M )W?2 —iTMW')
M(M? -2C?)* 2 M3
2. (2C4 B CZMZ) "

hy + >
M(M?-2C2)" -T’M?

(—(M* =2C?M)" +iTC2 MW’ + W?(2C* = 3C2M? + M* =T M?) + T2 M*)

+ > hy
M(M?-2C?)" -T*M?
4 _ ar2ag2 4_12002
L2Ct=3CM +12w LM,
M(M?-2C?)" —T*M?3
M<(M2—2C2)W2—(M2—2C2)2+F2M2+iFMW’>E L weew L,
(M2 —2c2)” —T2M2 (Mo oM
. +iC((2C2—M2)W’+iFMW2)h ~ rcMm W
1
' (M2 -2C?)* —T>M? (M2 —2C2)* T M?
C(TMW?2+i(M?-2C)W'
( ( ) rem W =0,

(M2 - 2c?)* -T2 M? (M2 —2C2)* T M?

M 2CM B, + M w2 M?*B, + MB;’ =0,
~MB,+Chy+Chy =0 = ZB=(h +hy); ¢ ¢

thus, we have a separate equation for the function B,:

the last equation provides us with the linear relationship e

between three variables, so in fact, we have only three — +(W? = M?) +2C?
. . . dz?

equations for three independent variables.

c
B,=0. By=~(n+hy) (17)

. ) Subtraction gives
Let us sum and subtract Equations (1) and (2). The summing

gives (~2C2M + M® = T>M) R} + M (I* +2C> - M)A/

2CM B, + (W? — M?)(hy + h3) + (W] + h) =0,
+ (MW?2(-12 = 2C? + M?) - M (M2 - 2¢2)?

whence, allowing for Equation (4), we obtain 2T C*W' + T2 M3 ) hy

9646 Mathematical Methods in the Applied Sciences, 2025



— (MW? (=12 =2¢* + M?) - M (M - 2¢%)?

+2i0C*W' +T°M?) hy
+(-2CMW? +2iC(2C* - M*)W')E, - 2ICM E} = 0,

or (let us apply more convenient notations h,(z) — h;(z) =
G(z), Ey(2) = F(2))

(-MT? =2 MC* + M*)G"

+ | MWA(1? - 2¢2 + M?) - M (M? - 2€2)°

+ 20 C2W' +r2M3]G

—2ICMF"(z) + [-2ICMW? + 2iC(2C* - M*)W'|F =(0 )
18

Let us write down Equation (3)
M[(M? = 2C?)W? = (M2 = 2C%) 4 T2M? 4 iTM W |
F+ M(M?-2C*»HF"
+[icec? - MHW' — CTMW?|hy —TCMh
+[ic(M? = 2CHW' + CTMW?|h; + TCMh]] =0,
it can be presented differently
M[(M?=2C*)W? = (M2 = 2C%)’ + T M? + iITM W' |
F+ MM?*-2C*»HF"
+iCQ2C* = MHW'(hy + hy) — CTMW?G —-TCMG" =0
or
M[(M? =20 W2 = (M? = 2C%)" + T2 + iTMW' | F
+ M(M? - 2CHF" +i(2C* - M>W'MB,
-CIrM|G" + W?G| =0

(19)
Thus, we have three equations for three functions:
d_2 2 _ ag2 2 _
+(W?=M?+2C?|B, =0,
dz?

(-MTI?—2MC*+ M*)G" + [MW?(-T"* = 2C* + M?)

— M(M? -2C?)* + 2iTC*W' + T’ M*|G

—2ICMF" + [-2TCMW? +2iC(2C* - M*)W'|F =0,
i2C* - MHW'B, — CT'|G" + WG]

+(M? - 2C*)F" + [(M2 —2C)W? — (M? - 2C?)" + T2 M?
+TMW'|F +i(2C* - M*)W'B, - CT'[G" + W?G| = 0.
Let us fix the parameter C, by setting (M2 — 2C?) = 0. In this way,

we eliminate the variable B, from the second equation. After that,
we can search for solutions of the system as follows:

(I)  By(2)#0, F(z2)=0, G(z)=0;

(II)  By(z)=0 F(2)#0, G(z)#0.

In the case II, we have two linked equations for two variables
(recall that W' = E)

M (-I?+ M? - 2C*)G" + [MW?(-I"* = 2C* + M?)
~ M(M?-2C?)* + 2iTEC? + T M*|G
—2ICM F" + [-2ICMW? +2iC(2C* — M?)E|F =0,
- Cr[G" + WG| + (M* - 2CHF"
+ (M2 2¢?)W? - (M? - 2¢?)* + T M2 + TME| F =0,
It may be presented in symbolical form
P,G" + R\(2)G + O, F" + S,(z)F =0,
P,G" + Ry(2)G + O, F" + S,(z)F = 0.

