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ABSTRACT
A generalized 10-dimensional Duffin–Kemmer–Petiau equation for spin 1 particle with anomalous magnetic moment is exam-
ined in cylindrical coordinates (𝑡, 𝑟, 𝜙, 𝑧) in the presence of the external uniform electric field oriented along the axis 𝑧. On solutions,
we diagonalize operators of the energy and third projection of the total angular momentum. First, we derive the system of 10
equations in partial derivatives for functions 𝐹

𝑖
(𝑟, 𝑧) = 𝐺

𝑖
(𝑟)𝐻

𝑖
(𝑧) (𝑖 = 1, 10). The use of the method based on the projective oper-

ators permits us to express 10 variables 𝐺
𝑖
(𝑟) through only three different functions 𝑓1(𝑟), 𝑓2(𝑟), 𝑓3(𝑟), which are solved in Bessel

functions. After that, we derive the system of 10 first-order differential equations for functions 𝐻
𝑖
(𝑧). This system reduces to one

independent equation for a separate function and to the system of two linked equations for two remaining primary functions. This
system after diagonalization of the mixing matrix gives two separated equations for new variables. All three equations for basic
functions are solved in terms of the confluent hypergeometric functions. Thus, the complete system of solutions with cylindrical
symmetry for the vector particle with anomalous magnetic moment in the presence of the external uniform electric field is found.

1 | Introduction

The quantum mechanical problem for particles in the external
magnetic and electric fields is the classical one for quantum
physics, for instance, see [1–4]. The particles of low spin values,
𝑠 = 0, 1∕2, were studied in the first place. In the present paper,
we turn to a spin 𝑠 = 1 particle. The study of such a particle has a
long history; for example, see in [5–20].

Below, we will adhere the general technics developed in [21–25].
A generalized 10-dimensional Duffin–Kemmer–Petiau equation
firstly was proposed by Shamaly and Capri [26, 27], they had
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developed the theory for a vector particle with anomalous mag-
netic moment. This idea of generalization in order to take into
account additional electromagnetic characteristics of the parti-
cles has been developed in many of works; in particular, for par-
ticle with electric quadruple moment, in the presence of external
fields, uniform magnetic or electric, and Coulomb field; see in
[28–36].

Now, a spin 1 particle with the anomalous magnetic moment will
be examined in the presence of the external uniform electric field.
The main wave equation is specified in cylindrical coordinates
(𝑡, 𝑟, 𝜙, 𝑧) and corresponding tetrad.1 Solutions with cylindrical
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symmetry are searched. On solutions, we diagonalize the oper-
ators of the energy and the third projection of the total angular
momentum. For Duffin–Kemmer–Petiau matrices, we apply the
cyclic presentation.

First, we derive the system of 10 first-order differential equations
in partial derivatives for functions 𝐹

𝑗
(𝑟, 𝑧) = 𝐹

𝑗
(𝑟)𝐹

𝑗
(𝑧), (𝑗 =

1, 10). The use of the method by Fedorov–Gronskiy [37] permits
us to express all 10 functions 𝐹

𝑗
(𝑟) through only three different

ones 𝑓1(𝑟), 𝑓2(𝑟), 𝑓3(𝑟).

After that, we derive the system of 10 differential equations
for functions 𝐹

𝑗
(𝑧) dependent on the coordinate 𝑧. This sys-

tem is resolved by means of the method which generalized
the known method applied in solving the similar problem in
Cartesian coordinates [32–35]. In this way, we derive the sys-
tem of three 2nd-order differential equations for three primary
functions which is divided into one independent equation for
a separate function and the system of two linked equations for
two functions. The last system after diaginalizing the mixing
matrix reduces to two separated equations for new functions.
All three equations are solved in terms of the confluent hyper-
geometric functions. When separating the variables within the
matrix approach, and in practical realization of the method by
Fedorov–Gronskiy. Numerical study of the obtained analytical
solutions is performed.

Thus, the complete system of solutions for the vector particle with
anomalous magnetic moment in the presence of the external uni-
form electric field has been constructed.

2 | Separation of the Variables

The wave equation for a spin 1 particle with anomalous magnetic
moment [21] has the form (assuming the use of the tetrad formal-
ism [2])

{
𝛽
𝑐

[
(𝑒𝛽(𝑐)𝜕𝛽 +

1
2
𝑗
𝑎𝑏
𝛾
𝑎𝑏𝑐
(𝑥)) − 𝑖𝑒𝐴

𝑐

]

+𝜆1
2
𝐹

𝛼𝛽
(𝑥)𝑗𝛼𝛽 (𝑥)𝑃 −𝑀

}
Ψ = 0 , 𝑃 =

||||||
𝐼4 0
0 0

||||||
;

(1)

where the symbol 𝑃 stands for the projective operator separating
the vector component in the complete wave function. In cylindri-
cal coordinates,

𝑥
𝛼 = (𝑡, 𝑟, 𝜙, 𝑧), 𝑑𝑆

2 = 𝑑𝑡
2 − 𝑑𝑟

2 − 𝑟
2
𝑑𝜙

2 − 𝑑𝑧
2
,

and in the presence of the uniform electric field along the axis
𝑧, 𝐴

𝑡
= −𝐸𝑧, 𝐹

𝑡𝑧
= 𝐹03 = 𝐸, Equation (1) takes the form (for

brevity, we simplify the notation, 𝑒𝐸 ⇒ 𝐸)

[
𝛽

0
(

𝜕

𝜕𝑡
+ 𝑖𝐸𝑧

)
+ 𝛽

1 𝜕

𝜕𝑟
+ 𝛽

2
𝜕
𝜙
+ 𝐽

12

𝑟
+ 𝛽

3 𝜕

𝜕𝑧
+ Γ𝐽 03

𝑃 −𝑀

]

Ψ = 0
(2)

where the physical dimensions of the quantities are

[𝑀] = 1∕𝐿, Γ = 𝑖𝜆𝐸, [Γ] = 1∕𝐿, [𝐸] = 1∕𝐿2;

Γ is the imaginary parameter referring to the anomalous mag-
netic moment of the particle.

Let us search solutions in the form (we will apply the block struc-
ture of the wave function and the matrices)

Ψ = 𝑒
−𝑖𝜖𝑡

𝑒
𝑖𝑚𝜙

|||||||||||

ℎ0(𝑟, 𝑧)
ℎ
𝑖
(𝑟, 𝑧)

𝐸
𝑖
(𝑟, 𝑧)

𝐵
𝑖
(𝑟, 𝑧)

|||||||||||

= 𝑒
−𝑖𝜖𝑡

𝑒
𝑖𝑚𝜙

||||||
𝐻1(𝑟, 𝑧)
𝐻2(𝑟, 𝑧)

||||||
, 𝛽

𝑎 =
||||||

0 𝐿
𝑎

𝐾
𝑎 0

||||||
(3)

Correspondingly, the system of equations reads

[
𝐿

0(−𝑖𝜖 + 𝑖𝐸𝑧) + 𝐿
1 𝜕

𝜕𝑟
+ 𝐿

2 𝑖𝑚 + 𝑗
12
2

𝑟
+ 𝐿

3 𝜕

𝜕𝑧

]

𝐻2 + Γ𝑗03
1 𝐻1 =𝑀𝐻1

[
𝐾

0(−𝑖𝜖 + 𝑖𝐸𝑧) +𝐾
1 𝜕

𝜕𝑟
+𝐾

2 𝑖𝑚 + 𝑗
12
1

𝑟
+𝐾

3 𝜕

𝜕𝑧

]
𝐻1 =𝑀𝐻2.

(4)

First, we assume the use of the Cartesian basis for
Duffin–Kemmer–Petiau matrices

𝐿
0 =

|||||||||||

0 0 0 0 0 0
− 1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0

|||||||||||

, 𝐿
1 =

|||||||||||

− 1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

|||||||||||

,

𝐿
2 =

|||||||||||

0 −1 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 +1 0 0

|||||||||||

, 𝐿
3 =

|||||||||||

0 0 −1 0 0 0
0 0 0 0 +1 0
0 0 0 −1 0 0
0 0 0 0 0 0

|||||||||||

,

𝐾
0 =

|||||||||||||||||

0 +1 0 0
0 0 +1 0
0 0 0 +1
0 0 0 0
0 0 0 0
0 0 0 0

|||||||||||||||||

, 𝐾
1 =

|||||||||||||||||

− 1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1
0 0 +1 0

|||||||||||||||||

,

𝐾
2 =

|||||||||||||||||

0 0 0 0
− 1 0 0 0

0 0 0 0
0 0 0 +1
0 0 0 0
0 −1 0 0

|||||||||||||||||

, 𝐾
3 =

|||||||||||||||||

0 0 0 0
0 0 0 0

− 1 0 0 0
0 0 −1 0
0 +1 0 0
0 0 0 0

|||||||||||||||||

.

The needed generators in Cartesian basis are given by the
formulas
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𝑗
12
1 =

|||||||||||

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

|||||||||||

, 𝑗
03
1 =

|||||||||||

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

|||||||||||

,

𝑗
𝑎𝑏

2 𝐻2 = 𝑗
𝑎𝑏

1 𝐻2 +𝐻2𝑗
𝑎𝑏

1 , 𝐻2 = {𝐸𝑖
, 𝐵

𝑖
},

𝐽
12
(2) =

|||||||||||||||||

0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 0 0 0 0

|||||||||||||||||

, 𝐽
03
(2) =

|||||||||||||||||

0 0 0 0 1 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0

|||||||||||||||||

.

