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Spin 1 Particle with Two Additional Electromagnetic
Characteristics in Presence of the Both Magnetic and
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In the paper, we study a generalized Duffin—-Kemmer equation for spin 1 particle with two
characteristics, anomalous magnetic moment and polarizability in presence of external uni-
form magnetic and electric fields. After separating the variables, we get the system of ten first
order partial differential equations for 10 functions f;(r,z) . To describe the r-dependence
of 10 functions fa(r,z),A = 1,...,10, we apply the method by Fedorov — Grounskiy; so the
complete 10-component wave function is decomposed into the sum of three projective con-
stituents, dependence of each component on the polar coordinate r is determined by only
one corresponding function, F;(r),i = 1,2, 3; these three basic functions are constructed in
terms of the confluent hypergeometric functions, at this there arises the quantization rule
due to the presence of magnetic field. After that we derive a system of 10 ordinary differen-
tial equations for 10 functions f4(z). This system is solved by using the elimination method
and with the help of special linear combining of the involved functions. As the result, we
find three separated second order differential equations, their solutions are constructed in
the terms of the confluent hypergeometric functions. Thus, in this paper, the three types of
solutions for a vector particle with two additional electromagnetic characteristics in presence
of external uniform magnetic and electric fields are found.
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Keywords: spin 1 particle, anomalous magnetic moment, polarizability, magnetic field, electric
field, cylindrical symmetry, projective operators, systems of equations in partial derivatives, exact
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1. Introduction

In [2], Within the general method by Gel'fand — Yaglom [1], for a spin 1 particle it was
constructed a relativistic generalized system of the first order equations for a particle with two
additional characteristics, anomalous magnetic moment and polarizability (a number of relevant
papers see in [3]—[14]).

First, the model was developed for a free particle, and the system of spinor equations was
obtained; then it was transformed to tensor form. In tensor form, the presence of external
electromagnetic fields was taken into account. After eliminating the accessory variables of the
complete wave function, it was derived the generalized Proca system of 10 equations, it contains
two additional interaction terms which are interpreted as related to the anomalous magnetic
moment and polarizability. In [16], this equation was solved in presence of the uniform magnetic
field; in [17], this equation solved in the presence of electric field (also see [18]).

In the present paper, we will consider the situation when the both fields, magnetic and
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electric, are presented. After separating the variables, we get the system of ten first order par-
tial differential equations for 10 functions f;(r, z) . To describe the r-dependence of 10 functions
fa(r,z), A=1,...,10, we apply the method by Fedorov — Gronskiy [15]; in this approach, the com-
plete 10-component wave function is decomposed into the sum of three projective constituents,
dependence of each component on the polar coordinate is determined by only one function,
Fi(r),i1 = 1,2,3; they are constructed in terms of the confluent hypergeometric functions. At
this there arises the quantization rule due to the presence of magnetic field.

After that we derive a system of 10 ordinary differential equations for 10 functions fa(z).
This system is solved, as the result, we find three independent solutions.

2. Matrix equation in Minkowski space

We start [2] with the following tensor equations (let D, = 9, + ieA,)
Db®y, + epF o ®° + e Dy (FU®.y) — M®y =0, D@y — Dy®, — Mgy = 0; (1)
they may be compared with the ordinary Proca system
D&, — M®, =0, D&, — Dy®, — MD,y, = 0. (2)

In (1), we can see two additional interaction terms, proportional to parameters p (anomalous
magnetic moment) and o (polarizability); in the paper [16], it was proved that that both param-
eters u, o are imaginary: yu = iu,0 =—> o, we will take this into account later on. Below we
apply the 10-dimensional column:

O = (O, 1, o, P3; Po1, Po2, Posz, Pog, P31, P12) = (Hi; Ha).

Let us recall the matrix form of the Proca system when u = 0,0 = 0. The first equation gives
K*D,Hy — M Hy =0, where

. -1 ...
0_ _1 . 1_ .
K= -1 K = L1
-1 . —1
-1 . . -1 .
K 1| s _ o4l
. ’ —1
o T .. .
The second equation in (2) leads to Dy L*H; — M Hs = 0 ,where
0100 -1 00 O .
0010 000 O -1 ..
o 0001l . | 000 Of .5 s |10 o0
L= 000O0 L= 000 O L7 = 1 L7 = -1
000O0 000 -1 . .. 1
000O0 001 O . —1 .