Let us multiply the first equation by a, the second—by # and sum
the results. We will consider two possibilities.

The first one is

aP, +pP, =1, aQ,+p0,=0,
G" + (@R, + fR,)G + 0+ (aS; + BS,)F =0,

where

arc
(M2 -2¢C2?)’ —12M2’

2 _ 92
o= M- -2C g =

M(M2=2C?)’ —T2M3

(22 = M?)(M(M? - 2¢?) — 2T C*E - T M?)

G"+|wW?+ 5 G
M(M?-2C?)" —T*M3
_2cI’M + iE) F=o
M
The second one is
aP, +pP, =0, aQ,+p0,=1,
(@R, + BR)G + F" + (aS; + pS,)F =0,
where
rc —I? - 2C% 4+ M?
a = p=

M(M? - 2¢2)" —T2M* (M2 -2¢2)* —12M2

rc(-M(M?-2?)" + 20C?E + T M? )
G

M(M? -2C?)° -T2 M3
+F" 4 (F2 +2C7 - M2 + % + W2>F -0

Thus, we have derived two equations

(22 = M?)(M(M? = 2C?) — 2T C*E -T2 M?)
G

G +|W?+ >
M(M?-2C?)" —T*M3

2C’'M +iE
_QF —

0,
M
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F' 4 [WZ +r+2ct-m2+ LE|F
M
~M(M? - 2C?)* 4 2iITC2E + > M?
+I'C 3 G =0.
M(M?-2C?)" -T*M?
Taking in mind the identity C? = M?, we simplify them to
the form
d? 2
L yw?)e- <F+—)2CF 0.
dz? M
(20)
LA F+<F+—>FF C<F+—>G 0.
dz? M M
This system can be rewritten in matrix notations
G ] 0 2C||G
D, =<r+£) . DY¥= (r+£)w,
F M/\c -1||F M

the last system should be diagonalized by linear transformation

= A 0O
¥ = SV, D2‘1‘=<F+—>A‘P sa=|""ls.
M 0 4,
Furthermore, we get two linear systems
-A C sul| -, C Syl
2C —(+ 4|51, 2C —(+ Ay)||sx

They lead to the roots

r T2 r
A =——— —_ MZ—M<— — 11 2)7 = —
1 5 2 + x—V1+x X M

r T2 r
Ay =—=+ —4JP—MC—+V1+2> =—;
2 2 4 X X X 2M

(1)
the transformation matrix may be taken as follows:
1 A4,/C
_ |t A/ 22)
1 4,/C
In this way, we obtain two separate equations
d? 2
ﬁ_'-W (z)—(MF+lE)— G =0,
; (23)
d 2 . 2 T~ _ N
<ﬁ +W2(z) — (MT + zE)M>F =0;
they may be rewritten differently (recall that x =T'/2M)
(% + W32+ (MT+iE)(x+ V1 + x2)>5 =
(24
(% +W?3(z)+ (MT + tE)(x -V1i+ x2>>F =0,
or shortly
d2 — d2
<ﬁ+(Ez—e)z 1>G=0, <ﬁ+(Ez—e)2 F=0
(25)

Let us write down the equation for function B,(z):

[—+W2 M?+2C*|B, =0

(26)
=

d?
P +(Ez - 6)2] B,=0

All three equations are of the same mathematical structure.

4 | Solving the Differential Equation

The derived equation has the same formal structure as for a scalar
relativistic particle in the uniform electric field

<:—22+(Ez+e)2—;4 >CI>(z)=O 27)

We transform Equation (27) to the new variable (assuming that

E >0)
(Ez+¢)? W
| — o= —

Z = , 28
E 4E (28)
then we get the confluent hypergeometric equation [38]
> 12 4 1
L _ + L2 L il )e)=0 29
<dZZ+ZdZ 4+z>() (29)

This equation has two singular points. The point Z = 0 is regular,
behavior of solutions near this point is given by the formulas Z —
0, ®(Z)= Z*, A=0,1/2.The point Z = o is irregular point of
the rank 2. Indeed, in the inverse variable y = Z~1, we get the

equation
d? 3 d 1 io
— = - —+ = )0=0 30

(dy2 2ydy 4y ) G0

Asymptotic of solutions at y — 0 should have the structure ® =
CeP/y Furthermore, we arrive at

1

D2—4=0, —2CD+2D—%D+[6=0,

whence it follows

1 1 1

D, =+, C1=Z+i‘7§ D, =-5, szi—i(r (31

Therefore, in infinity, there are possible two behaviors

ZCiehZ — Z—1/4—ioe+Z/2
Z->0, D=ZC%"= _ ’
7 CeDZ — Z*l/4+m'e72/2’
(32)
where (we use the main branch of the logarithmic function)
2
z=i&*rED _,y Zy >0, 2/ =t
E 0> 0 > ’
(33)

7-1/4%ic _ (elniZO)’l/‘wi” _ (eln Zo+in/2)—1/4¢ilf .