For the following, it will be more convenient to apply the cyclic
basis. It is defined by the requirement that the generator 𝑗

12
1 for

vector field 𝐻1 = (Ψ𝑙
) be diagonal. The needed transformation is

given as follows: 𝐻1 = 𝑈𝐻1, where

𝑈 =

||||||||||||

1 0 0 0
0 − 1√

2
𝑖√
2

0

0 0 0 1
0 1√

2
𝑖√
2

0

||||||||||||

, 𝑈
−1 =

||||||||||||

1 0 0 0
0 − 1√

2
0 1√

2

0 − 𝑖√
2

0 − 𝑖√
2

0 0 1 0

||||||||||||

(5)

Correspondingly, the needed generators for vector and tensor
transform to the cyclic basis in accordance with the rules, 𝑗

𝑎𝑏

1 =
𝑈𝑗

𝑎𝑏

1 𝑈
−1

, 𝑗
𝑎𝑏

2 = 𝑗
𝑎𝑏

1 ⊗ 𝐼 + 𝐼 ⊗ 𝑗
𝑎𝑏

1 . In this way, we get

𝑗
12
1 =

|||||||||||

0 0 0 0
0 −𝑖 0 0
0 0 0 0
0 0 0 𝑖

|||||||||||

, 𝑗
12
2 = 𝑖

|||||||||||||||||

− 1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 −1

|||||||||||||||||

,

𝑗
03
1 =

|||||||||||

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

|||||||||||

, 𝑗
03
2 =

|||||||||||||||||

0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 0
− 1 0 0 0 0 0

|||||||||||||||||

.

Also, we should transform to cyclic basis the matrices 𝛽
𝑎:

𝐻1 = 𝑈𝐻1, 𝑈 = 𝐶1, 𝐻2 = (𝑈 ⊗ 𝑈 )𝐻2 = 𝐶2𝐻2,

||||||
0 𝐿

𝑎

𝐾

𝑎

0

||||||
=
||||||

0 𝐶1𝐿
𝑎
𝐶
−1
2

𝐶2𝐾
𝑎
𝐶
−1
1 0

||||||
.

Taking in mind the matrices

𝐶2 =

||||||||||||||||||||

− 1√
2

𝑖√
2

0 0 0 0

0 0 1 0 0 0
1√
2

𝑖√
2

0 0 0 0

0 0 0 − 𝑖√
2

1√
2

0

0 0 0 0 0 𝑖

0 0 0 𝑖√
2

1√
2

0

||||||||||||||||||||

,

𝐶
−1
2 =

||||||||||||||||||||

− 1√
2

0 1√
2

0 0 0

− 𝑖√
2

0 − 𝑖√
2

0 0 0

0 1 0 0 0 0
0 0 0 𝑖√

2
0 − 𝑖√

2

0 0 0 1√
2

0 1√
2

0 0 0 0 −𝑖 0

||||||||||||||||||||

,

we get

𝐿

0
=

|||||||||||

0 0 0 0 0 0
− 1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0

|||||||||||

,

𝐿

1
=

||||||||||||||

1√
2

0 − 1√
2

0 0 0

0 0 0 0 1√
2

0

0 0 0 − 1√
2

0 − 1√
2

0 0 0 0 1√
2

0

||||||||||||||

,

𝐿

2
=

||||||||||||||

𝑖√
2

0 𝑖√
2

0 0 0

0 0 0 0 − 𝑖√
2

0

0 0 0 𝑖√
2

0 − 𝑖√
2

0 0 0 0 𝑖√
2

0

||||||||||||||

, 𝐿

3
=

|||||||||||

0 −1 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 1 0 0

|||||||||||

,

𝐾

0
=

|||||||||||||||||

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

|||||||||||||||||

,

𝐾

1
=

|||||||||||||||||||||

1√
2

0 0 0

0 0 0 0
− 1√

2
0 0 0

0 0 − 1√
2

0

0 1√
2

0 1√
2

0 0 − 1√
2

0

|||||||||||||||||||||

, 𝐾

2
=

||||||||||||||||||||

− 𝑖√
2

0 0 0

0 0 0 0
− 𝑖√

2
0 0 0

0 0 − 𝑖√
2

0

0 𝑖√
2

0 − 𝑖√
2

0 0 𝑖√
2

0

||||||||||||||||||||

,
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𝐾

3
=

|||||||||||||||||

0 0 0 0
− 1 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

|||||||||||||||||

.

Therefore, in cyclic basis, we have the system

[
−𝑖(𝜖 − 𝐸𝑧)𝐿

0
+ 𝐿

1 𝜕

𝜕𝑟
+ 1

𝑟
𝐿

2
(𝑖𝑚 + 𝑗

12
2 ) +

𝜕

𝜕𝑧
𝐿

3]

𝐻2 + Γ𝑗
03
1 𝐻1 =𝑀𝐻1,[

−𝑖(𝜖 − 𝐸𝑧)𝐾
0
+𝐾

1 𝜕

𝜕𝑟
+ 1

𝑟
𝐾

2
(𝑖𝑚 + 𝑗

12
1 ) +

𝜕

𝜕𝑧
𝐾

3]
𝐻1 =𝑀𝐻2.

(6)
Below, for brevity, we will omit the bar symbol over the variables.

After the needed calculation, we find the system of 10 partial
differential equations in the variables 𝑟 and 𝑧:

1√
2

(
𝜕

𝜕𝑟
− (𝑚 − 1)

𝑟

)
𝐸1 −

1√
2

(
𝜕

𝜕𝑟
+ (𝑚 + 1)

𝑟

)

𝐸3 −
𝜕

𝜕𝑧
𝐸2 + Γℎ2 =𝑀ℎ0,

1√
2

(
𝜕

𝜕𝑟
+ 𝑚

𝑟

)
𝐵2 + 𝑖(𝜖 − 𝐸𝑧)𝐸1 −

𝜕

𝜕𝑧
𝐵3 =𝑀ℎ1,

− 1√
2

(
𝜕

𝜕𝑟
+ (𝑚 + 1)

𝑟

)
𝐵1 −

1√
2

(
𝜕

𝜕𝑟
− (𝑚 − 1)

𝑟

)

𝐵3 + 𝑖(𝜖 − 𝐸𝑧)𝐸2 + Γℎ0 =𝑀ℎ2,

1√
2

(
𝜕

𝜕𝑟
− 𝑚

𝑟

)
𝐵2 + 𝑖(𝜖 − 𝐸𝑧)𝐸3 +

𝜕

𝜕𝑧
𝐵1 =𝑀ℎ3,

1√
2

(
𝜕

𝜕𝑟
+ 𝑚

𝑟

)
ℎ0 + 𝑖(𝐸𝑧 − 𝜖)ℎ1 =𝑀𝐸1,

+ 𝑖(𝐸𝑧 − 𝜖)ℎ2 −
𝜕

𝜕𝑧
ℎ0 =𝑀𝐸2,

− 1√
2

(
𝜕

𝜕𝑟
− 𝑚

𝑟

)
ℎ0 + 𝑖(𝐸𝑧 − 𝜖)ℎ3 =𝑀𝐸3,

− 1√
2

(
𝜕

𝜕𝑟
− 𝑚

𝑟

)
ℎ2 +

𝜕

𝜕𝑧
ℎ3 =𝑀𝐵1,

1√
2

(
𝜕

𝜕𝑟
− (𝑚 − 1)

𝑟

)
ℎ1 +

1√
2

(
𝜕

𝜕𝑟
+ (𝑚 + 1)

𝑟

)
ℎ3 =𝑀𝐵2,

− 1√
2

(
𝜕

𝜕𝑟
+ 𝑚

𝑟

)
ℎ2 −

𝜕

𝜕𝑧
ℎ1 =𝑀𝐵3.

With the use of the notations

𝐸𝑧 − 𝜖 =𝑊 , 𝑎
𝑚
= 1√

2

(
𝜕

𝜕𝑟
+ 𝑚

𝑟

)
, 𝑏

𝑚
= 1√

2

(
𝜕

𝜕𝑟
− 𝑚

𝑟

)
,

𝑎
𝑚+1 =

1√
2

(
𝜕

𝜕𝑟
+ 𝑚 + 1

𝑟

)
, 𝑏

𝑚−1 =
1√
2

(
𝜕

𝜕𝑟
− 𝑚 − 1

𝑟

)
,

(7)

we can present these equations shorter (the prime stands for the
derivative in 𝑧)

𝑏
𝑚−1𝐸1 − 𝑎

𝑚+1𝐸3 − 𝐸
′
2 + Γℎ2 =𝑀ℎ0, 𝑎

𝑚
𝐵2 + 𝑖(−𝑊 )𝐸1 − 𝐵

′
3 =𝑀ℎ1,

− 𝑎
𝑚+1𝐵1 − 𝑏

𝑚−1𝐵3 − 𝑖𝑊 𝐸2 + Γℎ0 =𝑀ℎ2, 𝑏
𝑚
𝐵2 − 𝑖𝑊 𝐸3 + 𝐵

′
1 =𝑀ℎ3;

𝑎
𝑚
ℎ0 + 𝑖𝑊 ℎ1 =𝑀𝐸1,+𝑖𝑊 ℎ2 − ℎ

′
0 =𝑀𝐸2, −𝑏𝑚ℎ0 + 𝑖𝑊 ℎ3 =𝑀𝐸3,

− 𝑏
𝑚
ℎ2 + ℎ

′
3 =𝑀𝐵1, 𝑏

𝑚−1ℎ1 + 𝑎
𝑚+1ℎ3 =𝑀𝐵2, −𝑎𝑚ℎ2 − ℎ

′
1 =𝑀𝐵3.