Thus, the system of equations for the ordinary spin 1 particle is presented in the block form as
K*D,Hy, — MH, =0, L*D,Hy— MH,=0.

Let us detail the first additional term in (1) (taking in mind identities: Fp;®! = —FE1®y,
Fi2®? = B3®,, and so on)

0 —E!' —E? —E3|]| ®
—-E' 0 B —-B?||®;
—E?> —-B3 0 B! ||®|’
—E3 B2 —-B' 0 O3

euFabCI)b =eu
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whence allowing for the structure of six Lorentzian generators for vector field

000 0 0 000 00 00
000 0 0 001 00 —10

23 _ _ -31 _ 212 _

=5 =1000 1|7 =29 0o00|? =01 00|
001 0 0-100 00 00
0100 0010 0001

o o [1000| g0 .. |0000] 03 . 0000

==l 0007 TR 100017 "B 0000/
0000 0000 1000

we obtain the more short presentation for this term
e,uFagqﬁ == —eU (S B+T E) Hy.

The second additional term in (1) is

—

E- 0 O 0 0 0 Do

0 E? 0 0 0 0 Do

cd _ 0 0 E3 0 0 0 @03

ea Dy (F“®.q) = 2e0 D, 0 0 0 -B' o 0 B
0 0 O 0 —-B? 0 Ps3q

0 0 O 0 0 -B? P9

So we have a generalized Duffin — Kemmer — Petiau equation in the block form
(K“DGHQ) — e [(s B+T E)Hl] + eoDo(FH®y) — M(Hy)e = 0,

(LDat) w ~ M) =0.

3. Extension to curved space-time models

In Riemannian space, we start with the
D@, + epiFos®” + e00p(FP®,5) — M®, =0, Do®s — Db, — MP,p = 0;

below two different derivative symbols will be used: Dy = V + ieAq, 3a = Oy +1i€eA,. Let us
transform these equations to tetrad form (apply the notation e?b)(ag +ieAg) = Jg)) Using the
Ricci rotation coefficients, we present the above equations as follows

Aty e = Yacn®™ + €y 1" + @ + (o) F*) gy + €0 F 0 o) @t — MO, =0,

3(0)‘1%1 - 3((1)‘1% + e’ — Y@’ — MPeq = 0.

We should recall the known matrix tetrad form of the ordinary vector particle

cf o 0 1 ab _ _ (I)a _ Hl .
8 (e (@) 5 + 57 ) = M| @ =0, @ = ‘ oo |=|m | (4)
two additional interactions terms are

5?(0) (FP,q)
A Oy (F4dy)

euFo®® = eu(SB —TE)H;, e0do(F®.,) =eo| D ¢
T L I N L
O3y (Fldq)
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So, we have the following generalized system of equations
(KCD§2>H2)n - e,u[(SB + TE)Hl} o+ e0ef D (FH0u) = M(H1), =0,

(LD ) = (MHz) g = 0.

[kl]

4. Particle in the uniform magnetic and electric fields

It is convenient to use the cylindrical coordinates = = (¢,7, ¢, z): the relevant tetrad, Ricci
rotation coefficients, the uniform magnetic and electric field are determined as

dS® = dt? — dr* — r?d¢® — dz*, () =

S O O
o O = O
o3IO O
o o o

1 .
Y22 = — Ao = =Bz, Fig = e(0)¢(a) Fre = B, do = —ic —icEz,
Ay =—Br?/2, F,4=-Br, Fip= 6?1)6?2)Fr¢ =-B.

Correspondingly, the system of equations takes on the form

0 ) 1 51 ieBr? 12 3
[K (B — icE2) + K 8T+K7<8¢+ 5 +g2)+K 8Z]H2—MH1
T
(0o — ieEz) (0 — ieEz)
) )
—euBji?H, — epEj9 H, — 2Bec " 1y + 2FEec " g3 = 0,
pnbjr pLgy %(8¢+’65T2) 12 %(8¢+Z€§7"2) 03
D5 0.