Let us find solutions in the whole region of the variable Z. To this
end, we apply the substitution ®(Z) = Z4 e8Z f(Z), taking in
mind the constraints A = 0,1/2, B = —1/2,we get the equation

d? d . 3
<Zﬁ+(2A+1/2—Z)d—y—(A+1/4—1cr))f(Z)_0
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FIGURE1 | Plotof the real function ®,(z) from (37).

which can be recognized as the confluent hypergeometric
equation with parameters
a=A+1/4—-ic,

c=24+1/2, f(Z)=Z"e?/? Fla,c;Z) .

Without loss of generality, we can use the value A = 0:
A=0, O(Z)=e 4 f(2)

(34

The confluent hypergeometric equation has different sets of lin-

early independent solutions. First, consider the following ones
(see in [38]):

a=1/4—ic, c=+1/2,

Y,(Z) = F(a,c; Z) = e“ F(c — a,c; - Z),

Y,(Z)=Z"Fla—c+1,2—c;Z)=Z"e?FQ-a,2-c;-Z).

(35)
They lead to the complete functions
@, = e ?PF(a,c; Z) = e *F(c — a,c;-27),
O, =e 427V Fla—c+1,2—¢; 7) (36)

=Z"et?PF1-a,2-c;-Z).
Taking in mind the identities

. 1 . "
, a==-—io, c—a=-=+ic=a",
4

Q-0)=Q-c =2,

3
—c+1l==—-jc=(1- *’
a—c ic=(1-a)

we can conclude that the solution ®,(Z) is given by the
real-valued function (see Figure 1), the second ®,(Z) (see
Figures 2 and 3) has a definite symmetry under complex conju-
gation:

D(Z2) =+[D)(D], D (Z) =i[D, (D)) (37)

This property of the function ®,(Z) may be presented differently
when using other normalization (see Figure 4)

3,(2) = %%(Z): (1\/‘5i <I>2(Z)> = @,2)  (8)

FIGURE2 | Plotof Re ®,(z) from (37).

Im @2

FIGURE3 | Plotof Im ®,(z) from (38).
Re 62
1 1 1 1 1 1 Z
-3 -2 -1 y 1 2 3
-0.5}
-1.0F
-1.5}
-2.0f
-25F
FIGURE4 | Plot of the real function ®,(z) from (38).
At small Z, the above solutions behave
YD) ~1l, Y (Z)~VZ =iz = ,/LE (e +¢Ez) ;
e
O (2)x1, D2~ VZ=\iZ,= \/LE (e + ¢Ez) .
e
(39)
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At large Z =iZy, Z, - +oc0, we can apply the asymptotic
formula (see in [38])

F(C) _ —a F(C) Z —7a—c
e _a)( 7))+ ) + (—F(a)e 7 + )
(40)

F(a,c,Z) = (

Taking into account identities

(=2) = (_iZO)—1/4+i¢7 — (eanO—i,,/z)—l/4+ig
= o~ (-1/4+i0)in/2 ,(-1/4+i0)In Z, )
Za—c — (iZO)—1/4—ia — (eanO+i7[/2)—1/4—[o'
= ot(-1/4-i0)in/2 ,(-1/4-ic)InZ, i
L) _  Ta/2 ) TIQ1/2)

[c—a) TQ/4+i0) L) TQ1/4-io)

we find the following behavior of the solutions:

Y,(Z) = F(a,c,Z)
_ ) T/
I(1/4 + ic)
ra/2)
I'(1/4 - ic)

—(=1/4+i0)in/2 ,(=1/4+i0)In Z, ,=iZ,y/2

+H(=1/4=io)in/2 ,(~1/4=ic)In Z, p+iZy/2

(41)

Whence after transition to the variable ®,(Z), we get

ra/2)
T(1/4+ ic)
r'(1/2)
T(1/4 - ic)

—(=1/4+io)in/2 ,(=1/4+i0)In Zy ,=iZy/2

®,(2) = {
(42)
oH1/A=io)in /2 [(=1/4=i0)In Z, ,+iZy/2 }7

where we can see the sum of two conjugate terms. Similarly, we
can examine behavior in infinity of the second solution F(a — ¢ +
1,2—-¢;Z):

a-1

_TI'2-o9
T TI1-a)

re-o 5

Fla-c+1,2-c¢,2) Ta—ct1)