(8)
For studying the dependence of the functions on the variable 𝑟,
we will apply the method by Fedorov–Gronskiy [37]. To this end,
let us introduce the matrix of the third projection of the spin,
𝑌 = −𝑖𝐽

12
; we readily verify that it obeys the minimal equation

𝑌 (𝑌 − 1)(𝑌 + 1) = 0. This minimal equation permits us to intro-
duce three projective operators

𝑃1 = 𝑃−1 =
1
2
𝑌 (𝑌 − 1), 𝑃2 = 𝑃+1 =

1
2
𝑌 (𝑌 + 1)

𝑃3 = 𝑃0 = 1 − 𝑌
2

(9)

with the needed properties

𝑃
2
0 = 𝑃0, 𝑃

2
+1 = 𝑃+1, 𝑃

2
−1 = 𝑃−1, 𝑃0 + 𝑃+1 + 𝑃−1 = 1.

So the complete wave function can be decomposed into the sum
of three parts

Ψ = Ψ0 + Ψ+1 + Ψ−1, Ψ
𝜎
= 𝑃

𝜎
Ψ, 𝜎 = 0, +1, −1.

Explicitly, these operators read

𝑃1 =

||||||||||||||||||||||||||||

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

||||||||||||||||||||||||||||

, 𝑃2 =

||||||||||||||||||||||||||||

0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1

||||||||||||||||||||||||||||

,

𝑃3 =

||||||||||||||||||||||||||||

1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0

||||||||||||||||||||||||||||

.

Extending the method by Fedorov–Gronskiy [37], we assume
that each projective constituent is defined by only one function
of the variable 𝑟:
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Ψ1(𝑟, 𝑧) =

||||||||||||||||||||||||||||

0
0
0
ℎ3(𝑧)
0
0
𝐸3(𝑧)
𝐵1(𝑧)
0
0

||||||||||||||||||||||||||||

𝑓1(𝑟), Ψ2(𝑟) =

||||||||||||||||||||||||||||

0
ℎ1(𝑧)
0
0
𝐸1(𝑧)
0
0
0
0
𝐵3(𝑧)

||||||||||||||||||||||||||||

𝑓2(𝑟)

Ψ3(𝑟, 𝑧) =

||||||||||||||||||||||||||||

ℎ0(𝑧)
0
ℎ2(𝑧)
0
0
𝐸2(𝑧)
0
0
𝐵2(𝑧)
0

||||||||||||||||||||||||||||

𝑓3(𝑟)

(10)

Thus, we are to apply the following substitutions:

ℎ3(𝑟, 𝑧) = 𝑓1(𝑟)ℎ3(𝑧), ℎ1(𝑟, 𝑧) = 𝑓2(𝑟)ℎ1(𝑧), ℎ0(𝑟, 𝑧) = 𝑓3(𝑟)ℎ0(𝑧),
𝐸3(𝑟, 𝑧) = 𝑓1(𝑟)𝐸3(𝑧), 𝐸1(𝑟, 𝑧) = 𝑓2(𝑟)𝐸1(𝑧), ℎ2(𝑟, 𝑧) = 𝑓3(𝑟)ℎ2(𝑧),
𝐵1(𝑟, 𝑧) = 𝑓1(𝑟)𝐵1(𝑧), 𝐵3(𝑟, 𝑧) = 𝑓2(𝑟)𝐵3(𝑧), 𝐸2(𝑟, 𝑧) = 𝑓3(𝑟)𝐸2(𝑧),

𝐵2(𝑟, 𝑧) = 𝑓3(𝑟)𝐵2(𝑧).
(11)

Taking these into account, from (8), we obtain the equations
(they are collected into three groups; besides, we impose some
differential constraints on the functions)

𝑃1,

𝑏
𝑚
𝑓3𝐵2(𝑧) − 𝑖𝑊 𝑓1𝐸3(𝑧) +𝑍𝑓1𝐵1(𝑧) =𝑀𝑓1ℎ3(𝑧)⇒ 𝑏

𝑚
𝑓3 =𝐶1𝑓1,

−𝑏
𝑚
𝑓3ℎ0(𝑧) + 𝑖𝑊 𝑓1(𝑟)ℎ3(𝑧) =𝑀𝑓1(𝑟)𝐸3(𝑧) ⇒ 𝑏

𝑚
𝑓3 =𝐶1𝑓1,

−𝑏
𝑚
𝑓3ℎ2(𝑧) +𝑍𝑓1ℎ3(𝑧) =𝑀𝑓1𝐵1(𝑧) ⇒ 𝑏

𝑚
𝑓3 =𝐶1𝑓1;

𝑃2,

𝑎
𝑚
𝑓3𝐵2(𝑧) − 𝑖𝑊 𝑓2𝐸1(𝑧) −𝑍𝑓2𝐵3(𝑧) =𝑀𝑓2ℎ1(𝑧)⇒ 𝑎

𝑚
𝑓3 =𝐶2𝑓2

𝑎
𝑚
𝑓3ℎ0(𝑧) + 𝑖𝑊 𝑓2ℎ1(𝑧) =𝑀𝑓2𝐸1(𝑧) ⇒ 𝑎

𝑚
𝑓3) =𝐶2𝑓2

−𝑎
𝑚
𝑓3ℎ2(𝑧) −𝑍𝑓2)ℎ1(𝑧) =𝑀𝑓2𝐵3(𝑧) ⇒ 𝑎

𝑚
𝑓3 =𝐶2𝑓2;

𝑃3,

𝑏
𝑚−1𝑓2𝐸1(𝑧) − 𝑎

𝑚+1𝑓1𝐸3(𝑧) −𝑍𝑓3𝐸2(𝑧) + Γ𝑓3ℎ2(𝑧) =𝑀𝑓3ℎ0(𝑧)

⇒ 𝑏
𝑚−1𝑓2 = 𝐶3𝑓3, 𝑎

𝑚+1𝑓1(𝑟) =𝐶4𝑓3,

−𝑎
𝑚+1𝑓1(𝑟)𝐵1(𝑧) − 𝑏

𝑚−1𝑓2𝐵3(𝑧) − 𝑖𝑊 𝑓3𝐸2(𝑧)

+Γ𝑓3ℎ0(𝑧) =𝑀𝑓3ℎ2(𝑧)

⇒ 𝑏
𝑚−1𝑓2 = 𝐶3𝑓3, 𝑎

𝑚+1𝑓1 =𝐶4𝑓3,

+𝑖𝑊 𝑓3ℎ2(𝑧) −𝑍𝑓3ℎ0(𝑧) =𝑀𝑓3𝐸2(𝑧),

𝑏
𝑚−1𝑓2(𝑟)ℎ1(𝑧) + 𝑎

𝑚+1𝑓1ℎ3(𝑧) =𝑀𝑓3𝐵2(𝑧)

⇒ 𝑏
𝑚−1𝑓2 = 𝐶3𝑓3, 𝑎

𝑚+1𝑓1 =𝐶4𝑓3.

After reducing the total multipliers in all equations, we arrive at
the differential system in the variable 𝑧:

𝐶1𝐵2 − 𝑖𝑊 𝐸3 + 𝐵
′
1 =𝑀ℎ3, −𝐶1ℎ0

+ 𝑖𝑊 ℎ3 =𝑀𝐸3, −𝐶1ℎ2 + ℎ
′
3 =𝑀𝐵1;

𝐶2𝐵2 − 𝑖𝑊 𝐸1 − 𝐵
′
3 =𝑀ℎ1, 𝐶2ℎ0

+ 𝑖𝑊 ℎ1 =𝑀𝐸1, −𝐶2ℎ2 − ℎ
′
1 =𝑀𝐵3;

𝐶3𝐸1 − 𝐶4𝐸3 − 𝐸
′
2 + Γℎ2 =𝑀ℎ0,

− 𝐶4𝐵1 − 𝐶3𝐵3 − 𝑖𝑊 𝐸2 + Γℎ0 =𝑀ℎ2,

𝑖𝑊 ℎ2 − ℎ
′
0 =𝑀𝐸2, 𝐶3ℎ1 + 𝐶4ℎ3 =𝑀𝐵2.

(12)

Collect the constrains together

𝑏
𝑚
𝑓3 = 𝐶1𝑓1, 𝑎

𝑚+1𝑓1 = 𝐶4𝑓3, let 𝐶4 = 𝐶1;

𝑎
𝑚
𝑓3 = 𝐶2𝑓2, 𝑏

𝑚−1𝑓2 = 𝐶3𝑓3, let 𝐶3 = 𝐶2.
(13)

From (13), we readily derive the 2nd-order equations for separate
functions

(
𝑏
𝑚
𝑎
𝑚+1 − 𝐶

2
1

)
𝑓1(𝑟) = 0,

(
𝑎
𝑚+1𝑏𝑚 − 𝐶

2
1

)
𝑓3(𝑟) = 0,

(
𝑎
𝑚
𝑏
𝑚−1 − 𝐶

2
2

)
𝑓2(𝑟) = 0,

(
𝑏
𝑚−1𝑎𝑚

− 𝐶
2
2

)
𝑓3(𝑟) = 0.