1
LO(30 — ieBz) + L'0, + L~ (9, + ieBr* /2 + j1?) + L364 \ — MH, = 0.

It is more convenient to apply the so called cyclic basis. It is defined by requirement to have
a diagonal generator ji2 for the vector field H; = (®;). The needed transformation ® = U® is

1 0 00 00 0O
A 4 —
U= O_\/i\/io 712 _ 0 -0 O ‘ (7)
0 0 1} 0000
0o L 9 .
V2 V2 0 0 0+

Vector and tensor generators transform according to the rules

j{zb _ UjabU_l, jézb _ jab QI +1 ®jab;

ﬁjQ :'l

O O O O O
OO = O OO
OO OO oo

[N eNeoNeol S "
(=il el
OO OO oo
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We should transform the Duffin — Kemmer matrices 5 to the cyclic basis as well; it is
convenient to apply the block presentation: Hy = C1Hy, (C1 =U), Hy = (U ® U)Hy = CoHo;
further we obtain

0 K*|_ 0 C1KCyt
L* 0 | | CyLect! 0
We derive
1 7
-5 550 0 00
1 0 00 0 01 0 00
A i a1
Cl:UZO_\/ix/iO Cp=| V2 vz 000 (8)
0 0 0 1| 0 00—+ Lo
1 7 V2 V2
0 %5 50 0 00 0 0 i
7 1
0 00 55 50
Further, we readily find the needed blocks:
1 1
0 0 0000 WO—WO?O
go_|-1 0 0000]-(1:000 0 5 0
0 -1 0000}’ 000—%0—%’
-1 1
0 O 000 00 0 0 7 0
05 0 0 0 0-1000 0
7% 000 0 -5 0 73|00 000-1
000 5 0 —J5| 00000 0}
i 00010 0
000 0 45 0
0100 1/v2 0 0 0
0010 0 0 0 0
Fo_[0001] & |=1/v2 0 0 0
0000]| 0 0 —-1/v2 0 |’
1
0000 0 1/v/2 0 NG
0000 0 0 —1/vV2 0
—i/vV2 0 0 0 0 000
0 0 0 0 -1 0 00
72 _ —i/vV/2 0 0 0 3_[0 000
0 0 —i/vy2 0 |’ 0 0 01|
0 i/vV2 0 —i/V2 0 0 00
0 0 i/vV2 0 0 -100
and also expressions for the needed generators
0000 0010
_ 0-10 0 _ 0000
Ji? =i , = ,
0000 1000
00 041 0000

Taking this in mind, we can transform the above two equations to the cyclic basis; so we get

ie Br?

_ _ _-1 _ _ _ _
KO0 — ieB2) + K0, + K= (a¢ + + jgz) + K3az} Ay — M,
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I 0 0 0]| (9 —ieE2)
o5 50|l a
—epBji2Hy — epEj3H, — 2B 2 V2 , —iP
euBji"Hi — enEji"Hi — 2Beo | 00 L(g, + ieBr?) (—i®31)
7
0 & 50 0.
10 00 (0o — ieE2)
2Bes| | 7 i O O Doy =0
“Clo 0 0 1||L(g,4ieBy|T2T
)L
0 & 50 0.
so that
70 . 71 721 ieBr? =12 73 7 7
[L (9 — ieBz) + L'0, + L~ (95 + LI L 64[—[1 ~ M, =0, 9)
70 . 71 7ol =12\ 739 | 7 7o
[L (O — ieEz) + L0, + L*= (95 + j12) + L az}Hl — MH, =0. (10)
T

Now let us perform the separation of the variables, applying the substitution

B Po1(r, 2) Bi(r,z)
Do(r, 2) Poa(r, 2) Ey(r, 2)

. iet img | 1(r,2) | 7 —iet_img | Po3(r,2) ict imo | 3(r,2)
Hi =¢ zetezm¢ =1\ ,H —e Z€t61m¢ = p e zetezm¢ — 9 ’
! Dy(r,z) |7 Do3(r, 2) By(r, 2)
P3(r, 2) D31 (r, 2) By(r, 2)

Dio(r, 2) Bs(r, z)

in this way we obtain (for brevity let as make the change in notations: eB — B,eE — E)

_ _ o1 iBr? _ _ _
[KO(—ie—iEz) + K9, —i—KQf(z'm—i— ! 2r +j;2> +K38Z}H2 ~ MH,
r
100 0| (—ie—iBz)
B2, — 280 | 7 s 0 O (—iBy)
no gy 1 0 0 0 1 %(1m+132r2) 2
1 7
0L Lo a,
10 0 0| (cic—iE2)
B, +2Ea| L V3 2 O e | B2=0
p g4y 0 0 0 1 %(im—FZB;Q) 2 =Y
1 7
0L Lo a,