(_Z)—a+c—1 +

(43)

Whence taking into account the identities

(—Z) o+l = (_l-ZO)—3/4+io _ (eanU—[n/Z)_3/4+i‘7

— e—(—3/4+io‘)i/r/2 e(—3/4+io‘)anO ,

Za-1 _ (eanO+i7r/2)_3/4_i" = H3/4-i0)in/2 ((=3/4=io)nZ,

re-c¢  T(3/2)
I1-a) TIQB/4+ic)

re-c _ T(3/2
Fa—c+1) T(3/4—ioc)

we find the following behavior in infinity:

Fla—c+1,2-¢, Z)=¢%/?

x I'3/2) ~(=3/4+i0)in/2 o(=3/4+i0)In Zy ,=iZy/2
['(3/4+io) (44)
3/2)

oH(3/4-i0)in/2 (=3/4=ic)InZ, +iZ, /2
I'3/4 —io) ’

Whence for the function @,(Z), we derive (allowing for
\/E — e(1/2)(anU+i7r/2))

O,(Z)=VZFa-c+1.2-¢, 7) ="/

y TB/2)  _(sjatieyin) oC1/4+i0)In Z ,~iZy /2
T(3/4+ io)
r'a/2) +H=3/4-i0)in /2 [(-1/4=io)In Zy +iZ/2 |
T(3/4—io)

(45)

It is possible to construct two solutions which at infinity behave
as conjugate functions. To this end, we should use other pair of
independent solutions (see in [38])

Y(Z) =¥(a,c; Z), Y. (Z) = e“Y(—a,c;-27) (46)

Two pairs {Y;,Y;} and {Y;,Y,} are related by Kummer formulas
(seein [38])

_ T-o T(c—1)
ST Ia—c+1) 1 Ta) 2 -
_F(l—c) I'c=1) ;.. @7
T Ta-a ! T Te—a’ »

Whence we can derive asymptotic relations in the region
|Z| - o0

Y(Z)=Z"= (l-ZO)—l/4+io' — (elnzo+in/2)—1/4+i6 .

Y(Z) =e?W(c —a,c;—Z) = eZ(—iZy)"™" (48)

_ eiZO(—iZO)‘1/4""’ _ eizo(elnzo—m/z)—l/4—f6 )

The last formulas after translating them to variables ®(Z) take
on the form (see Figures 5 and 6)

O(2) = 7/ Yy(Z) = e %/ (e Ftin/2) T )
@7(2) — e—Z/Z Y7(Z) — e+iZO/2(eanU—iﬂ/Z)_1/4_i6 .

These functions are conjugate to each other, they are presented
in the combinations (42) and (45).

5 | Conclusions and Open Problems

In this paper, the quantum-mechanical equation for a spin 1 par-
ticle with anomalous magnetic moment is solved exactly in cylin-
drical coordinates (z,r, @, z), the presence of the external uni-
form electric field was taken into account. In fact, the problem
was reduced to the system on 10 first-order equations in partial
derivatives over the variables (r, z). In resolving this system of
equations, deciding role belongs to the application of method by
Fedorov-Gronskiy [37] extended to the system of equations in
partial derivative.
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FIGURE 5 Plots of functions Re ®,(z) and I'm ®4(z) from (49), o = 1.
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FIGURE 6 | Plotsof functions Re ®,(z) and I'm ®,(z) from (49), 6 = 1.

The proposed method is rather general, it may be applied
for studying different problems with cylindrical symmetry; for
instance, for fields with spin 3/2 and 2. Besides, the obtained exact
solutions may be used for experimental measuring the anoma-
lous magnetic moment of the spin 1 particle, for instance of the
vector bosons.

6 | Conclusions

In this paper, the quantum-mechanical equation for a spin 1 par-
ticle with anomalous magnetic moment is solved exactly in cylin-
drical coordinates (t,r, ¢, z), the presence of the external uni-
form electric field was taken into account. In fact, the problem
was reduced to the system on 10 first-order equations in partial
derivatives over the variables (r, z). In resolving this system of
equations, deciding role belongs to the application of method by
Fedorov-Gronskiy [37] extended to the system of equations in
partial derivative.

The proposed method is rather general, it may be applied
for studying different problems with cylindrical symmetry; for
instance, for fields with spin 3/2 and 2. Besides, the obtained exact
solutions may be used for experimental measuring the anoma-
lous magnetic moment of the spin 1 particle, for instance of the
vector bosons.
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Endnotes
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