(14)

Allowing for the identities

𝑏
𝑚
𝑎
𝑚+1 =

1
2

(
𝑑

2

𝑑𝑟2 +
1
𝑟

𝑑

𝑑𝑟
− (𝑚 + 1)2

𝑟2

)

𝑎
𝑚+1𝑏𝑚 =

1
2

(
𝑑

2

𝑑𝑟2 +
1
𝑟

𝑑

𝑑𝑟
− 𝑚

2

𝑟2

)

𝑎
𝑚
𝑏
𝑚−1 =

1
2

(
𝑑

2

𝑑𝑟2 +
1
𝑟

𝑑

𝑑𝑟
− (𝑚 − 1)2

𝑟2

)

𝑏
𝑚−1𝑎𝑚

= 1
2

(
𝑑

2

𝑑𝑟2 +
1
𝑟

𝑑

𝑑𝑟
− 𝑚

2

𝑟2

)

we rewrite the above equations differently
(

𝑑
2

𝑑𝑟2 +
1
𝑟

𝑑

𝑑𝑟
− (𝑚 + 1)2

𝑟2 − 2𝐶2
1

)
𝑓1 = 0

(
𝑑

2

𝑑𝑟2 +
1
𝑟

𝑑

𝑑𝑟
− 𝑚

2

𝑟2 − 2𝐶2
1

)
𝑓3 = 0

(
𝑑

2

𝑑𝑟2 +
1
𝑟

𝑑

𝑑𝑟
− (𝑚 − 1)2

𝑟2 − 2𝐶2
2

)
𝑓2 = 0

(
𝑑

2

𝑑𝑟2 +
1
𝑟

𝑑

𝑑𝑟
− 𝑚

2

𝑟2 − 2𝐶2
2

)
𝑓3 = 0;

so that 𝐶2
1 = 𝐶

2
2 = 𝐶 . In the variable 𝑥 = 𝑖

√
2𝐶 𝑟, they take on the

Bessel form
(

𝑑
2

𝑑𝑥2 +
1
𝑥

𝑑

𝑑𝑥
+ 1 − (𝑚 + 1)2

𝑥2

)
𝑓1 = 0, 𝑓1(𝑥) = 𝐽

𝑚+1(𝑥);
(

𝑑
2

𝑑𝑥2 +
1
𝑥

𝑑

𝑑𝑥
+ 1 − (𝑚 − 1)2

𝑥2

)
𝑓2 = 0, 𝑓2(𝑥) = 𝐽

𝑚−1(𝑥);
(

𝑑
2

𝑑𝑥2 +
1
𝑥

𝑑

𝑑𝑥
+ 1 − 𝑚

2

𝑥2

)
𝑓3 = 0, 𝑓3(𝑥) = 𝐽

𝑚
(𝑥).

(15)
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3 | Solving the System in 𝒛 Variable

Now, we turn to the system (12):

𝐶𝐵2 − 𝑖𝑊 𝐸3 + 𝐵
′
1 =𝑀ℎ3, −𝐶ℎ0 + 𝑖𝑊 ℎ3 =𝑀𝐸3, −𝐶ℎ2 + ℎ

′
3 =𝑀𝐵1,

𝐶𝐵2 − 𝑖𝑊 𝐸1 − 𝐵
′
3 =𝑀ℎ1, 𝐶ℎ0 + 𝑖𝑊 ℎ1 =𝑀𝐸1, −𝐶ℎ2 − ℎ

′
1 =𝑀𝐵3,

𝐶𝐸1 − 𝐶𝐸3 − 𝐸
′
2 + Γℎ2 =𝑀ℎ0, −𝐶𝐵1 − 𝐶𝐵3 − 𝑖𝑊 𝐸2 + Γℎ0 =𝑀ℎ2,

𝑖𝑊 ℎ2 − ℎ
′
0 =𝑀𝐸2, 𝐶ℎ1 + 𝐶ℎ3 =𝑀𝐵2.

(16)

Let us compare the system (16) with the system derived in [32]
when solving the similar problem in Cartesian coordinates

− 𝑖𝑎𝐸1 − 𝑖𝑏𝐸2 + Γℎ3 − 𝐸
′
3 =𝑀ℎ0,

𝐶𝐸1 − 𝐶𝐸3 + Γℎ2 − 𝐸
′
2 =𝑀ℎ0,

− 𝑖𝑏𝐵3 − 𝑖𝑊 𝐸1 + 𝐵
′
2 =𝑀ℎ1,

𝐶𝐵2 − 𝑖𝑊 𝐸1 − 𝐵
′
3 =𝑀ℎ1,

𝑖𝑎𝐵3 − 𝑖𝑊 𝐸2 − 𝐵
′
1 =𝑀ℎ2,

𝐶𝐵2 − 𝑖𝑊 𝐸3 + 𝐵
′
1 =𝑀ℎ3,

𝑖𝑏𝐵1 − 𝑖𝑎𝐵2 − 𝑖𝑊 𝐸3 + Γℎ0 =𝑀ℎ3,

− 𝐶𝐵1 − 𝐶𝐵3 − 𝑖𝑊 𝐸2 + Γℎ0 =𝑀ℎ2,

− 𝑖𝑎ℎ0 + 𝑖(𝐸𝑧 − 𝜖)ℎ1 =𝑀𝐸1,

𝐶ℎ0 + 𝑖𝑊 ℎ1 =𝑀𝐸1,

− 𝑖𝑏ℎ0 + 𝑖(𝐸𝑧 − 𝜖)ℎ2 =𝑀𝐸2,

− 𝐶ℎ0 + 𝑖𝑊 ℎ3 =𝑀𝐸3,

𝑖𝑊 ℎ3 − ℎ
′
0 =𝑀𝐸3,

+ 𝑖𝑊 ℎ2 − ℎ
′
0 =𝑀𝐸2,

𝑖𝑏ℎ3 − ℎ
′
2 =𝑀𝐵1,

− 𝐶ℎ2 + ℎ
′
3 =𝑀𝐵1,

− 𝑖𝑎ℎ3 + ℎ
′
1 =𝑀𝐵2,

− 𝐶ℎ2 − ℎ
′
1 =𝑀𝐵3,

− 𝑖𝑏ℎ1 + 𝑖𝑎ℎ2 =𝑀𝐵3,

𝐶ℎ1 + 𝐶ℎ3 =𝑀𝐵2.

We can see that transition from the left-side system to the
right-side one is reached by the formal changes

ℎ0 ⇒ ℎ0, ℎ1 ⇒ ℎ1, ℎ2 ⇒ ℎ3, ℎ3 ⇒ ℎ2,

𝐸1 ⇒ 𝐸1, 𝐸2 ⇒ 𝐸3, 𝐸3 ⇒ 𝐸2,

𝐵1 ⇒ 𝐵1, 𝐵2 ⇒ 𝐵3, 𝐵3 ⇒ 𝐵2.

Therefore, in the new system, we can try the same method as in
[32]. So we will consider the variables ℎ1, ℎ3, 𝐸2, 𝐵2 as primary
ones. First, we resolve the subsystem of six equations

𝐶𝐸1 − 𝐶𝐸3 + Γℎ2 − 𝐸
′
2 =𝑀ℎ0,

− 𝐶𝐵1 − 𝐶𝐵3 − 𝑖𝑊 𝐸2 + Γℎ0 =𝑀ℎ2,

𝐶ℎ0 + 𝑖𝑊 ℎ1 =𝑀𝐸1, −𝐶ℎ0 + 𝑖𝑊 ℎ3 =𝑀𝐸3,

− 𝐶ℎ2 + ℎ
′
3 =𝑀𝐵1, −𝐶ℎ2 − ℎ

′
1 =𝑀𝐵3

as algebraic with respect to the functions ℎ0, ℎ2, 𝐸1, 𝐸3, 𝐵1, 𝐵3;
this results in

ℎ0 =
1
𝐷

{
𝑀

[(
2𝐶2 −𝑀

2)
𝐸
′
2 + Γ𝐶

(
ℎ
′
1 − ℎ

′
3

)]

−𝑖𝑊
[
𝐶

(
2𝐶2 −𝑀

2)(
ℎ1 − ℎ3

)
+ Γ𝑀2

𝐸2
]}

,

ℎ2 = − 1
𝐷

{
𝑖𝑀𝑊

[(
𝑀

2 − 2𝐶2)
𝐸2 + Γ𝐶

(
ℎ3 − ℎ1

)]

+𝐶
(
2𝐶2 −𝑀

2)(
ℎ
′
1 − ℎ

′
3

)
+ Γ𝑀2

𝐸
′
2

}
,

𝐸1 =
1

𝑀𝐷

{
𝑖𝑊

[
𝐶

2(2𝐶2 −𝑀
2)

ℎ3

+ℎ1
(
2𝐶4 − 3𝐶2

𝑀
2 +𝑀

4 − Γ2
𝑀

2) − Γ𝐶𝑀
2
𝐸2
]

+𝐶𝑀

[(
2𝐶2 −𝑀

2)
𝐸
′
2 + Γ𝐶

(
ℎ
′
1 − ℎ

′
3

)]}
,

𝐸3 =
1

𝑀𝐷

{
𝑖𝑊

[
𝐶

2(2𝐶2 −𝑀
2)

ℎ1

+ℎ3
(
2𝐶4 − 3𝐶2

𝑀
2 +𝑀

4 − Γ2
𝑀

2) + Γ𝐶𝑀
2
𝐸2
]

−𝐶𝑀

[(
2𝐶2 −𝑀

2)
𝐸
′
2 + Γ𝐶

(
ℎ
′
1 − ℎ

′
3

)]}
,

𝐵1 =
1

𝑀𝐷

{(
2𝐶4 − 3𝐶2

𝑀
2 +𝑀

4 − Γ2
𝑀

2)
ℎ
′
3

+ 𝐶

[
𝑖𝑀𝑊

[(
𝑀

2 − 2𝐶2)
𝐸2 + Γ𝐶

(
ℎ3 − ℎ1

)]

+𝐶
(
2𝐶2 −𝑀

2)
ℎ
′
1 + Γ𝑀

2
𝐸
′
2

]}
,

𝐵3 =
1

𝑀𝐷

{
−𝑖𝐶𝑀𝑊

[(
2𝐶2 −𝑀

2)
𝐸2 + Γ𝐶

(
ℎ1 − ℎ3

)]

+ 𝐶
2(

𝑀
2 − 2𝐶2)

ℎ
′
3 +
(
−2𝐶4 + 3𝐶2

𝑀
2 −𝑀

4 + Γ2
𝑀

2)

ℎ
′
1 + Γ𝐶𝑀

2
𝐸
′
2

}
,

and then substitute these expressions into the remaining four
equations

𝐶𝐵2 − 𝑖𝑊 𝐸1 − 𝐵
′
3 =𝑀ℎ1, 𝐶𝐵2 − 𝑖𝑊 𝐸3 + 𝐵

′
1 =𝑀ℎ3,

+𝑖𝑊 ℎ2 − ℎ
′
0 =𝑀𝐸2, 𝐶ℎ1 + 𝐶ℎ3 =𝑀𝐵2.