_ _ 51 Br?  _ _ _ _
LO(—ie — iBz) + L'0, + L*~ (im + % + 12y 4 30, Hy — M, = 0;

Further we obtain the explicit form of 10 equations (for brevity we will omit the overline
symbol). With the use of shortening notations

0 Br m 0 Br m+1
Qm = +—+—, amt1 = +—+ ;

or 2 T or 2 T (11)
b _8 Br m b _8 Br m-1
™ 9 2 P Ml T G, 2 r
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these equations read

1 1
1 —bn_1E1 — —ami1E3 — 0, Es + uE®y — 2iEo(e + E2)Es+2Bo(Ez + €) By = M®y,
\/5 1£7 \/5 +1L£3 2 T HEP2 ( ) Eo ( ) B 0
1
2 i(e+ Ez)E; + 5(1 — 2iB0)ay, By — 9, B3V2Eca,, By+iBu®, = M®,,
1 1
3 +4ile+FEz)Ey — —ami1B1 — —=bn_1B3 — uE®g+ 2E00,FE2+2iBo0, By = M P,
( ) Eo /2 +1D1 NG 153 — p&%Po 2 2 2
1
4 i(e+ Ez)E3 + Ez‘(2Ba — )by By + 0. By + V2E0b,, Ey—iBu®s = M®3,
1
5 ﬁam‘l)o — i(E + EZ)(I)l =ME,, 6 —0,9¢— i(e + EZ)CDQ = ME,,
1 1
7 — —bp®g—ile+ Ez)P3=MFE3, 8 — —=b,,P5+0,P3=MBy,
NG o —i( )®3 3 2 2 3 1
9 ib <I>+ia ®3;=MB 10 fiaé—aéfMB
\/ém—ll \/§m+1 3 — 2 \/§m2 zx1l — 3-

5. Projective operators method

To analyze the system of equations, we will use the method of projective operators. To this
end, we consider the third spin projection Y = —iJ'? | and make sure that it satisfies the minimal
equation Y (Y — 1)(Y + 1) = 0. This minimal equation allows us to introduce three projective

operators
Ph=1-Y7, P+1:§Y(Y+1)7 P—1:§Y(Y_1)7 (12)

with the needed properties PO2 = P, P_%_l = Py1,P?, = P4, Py+ Py1 + P_1 = 1. Accordingly,
the complete wave function can be expanded in the sum of three parts

=0y +0,  +O_;, &, =P, o0=0,+1, -1 (13)

These components have the following dependence on the variable r (in accordance with the Fe-
dorov — Gronsky method, each projective component should be determined by only one function
of r):

Po(z) 0 0
0 0 3, (2)
@2(2) _0 0
0 d 0
Bo=| =0 \Fi(r), Byr = 0 Ry, @1 = | B3 | pyr), (14)
0 20(2:) 1 )y 41 70( ) 2 s £ —1 8 3 3
0 _?(z) 0
BQ(Z) 0 N 0
0 0 Bs(z)
1 1
1 ﬁEl(Z)bmleB(T) - ﬁEg(z)am+1F2(r) - aZEQ(Z)Fl(’I’)

—uE®(2)F1(r) — 2iEo(e + Ez)Eq(2) Fy(r)+
+2Bo(Ez + €)Ba(z)F1(r) = M®y(2)Fi(r),
1

2 i(e+ Ez)E1(2)F5(r) + ﬁ(l — 2iBo) By (2)am Fi(r) — 0,B3(z) F5(r)

~V2E0Es(2)am Fy(r)+iBu®, (2)F3(r) = M®,(2)F3(r),

185



A.V. Ivashkevich, A.V. Bury, V.M. Red’kov, E.M. Ovsiyuk

1 1
ﬁBl(z)amHFg(r) — EB?’
—uE®y(2)F1(r) + 2E00, Es(2)Fy (r)+2iBc0,Ba(2)Fi(r) = M®s(2)Fy(r),

3 +ile+ E2)Ey(2)Fi(r) — (2)by—1 F3(r)