In this way, we obtain four 2nd-order equations:

1.

𝐶𝐵2 +
−Γ𝐶𝑀𝑊

2 + 𝑖𝐶

(
2𝐶2 −𝑀

2)
𝑊

′

(
𝑀2 − 2𝐶2

)2 − Γ2
𝑀2

𝐸2 −
Γ𝐶𝑀(

𝑀2 − 2𝐶2
)2 − Γ2

𝑀2
𝐸
′′
2

+
𝐶

2((2𝐶2 −𝑀
2)

𝑊
2 − 𝑖Γ𝑀𝑊

′)

𝑀

(
𝑀2 − 2𝐶2

)2 − Γ2
𝑀3

ℎ3

+
𝐶

2(2𝐶2 −𝑀
2)

𝑀

(
𝑀2 − 2𝐶2

)2 − Γ2
𝑀3

ℎ
′′
3
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+

(
−
(
𝑀

3 − 2𝐶2
𝑀

)2 + 𝑖Γ𝐶2
𝑀𝑊

′ +𝑊
2(2𝐶4 − 3𝐶2

𝑀
2 +𝑀

4 − Γ2
𝑀

2) + Γ2
𝑀

4
)

𝑀

(
𝑀2 − 2𝐶2

)2 − Γ2
𝑀3

ℎ1

+
(
2𝐶4 − 3𝐶2

𝑀
2 +𝑀

4 − Γ2
𝑀

2)

𝑀

(
𝑀2 − 2𝐶2

)2 − Γ2
𝑀3

ℎ
′′
1 = 0,

2.

𝐶𝐵2 +
(
Γ𝐶𝑀𝑊

2 − 𝑖𝐶

(
2𝐶2 −𝑀

2)
𝑊

′)
(
𝑀2 − 2𝐶2

)2 − Γ2
𝑀2

𝐸2 +
Γ𝐶𝑀(

𝑀2 − 2𝐶2
)2 − Γ2

𝑀2
𝐸
′′
2

+
𝐶

2((2𝐶2 −𝑀
2)

𝑊
2 − 𝑖Γ𝑀𝑊

′)

𝑀

(
𝑀2 − 2𝐶2

)2 − Γ2
𝑀3

ℎ1 +
(
2𝐶4 − 𝐶

2
𝑀

2)

𝑀

(
𝑀2 − 2𝐶2

)2 − Γ2
𝑀3

ℎ
′′
1

+

(
−
(
𝑀

3 − 2𝐶2
𝑀

)2 + 𝑖Γ𝐶2
𝑀𝑊

′ +𝑊
2(2𝐶4 − 3𝐶2

𝑀
2 +𝑀

4 − Γ2
𝑀

2) + Γ2
𝑀

4
)

𝑀

(
𝑀2 − 2𝐶2

)2 − Γ2
𝑀3

ℎ3

+2𝐶4 − 3𝐶2
𝑀

2 +𝑀
4 − Γ2

𝑀
2

𝑀

(
𝑀2 − 2𝐶2

)2 − Γ2
𝑀3

ℎ
′′
3 = 0,

3.

𝑀

((
𝑀

2 − 2𝐶2)
𝑊

2 −
(
𝑀

2 − 2𝐶2)2 + Γ2
𝑀

2 + 𝑖Γ𝑀𝑊
′
)

(
𝑀2 − 2𝐶2

)2 − Γ2
𝑀2

𝐸2 +
𝑀

3 − 2𝐶2
𝑀(

𝑀2 − 2𝐶2
)2 − Γ2

𝑀2
𝐸
′′
2

+
𝑖𝐶

((
2𝐶2 −𝑀

2)
𝑊

′ + 𝑖Γ𝑀𝑊
2)

(
𝑀2 − 2𝐶2

)2 − Γ2
𝑀2

ℎ1 −
Γ𝐶𝑀(

𝑀2 − 2𝐶2
)2 − Γ2

𝑀2
ℎ
′′
1

+
𝐶

(
Γ𝑀𝑊

2 + 𝑖

(
𝑀

2 − 2𝐶2)
𝑊

′)
(
𝑀2 − 2𝐶2

)2 − Γ2
𝑀2

ℎ3 +
Γ𝐶𝑀(

𝑀2 − 2𝐶2
)2 − Γ2

𝑀2
ℎ
′′
3 = 0,

4.

−𝑀𝐵2 + 𝐶ℎ1 + 𝐶ℎ3 = 0 ⇒
𝑀

𝐶
𝐵2 = (ℎ1 + ℎ3);

the last equation provides us with the linear relationship
between three variables, so in fact, we have only three
equations for three independent variables.

Let us sum and subtract Equations (1) and (2). The summing
gives

2𝐶𝑀𝐵2 + (𝑊 2 −𝑀
2)(ℎ1 + ℎ3) + (ℎ′′1 + ℎ

′′
3 ) = 0,

whence, allowing for Equation (4), we obtain

2𝐶𝑀𝐵2 +
𝑀

𝐶
(𝑊 2 −𝑀

2)𝐵2 +
𝑀

𝐶
𝐵
′′
2 = 0,

thus, we have a separate equation for the function 𝐵2:

[
𝑑

2

𝑑𝑧2 + (𝑊
2 −𝑀

2) + 2𝐶2
]
𝐵2 = 0, 𝐵2 =

𝐶

𝑀
(ℎ1 + ℎ3) (17)

Subtraction gives

(
−2𝐶2

𝑀 +𝑀
3 − Γ2

𝑀

)
ℎ
′′
1 +𝑀

(
Γ2 + 2𝐶2 −𝑀

2)
ℎ
′′
3

+
(
𝑀𝑊

2(−Γ2 − 2𝐶2 +𝑀
2) −𝑀

(
𝑀

2 − 2𝐶2)2

+2𝑖Γ𝐶2
𝑊

′ + Γ2
𝑀

3)
ℎ1
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−
(
𝑀𝑊

2(−Γ2 − 2𝐶2 +𝑀
2) −𝑀

(
𝑀

2 − 2𝐶2)2

+2𝑖Γ𝐶2
𝑊

′ + Γ2
𝑀

3)
ℎ3

+
(
−2Γ𝐶𝑀𝑊

2 + 2𝑖𝐶
(
2𝐶2 −𝑀

2)
𝑊

′)
𝐸2 − 2Γ𝐶𝑀𝐸

′′
2 = 0,

or (let us apply more convenient notations ℎ1(𝑧) − ℎ3(𝑧) =
𝐺(𝑧), 𝐸2(𝑧) = 𝐹 (𝑧))
(
−𝑀Γ2 − 2 𝑀𝐶

2 +𝑀
3)

𝐺
′′

+
[
𝑀𝑊

2(−Γ2 − 2𝐶2 +𝑀
2) −𝑀

(
𝑀

2 − 2𝐶2)2

+ 2𝑖Γ𝐶2
𝑊

′ + Γ2
𝑀

3
]
𝐺

− 2Γ𝐶𝑀𝐹
′′(𝑧) +

[
−2Γ𝐶𝑀𝑊

2 + 2𝑖𝐶
(
2𝐶2 −𝑀

2)
𝑊

′]
𝐹 = 0

(18)
Let us write down Equation (3)

𝑀

[(
𝑀

2 − 2𝐶2)
𝑊

2 −
(
𝑀

2 − 2𝐶2)2 + Γ2
𝑀

2 + 𝑖Γ𝑀𝑊
′
]

𝐹 +𝑀(𝑀2 − 2𝐶2)𝐹 ′′

+
[
𝑖𝐶(2𝐶2 −𝑀

2)𝑊 ′ − 𝐶Γ𝑀𝑊
2]
ℎ1 − Γ𝐶𝑀ℎ

′′
1

+
[
𝑖𝐶(𝑀2 − 2𝐶2)𝑊 ′ + 𝐶Γ𝑀𝑊

2]
ℎ3 + Γ𝐶𝑀ℎ

′′
3 = 0,

it can be presented differently

𝑀

[(
𝑀

2 − 2𝐶2)
𝑊

2 −
(
𝑀

2 − 2𝐶2)2 + Γ2
𝑀

2 + 𝑖Γ𝑀𝑊
′
]

𝐹 +𝑀(𝑀2 − 2𝐶2)𝐹 ′′

+ 𝑖𝐶(2𝐶2 −𝑀
2)𝑊 ′(ℎ1 + ℎ3) − 𝐶Γ𝑀𝑊

2
𝐺 − Γ𝐶𝑀𝐺

′′ = 0

or

𝑀

[(
𝑀

2 − 2𝐶2)
𝑊

2 −
(
𝑀

2 − 2𝐶2)2 + Γ2
𝑀

2 + 𝑖Γ𝑀𝑊
′
]
𝐹

+𝑀(𝑀2 − 2𝐶2)𝐹 ′′ + 𝑖(2𝐶2 −𝑀
2)𝑊 ′

𝑀𝐵2

− 𝐶Γ𝑀
[
𝐺
′′ +𝑊

2
𝐺

]
= 0

(19)
Thus, we have three equations for three functions:
[

𝑑
2

𝑑𝑧2 + (𝑊
2 −𝑀

2) + 2𝐶2
]
𝐵2 = 0,

(
−𝑀Γ2 − 2 𝑀𝐶

2 +𝑀
3)

𝐺
′′ + [𝑀𝑊

2(−Γ2 − 2𝐶2 +𝑀
2)

−𝑀

(
𝑀

2 − 2𝐶2)2 + 2𝑖Γ𝐶2
𝑊

′ + Γ2
𝑀

3]𝐺

− 2Γ𝐶𝑀𝐹
′′ +

[
−2Γ𝐶𝑀𝑊

2 + 2𝑖𝐶
(
2𝐶2 −𝑀

2)
𝑊

′]
𝐹 = 0,

𝑖(2𝐶2 −𝑀
2)𝑊 ′

𝐵2 − 𝐶Γ
[
𝐺
′′ +𝑊

2
𝐺

]

+ (𝑀2 − 2𝐶2)𝐹 ′′ +
[(

𝑀
2 − 2𝐶2)

𝑊
2 −
(
𝑀

2 − 2𝐶2)2 + Γ2
𝑀

2

+𝑖Γ𝑀𝑊
′]
𝐹 + 𝑖(2𝐶2 −𝑀

2)𝑊 ′
𝐵2 − 𝐶Γ

[
𝐺
′′ +𝑊

2
𝐺

]
= 0.

Let us fix the parameter𝐶 , by setting (𝑀2 − 2𝐶2) = 0. In this way,
we eliminate the variable 𝐵2 from the second equation. After that,
we can search for solutions of the system as follows:

(𝐼) 𝐵2(𝑧) ≠ 0, 𝐹 (𝑧) = 0, 𝐺(𝑧) = 0;

(𝐼𝐼) 𝐵2(𝑧) = 0 𝐹 (𝑧) ≠ 0, 𝐺(𝑧) ≠ 0.

In the case II, we have two linked equations for two variables
(recall that 𝑊 ′ = 𝐸)

𝑀

(
−Γ2 +𝑀

2 − 2𝐶2)
𝐺
′′ + [𝑀𝑊

2(−Γ2 − 2𝐶2 +𝑀
2)

−𝑀

(
𝑀

2 − 2𝐶2)2 + 2𝑖Γ𝐸𝐶
2 + Γ2

𝑀
3]𝐺

− 2Γ𝐶𝑀𝐹
′′ +

[
−2Γ𝐶𝑀𝑊

2 + 2𝑖𝐶
(
2𝐶2 −𝑀

2)
𝐸

]
𝐹 = 0,

− 𝐶Γ
[
𝐺
′′ +𝑊

2
𝐺

]
+ (𝑀2 − 2𝐶2)𝐹 ′′

+
[(

𝑀
2 − 2𝐶2)

𝑊
2 −
(
𝑀

2 − 2𝐶2)2 + Γ2
𝑀

2 + 𝑖Γ𝑀𝐸

]
𝐹 = 0.

It may be presented in symbolical form

𝑃1𝐺
′′ + 𝑅1(𝑧)𝐺 +𝑄1𝐹

′′ + 𝑆1(𝑧)𝐹 = 0,

𝑃2𝐺
′′ + 𝑅2(𝑧)𝐺 +𝑄2𝐹

′′ + 𝑆2(𝑧)𝐹 = 0.

Let us multiply the first equation by 𝛼, the second—by 𝛽 and sum
the results. We will consider two possibilities.

The first one is

𝛼𝑃1 + 𝛽𝑃2 = 1, 𝛼𝑄1 + 𝛽𝑄2 = 0,

𝐺
′′ + (𝛼𝑅1 + 𝛽𝑅2)𝐺 + 0 + (𝛼𝑆1 + 𝛽𝑆2)𝐹 = 0,

where

𝛼 = 𝑀
2 − 2𝐶2

𝑀

(
𝑀2 − 2𝐶2

)2 − Γ2
𝑀3

, 𝛽 = 2Γ𝐶(
𝑀2 − 2𝐶2

)2 − Γ2
𝑀2

,

𝐺
′′ +

⎡
⎢⎢⎢⎣
𝑊

2 +

(
2𝐶2 −𝑀

2)(
𝑀

(
𝑀

2 − 2𝐶2)2 − 2𝑖Γ𝐶2
𝐸 − Γ2

𝑀
3
)

𝑀

(
𝑀2 − 2𝐶2

)2 − Γ2
𝑀3

⎤
⎥⎥⎥⎦
𝐺

−2𝐶(Γ𝑀 + 𝑖𝐸)
𝑀

𝐹 = 0.

The second one is

𝛼𝑃1 + 𝛽𝑃2 = 0, 𝛼𝑄1 + 𝛽𝑄2 = 1,

(𝛼𝑅1 + 𝛽𝑅2)𝐺 + 𝐹
′′ + (𝛼𝑆1 + 𝛽𝑆2)𝐹 = 0,

where

𝛼 = Γ𝐶
𝑀

(
𝑀2 − 2𝐶2

)2 − Γ2
𝑀3

, 𝛽 = −Γ2 − 2𝐶2 +𝑀
2

(
𝑀2 − 2𝐶2

)2 − Γ2
𝑀2

,

Γ𝐶
(
−𝑀

(
𝑀

2 − 2𝐶2)2 + 2𝑖Γ𝐶2
𝐸 + Γ2

𝑀
3
)

𝑀

(
𝑀2 − 2𝐶2

)2 − Γ2
𝑀3

𝐺

+𝐹 ′′ +
(
Γ2 + 2𝐶2 −𝑀

2 + 𝑖Γ𝐸
𝑀

+𝑊
2
)
𝐹 = 0.

Thus, we have derived two equations

𝐺
′′ +

⎡
⎢⎢⎢⎣
𝑊

2 +

(
2𝐶2 −𝑀

2)(
𝑀

(
𝑀

2 − 2𝐶2)2 − 2𝑖Γ𝐶2
𝐸 − Γ2

𝑀
3
)

𝑀

(
𝑀2 − 2𝐶2

)2 − Γ2
𝑀3

⎤
⎥⎥⎥⎦
𝐺

−2𝐶(Γ𝑀 + 𝑖𝐸)
𝑀

𝐹 = 0,
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𝐹
′′ +

[
𝑊

2 + Γ2 + 2𝐶2 −𝑀
2 + 𝑖Γ𝐸

𝑀

]
𝐹

+Γ𝐶
−𝑀

(
𝑀

2 − 2𝐶2)2 + 2𝑖Γ𝐶2
𝐸 + Γ2

𝑀
3

𝑀

(
𝑀2 − 2𝐶2

)2 − Γ2
𝑀3

𝐺 = 0.

Taking in mind the identity 𝐶
2 =𝑀

2, we simplify them to
the form

(
𝑑

2

𝑑𝑧2 +𝑊
2
)
𝐺 −

(
Γ + 𝑖𝐸

𝑀

)
2𝐶𝐹 = 0,

(
𝑑

2

𝑑𝑧2 +𝑊
2
)
𝐹 +

(
Γ + 𝑖𝐸

𝑀

)
Γ𝐹 − 𝐶

(
Γ + 𝑖𝐸

𝑀

)
𝐺 = 0.

(20)

This system can be rewritten in matrix notations

𝐷2

||||||
𝐺

𝐹

||||||
=
(
Γ + 𝑖𝐸

𝑀

)||||||
0 2𝐶
𝐶 −Γ

||||||

||||||
𝐺

𝐹

||||||
, 𝐷2Ψ =

(
Γ + 𝑖𝐸

𝑀

)
𝐴Ψ,

the last system should be diagonalized by linear transformation

Ψ = 𝑆Ψ, 𝐷2Ψ =
(
Γ + 𝑖𝐸

𝑀

)
𝐴Ψ, 𝑆𝐴 =

||||||
𝜆1 0
0 𝜆2

||||||
𝑆.

Furthermore, we get two linear systems

||||||
− 𝜆1 𝐶

2𝐶 −(Γ + 𝜆1)

||||||

||||||
𝑠11

𝑠12

||||||
= 0,

||||||
− 𝜆2 𝐶

2𝐶 −(Γ + 𝜆2)

||||||

||||||
𝑠21

𝑠22

||||||
= 0.

They lead to the roots

𝜆1 = −
Γ
2
−
√
Γ2

4
+𝑀2 =𝑀

(
−𝑥 −

√
1 + 𝑥2

)
, 𝑥 = Γ

2 𝑀
;

𝜆2 = −
Γ
2
+
√
Γ2

4
+𝑀2 =𝑀

(
−𝑥 +

√
1 + 𝑥2

)
, 𝑥 = Γ

2 𝑀
;

(21)
the transformation matrix may be taken as follows:

𝑆 =
||||||
1 𝜆1∕𝐶
1 𝜆2∕𝐶

||||||
(22)

In this way, we obtain two separate equations
(

𝑑
2

𝑑𝑧2 +𝑊
2(𝑧) − (𝑀Γ + 𝑖𝐸)

𝜆1

𝑀

)
𝐺 = 0,

(
𝑑

2

𝑑𝑧2 +𝑊
2(𝑧) − (𝑀Γ + 𝑖𝐸)

𝜆2

𝑀

)
𝐹 = 0;

(23)

they may be rewritten differently (recall that 𝑥 = Γ∕2𝑀)
(

𝑑
2

𝑑𝑧2 +𝑊
2(𝑧) + (𝑀Γ + 𝑖𝐸)

(
𝑥 +

√
1 + 𝑥2

))
𝐺 = 0,

(
𝑑

2

𝑑𝑧2 +𝑊
2(𝑧) + (𝑀Γ + 𝑖𝐸)

(
𝑥 −

√
1 + 𝑥2

))
𝐹 = 0,

(24)

or shortly
(

𝑑
2

𝑑𝑧2 + (𝐸𝑧 − 𝜖)2 − Λ1

)
𝐺 = 0,

(
𝑑

2

𝑑𝑧2 + (𝐸𝑧 − 𝜖)2 − Λ2

)
𝐹 = 0

(25)

Let us write down the equation for function 𝐵2(𝑧):
[

𝑑
2

𝑑𝑧2 +𝑊
2 −𝑀

2 + 2𝐶2
]
𝐵2 = 0

⇒

[
𝑑

2

𝑑𝑧2 + (𝐸𝑧 − 𝜖)2
]
𝐵2 = 0

(26)

All three equations are of the same mathematical structure.

4 | Solving the Differential Equation

The derived equation has the same formal structure as for a scalar
relativistic particle in the uniform electric field

(
𝑑

2

𝑑𝑧2 + (𝐸𝑧 + 𝜖)2 − 𝜇
2
)
Φ(𝑧) = 0 (27)

We transform Equation (27) to the new variable (assuming that
𝐸 > 0)

𝑍 = 𝑖
(𝐸𝑧 + 𝜖)2

𝐸
, 𝜎 = 𝜇

2

4𝐸
(28)

then we get the confluent hypergeometric equation [38]
(

𝑑
2

𝑑𝑍2 +
1∕2
𝑍

𝑑

𝑑𝑍
− 1

4
+ 𝑖𝜎

𝑍

)
Φ(𝑍) = 0 (29)

This equation has two singular points. The point 𝑍 = 0 is regular,
behavior of solutions near this point is given by the formulas 𝑍 →
0, Φ(𝑍) = 𝑍

𝐴
, 𝐴 = 0, 1∕2. The point 𝑍 = ∞ is irregular point of

the rank 2. Indeed, in the inverse variable 𝑦 = 𝑍
−1, we get the

equation (
𝑑

2

𝑑𝑦2 +
3

2𝑦
𝑑

𝑑𝑦
− 1

4𝑦4 +
𝑖𝜎

𝑦3

)
Φ = 0 (30)

Asymptotic of solutions at 𝑦 → 0 should have the structure Φ =
𝑦
𝐶
𝑒
𝐷∕𝑦

. Furthermore, we arrive at

𝐷
2 − 1

4
= 0, −2𝐶𝐷 + 2𝐷 − 3

2
𝐷 + 𝑖𝜎 = 0 ,

whence it follows

𝐷1 = +
1
2
, 𝐶1 =

1
4
+ 𝑖𝜎 ; 𝐷2 = −

1
2
, 𝐶2 =

1
4
− 𝑖𝜎 (31)

Therefore, in infinity, there are possible two behaviors

𝑍 →∞, Φ = 𝑍
−𝐶

𝑒
𝐷𝑍 =

{
𝑍
−𝐶1𝑒

𝐷1𝑍 = 𝑍
−1∕4−𝑖𝜎

𝑒
+𝑍∕2

,

𝑍
−𝐶2𝑒

𝐷2𝑍 = 𝑍
−1∕4+𝑖𝜎

𝑒
−𝑍∕2

,

(32)
where (we use the main branch of the logarithmic function)

𝑍 = 𝑖
(𝜖 + 𝐸𝑧)2

𝐸
= 𝑖𝑍0, 𝑍0 > 0 , 𝑒

±𝑍∕2 = 𝑒
±𝑖𝑍0∕2

,

𝑍
−1∕4∓𝑖𝜎 =

(
𝑒

ln 𝑖𝑍0
)−1∕4∓𝑖𝜎 =

(
𝑒

ln 𝑍0+𝑖𝜋∕2)−1∕4∓𝑖𝜎
.

(33)

Let us find solutions in the whole region of the variable 𝑍. To this
end, we apply the substitution Φ(𝑍) = 𝑍

𝐴
𝑒
𝐵𝑍

𝑓 (𝑍), taking in
mind the constraints 𝐴 = 0 , 1∕2 , 𝐵 = −1∕2 , we get the equation
(
𝑍

𝑑
2

𝑑𝑍2 + (2𝐴 + 1∕2 −𝑍) 𝑑

𝑑𝑦
− (𝐴 + 1∕4 − 𝑖𝜎)

)
𝑓 (𝑍) = 0 ,
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FIGURE 1 | Plot of the real function Φ1(𝑧) from (37).

which can be recognized as the confluent hypergeometric
equation with parameters

𝑎 = 𝐴 + 1∕4 − 𝑖𝜎 , 𝑐 = 2𝐴 + 1∕2 , 𝑓 (𝑍) = 𝑍
𝐴

𝑒
−𝑍∕2

𝐹 (𝑎, 𝑐;𝑍) .

Without loss of generality, we can use the value 𝐴 = 0:

𝐴 = 0, 𝑎 = 1∕4 − 𝑖𝜎 , 𝑐 = +1∕2 , Φ(𝑍) = 𝑒
−𝑍∕2

𝑓 (𝑍)
(34)

The confluent hypergeometric equation has different sets of lin-
early independent solutions. First, consider the following ones
(see in [38]):

𝑌1(𝑍) = 𝐹 (𝑎, 𝑐;𝑍) = 𝑒
𝑍
𝐹 (𝑐 − 𝑎, 𝑐; −𝑍),

𝑌2(𝑍) = 𝑍
1−𝑐

𝐹 (𝑎 − 𝑐 + 1, 2 − 𝑐;𝑍) = 𝑍
1−𝑐

𝑒
𝑍
𝐹 (1 − 𝑎, 2 − 𝑐; −𝑍) .

(35)
They lead to the complete functions

Φ1 = 𝑒
−𝑍∕2

𝐹 (𝑎, 𝑐;𝑍) = 𝑒
+𝑍∕2

𝐹 (𝑐 − 𝑎, 𝑐; −𝑍),

Φ2 = 𝑒
−𝑍∕2

𝑍
1−𝑐

𝐹 (𝑎 − 𝑐 + 1, 2 − 𝑐;𝑍)

= 𝑍
1−𝑐

𝑒
+𝑍∕2

𝐹 (1 − 𝑎, 2 − 𝑐; −𝑍) .

(36)

Taking in mind the identities

𝑐 = 1
2
, 𝑎 = 1

4
− 𝑖𝜎, 𝑐 − 𝑎 = 1

4
+ 𝑖𝜎 = 𝑎

∗
,

𝑐 = 𝑐
∗ = 1

2
, 𝑍

∗ = −𝑍 ,

𝑎 − 𝑐 + 1 = 3
4
− 𝑖𝜎 = (1 − 𝑎)∗, (2 − 𝑐) = (2 − 𝑐)∗ = 3

2
,

we can conclude that the solution Φ1(𝑍) is given by the
real-valued function (see Figure 1), the second Φ2(𝑍) (see
Figures 2 and 3) has a definite symmetry under complex conju-
gation:

Φ1(𝑍) = +[Φ1(𝑍)]∗, Φ2(𝑍) = 𝑖[Φ2(𝑍)]∗ (37)

This property of the functionΦ2(𝑍)may be presented differently
when using other normalization (see Figure 4)

Φ2(𝑍) =
1 − 𝑖√

2
Φ2(𝑍) =

(
1 − 𝑖√

2
Φ2(𝑍)

)∗
= (Φ2(𝑍))∗ (38)

FIGURE 2 | Plot of 𝑅𝑒 Φ2(𝑧) from (37).

FIGURE 3 | Plot of 𝐼𝑚 Φ2(𝑧) from (38).

FIGURE 4 | Plot of the real function Φ2(𝑧) from (38).

At small 𝑍, the above solutions behave

𝑌1(𝑍) ≈ 1, 𝑌2(𝑍) ≈
√

𝑍 =
√

𝑖𝑍0 =
√

𝑖

𝑒𝐸
(𝜖 + 𝑒𝐸𝑧) ;

Φ1(𝑍) ≈ 1, Φ2(𝑍) ≈
√

𝑍 =
√

𝑖𝑍0 =
√

𝑖

𝑒𝐸
(𝜖 + 𝑒𝐸𝑧) .

(39)
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At large 𝑍 = 𝑖𝑍0, 𝑍0 → +∞, we can apply the asymptotic
formula (see in [38])

𝐹 (𝑎, 𝑐, 𝑍) =
(

Γ(𝑐)
Γ(𝑐 − 𝑎)

(−𝑍)−𝑎 + ...

)
+
(
Γ(𝑐)
Γ(𝑎)

𝑒
𝑍
𝑍

𝑎−𝑐 + ...

)

(40)

Taking into account identities

(−𝑍)−𝑎 = (−𝑖𝑍0)−1∕4+𝑖𝜎 =
(
𝑒

ln 𝑍0−𝑖𝜋∕2)−1∕4+𝑖𝜎

= 𝑒
−(−1∕4+𝑖𝜎)𝑖𝜋∕2

𝑒
(−1∕4+𝑖𝜎) ln 𝑍0 ,

𝑍
𝑎−𝑐 = (𝑖𝑍0)−1∕4−𝑖𝜎 =

(
𝑒

ln 𝑍0+𝑖𝜋∕2)−1∕4−𝑖𝜎

= 𝑒
+(−1∕4−𝑖𝜎)𝑖𝜋∕2

𝑒
(−1∕4−𝑖𝜎) ln 𝑍0 ,

Γ(𝑐)
Γ(𝑐 − 𝑎)

=
Γ(1∕2)

Γ(1∕4 + 𝑖𝜎)
,

Γ(𝑐)
Γ(𝑎)

=
Γ(1∕2)

Γ(1∕4 − 𝑖𝜎)

we find the following behavior of the solutions:

𝑌1(𝑍) = 𝐹 (𝑎, 𝑐, 𝑍)

= 𝑒
𝑖𝑍0∕2

{
Γ(1∕2)

Γ(1∕4 + 𝑖𝜎)
𝑒
−(−1∕4+𝑖𝜎)𝑖𝜋∕2

𝑒
(−1∕4+𝑖𝜎) ln 𝑍0𝑒

−𝑖𝑍0∕2

+
Γ(1∕2)

Γ(1∕4 − 𝑖𝜎)
𝑒
+(−1∕4−𝑖𝜎)𝑖𝜋∕2

𝑒
(−1∕4−𝑖𝜎) ln 𝑍0𝑒

+𝑖𝑍0∕2
}

(41)

Whence after transition to the variable Φ1(𝑍), we get

Φ1(𝑍) =
{

Γ(1∕2)
Γ(1∕4 + 𝑖𝜎)

𝑒
−(−1∕4+𝑖𝜎)𝑖𝜋∕2

𝑒
(−1∕4+𝑖𝜎) ln 𝑍0𝑒

−𝑖𝑍0∕2

+
Γ(1∕2)

Γ(1∕4 − 𝑖𝜎)
𝑒
+(−1∕4−𝑖𝜎)𝑖𝜋∕2

𝑒
(−1∕4−𝑖𝜎) ln𝑍0𝑒

+𝑖𝑍0∕2
}

,

(42)

where we can see the sum of two conjugate terms. Similarly, we
can examine behavior in infinity of the second solution 𝐹 (𝑎 − 𝑐 +
1, 2 − 𝑐;𝑍):

𝐹 (𝑎 − 𝑐 + 1, 2 − 𝑐, 𝑍) = Γ(2 − 𝑐)
Γ(1 − 𝑎)

(−𝑍)−𝑎+𝑐−1 + Γ(2 − 𝑐)
Γ(𝑎 − 𝑐 + 1)

𝑒
𝑍
𝑍

𝑎−1
.

(43)

Whence taking into account the identities

(−𝑍)−𝑎+𝑐−1 = (−𝑖𝑍0)−3∕4+𝑖𝜎 =
(
𝑒

ln 𝑍0−𝑖𝜋∕2)−3∕4+𝑖𝜎

= 𝑒
−(−3∕4+𝑖𝜎)𝑖𝜋∕2

𝑒
(−3∕4+𝑖𝜎) ln𝑍0 ,

𝑍
𝑎−1 =

(
𝑒

ln 𝑍0+𝑖𝜋∕2)−3∕4−𝑖𝜎 = 𝑒
+(−3∕4−𝑖𝜎)𝑖𝜋∕2

𝑒
(−3∕4−𝑖𝜎) ln 𝑍0 ,

Γ(2 − 𝑐)
Γ(1 − 𝑎)

=
Γ(3∕2)

Γ(3∕4 + 𝑖𝜎)
,

Γ(2 − 𝑐)
Γ(𝑎 − 𝑐 + 1)

=
Γ(3∕2)

Γ(3∕4 − 𝑖𝜎)
,

we find the following behavior in infinity:

𝐹 (𝑎 − 𝑐 + 1, 2 − 𝑐, 𝑍) = 𝑒
𝑖𝑍0∕2

×
{

Γ(3∕2)
Γ(3∕4 + 𝑖𝜎)

𝑒
−(−3∕4+𝑖𝜎)𝑖𝜋∕2

𝑒
(−3∕4+𝑖𝜎) ln 𝑍0𝑒

−𝑖𝑍0∕2

+
Γ(3∕2)

Γ(3∕4 − 𝑖𝜎)
𝑒
+(−3∕4−𝑖𝜎)𝑖𝜋∕2

𝑒
(−3∕4−𝑖𝜎) ln 𝑍0𝑒

+𝑖𝑍0∕2
}

.

(44)

Whence for the function Φ2(𝑍), we derive (allowing for√
𝑍 = 𝑒

(1∕2)(ln 𝑍0+𝑖𝜋∕2))

Φ2(𝑍) =
√

𝑍𝐹 (𝑎 − 𝑐 + 1, 2 − 𝑐, 𝑍) = 𝑒
𝑖𝜋∕4

×
{

Γ(3∕2)
Γ(3∕4 + 𝑖𝜎)

𝑒
−(−3∕4+𝑖𝜎)𝑖𝜋∕2

𝑒
(−1∕4+𝑖𝜎) ln 𝑍0𝑒

−𝑖𝑍0∕2

+
Γ(3∕2)

Γ(3∕4 − 𝑖𝜎)
𝑒
+(−3∕4−𝑖𝜎)𝑖𝜋∕2

𝑒
(−1∕4−𝑖𝜎) ln 𝑍0𝑒

+𝑖𝑍0∕2
}

.

(45)

It is possible to construct two solutions which at infinity behave
as conjugate functions. To this end, we should use other pair of
independent solutions (see in [38])

𝑌5(𝑍) = Ψ(𝑎, 𝑐;𝑍), 𝑌7(𝑍) = 𝑒
𝑍Ψ(𝑐 − 𝑎, 𝑐; −𝑍) (46)

Two pairs {𝑌5, 𝑌7} and {𝑌1, 𝑌2} are related by Kummer formulas
(see in [38])

𝑌5 =
Γ(1 − 𝑐)

Γ(𝑎 − 𝑐 + 1)
𝑌1 +

Γ(𝑐 − 1)
Γ(𝑎)

𝑌2

𝑌7 =
Γ(1 − 𝑐)
Γ(1 − 𝑎)

𝑌1 −
Γ(𝑐 − 1)
Γ(𝑐 − 𝑎)

𝑒
𝑖𝜋𝑐

𝑌2

(47)

Whence we can derive asymptotic relations in the region
|𝑍|→ ∞

𝑌5(𝑍) =𝑍
−𝑎 = (𝑖𝑍0)−1∕4+𝑖𝜎 =

(
𝑒

ln 𝑍0+𝑖𝜋∕2)−1∕4+𝑖𝜎
,

𝑌7(𝑍) = 𝑒
𝑍Ψ(𝑐 − 𝑎, 𝑐; −𝑍) = 𝑒

𝑍 (−𝑖𝑍0)𝑎−𝑐

= 𝑒
𝑖𝑍0 (−𝑖𝑍0)−1∕4−𝑖𝜎 = 𝑒

𝑖𝑍0
(
𝑒

ln 𝑍0−𝑖𝜋∕2)−1∕4−𝑖𝜎
.

(48)

The last formulas after translating them to variables Φ(𝑍) take
on the form (see Figures 5 and 6)

Φ5(𝑍) = 𝑒
−𝑍∕2

𝑌5(𝑍) = 𝑒
−𝑖𝑍0∕2(

𝑒
ln 𝑍0+𝑖𝜋∕2)−1∕4+𝑖𝜎

,

Φ7(𝑍) = 𝑒
−𝑍∕2

𝑌7(𝑍) = 𝑒
+𝑖𝑍0∕2(

𝑒
ln 𝑍0−𝑖𝜋∕2)−1∕4−𝑖𝜎

.

(49)

These functions are conjugate to each other, they are presented
in the combinations (42) and (45).

5 | Conclusions and Open Problems

In this paper, the quantum-mechanical equation for a spin 1 par-
ticle with anomalous magnetic moment is solved exactly in cylin-
drical coordinates (𝑡, 𝑟, 𝜑, 𝑧), the presence of the external uni-
form electric field was taken into account. In fact, the problem
was reduced to the system on 10 first-order equations in partial
derivatives over the variables (𝑟, 𝑧). In resolving this system of
equations, deciding role belongs to the application of method by
Fedorov–Gronskiy [37] extended to the system of equations in
partial derivative.
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FIGURE 5 | Plots of functions 𝑅𝑒 Φ5(𝑧) and 𝐼𝑚 Φ5(𝑧) from (49), 𝜎 = 1.

FIGURE 6 | Plots of functions 𝑅𝑒 Φ7(𝑧) and 𝐼𝑚 Φ7(𝑧) from (49), 𝜎 = 1.

The proposed method is rather general, it may be applied
for studying different problems with cylindrical symmetry; for
instance, for fields with spin 3/2 and 2. Besides, the obtained exact
solutions may be used for experimental measuring the anoma-
lous magnetic moment of the spin 1 particle, for instance of the
vector bosons.

6 | Conclusions

In this paper, the quantum-mechanical equation for a spin 1 par-
ticle with anomalous magnetic moment is solved exactly in cylin-
drical coordinates (𝑡, 𝑟, 𝜑, 𝑧), the presence of the external uni-
form electric field was taken into account. In fact, the problem
was reduced to the system on 10 first-order equations in partial
derivatives over the variables (𝑟, 𝑧). In resolving this system of
equations, deciding role belongs to the application of method by
Fedorov–Gronskiy [37] extended to the system of equations in
partial derivative.

The proposed method is rather general, it may be applied
for studying different problems with cylindrical symmetry; for
instance, for fields with spin 3/2 and 2. Besides, the obtained exact
solutions may be used for experimental measuring the anoma-
lous magnetic moment of the spin 1 particle, for instance of the
vector bosons.
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Endnotes
1 Similar problem with Cartesian symmetry was examined in [32–35].
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