4 i(e+ Ez)E3(2)Fa(r) + Lz'(QBa — 1) Ba(2)by F1(r) + 0, B1(2) Fa(r)

V2

+V2E0 Ey(2)by Fy (1) —i Bu®s(2) Fo(r) = M®5(2) Fy(r),
5 \%@O(Z)amFl (r) —i(e + Ez)®1(2)F5(r) = M E(2)F5(r),
6 —0.00(2)F1(r) —i(e+ Ez)Pa(2)Fi(r) = M E2(2)Fi(r),

7T - %Qo(z)bmFl(r) —i(e+ Ez)05(2)Fo(r) = M E3(z)Fa(r),
8 - %ég(z)bmFl(T) + 3Z<I>3(Z)F2(7") = MBl(Z)FQ(T),
1 1
9 \—E(I)l(z)bm,ng(r) + ﬁ@g(z)FQ(T) = MBQ(Z)Fl(T),
10 — %QQ(Z)amFl(T) — 0.91(2)F5(r) = M Bs(z)F5(r),

In order to obtain equations in the variable z, we should impose the following constraints
bim—1F3 = C1F1,  anFy = CyFs,  ami1ly = CoFy, byl = C3Fy, (15)

so we get

1 LE1 (2)Cy — LE3 (2)Cy— 0, Es(2) — uE®2(z) —2iEo(e+ Ez)E9(2)+2Bo(Ez + €)Ba(2) = M®y(2),

V2 V2
2 ile+ Ez)Ei(2) + \%(1 — 2iB0o)By(2)Cy — 0.B3(2) — V2E0 Ey(2)Cy+iBudi(z) = M®(2),
3 Li(c+ E2)Ba(z) — %Bl(z)Cg _ %Bg(z)Cl  WEDo(2) + 2B00. By(2)+2i Bod. B(z) = Mbsy(2),

4 ile+ Ez)Es(z) + %i(ZBG —i)By(2)C5 + 0.B1(2) + V2E0 Ey(2)Cs—iBuds(z) = M®s(z),

5 %@0(2)04 —i(e+ Ez)®1(2) = ME1(2), 6 —0,P0(z)—i(e+ Ez)P2(z) = MEs(2),

7T - \%@0(2)03 —i(e+ Ez)®5(z) = ME3(z), 8 — %@2(2)03 + 0,P3(z) = MBy(2),

1 1 1
9 ﬁq)l(z)C’l + E(I)B(Z)CQ = MBQ(Z), 10 - E(I)Q(Z)C‘l - 82(1)1(2’) == MB3(Z),

6. Explicit form of three basic functions

From the differential constraints
bmleg(’I’) = ClFl(’I"), amFl(r) = C4F3(’I’),

am+1F2(7"> = CQFl(’I“), bmFl(T) = C3F2(’I“>;

It is obvious that the parameters in each pair can be chosen the same: Cy = C1, C3 = (5. In
this case, the obtain the following constraints

bm_1F3(’I“) = ClFl(’I“), amFl(r) = Cng(T),

am+1F2(T) = CgFl(’l”), bmFl(T) = CQFQ(T’);
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and the following second order equations
(bm_lam — C%)Fl = O, (ambm_l — C12)F3 = 0,
(am+1bm - C22)F1 = O, (bmaerl - 022)F2 =0.

These equations explicitly read

2 1d B¥ m?
(5a+-0 == =T~ Bm+B - C})F =0,

dr?2  rdr 4 r2

d? 1d B2 m?

T T A A L oy - 2>F:
(dr2+rd7‘ 4 r2 m Cz )1 =0,

therefore C3 = C? — 2B and
( > 1d B*?> (m-1)2

- _ — Bm — 2)F =
dr2+rdr 4 r2 m—C7 ) Fy =0,
2 1d B*»%* (m+1)?

R - — Bm— 2)F ~0
(dr2 rdr 4 r2 mn 2)"2

Thus, we have only 3 and the constraint C3 = C? — 2B):

d2 1d B%r2  m?
1 (— S 2T " By B- 2>F_
’ dr2+rdr 4 r2 me Cr)F=0,
2 1d B%® (m+1)?
2, (— -4 - — Bm - C? 2B)F -0,
dr? + rdr 4 72 m it 2
@ 1d B% (m-1)?
3, (— -4 - - B —02)F —0.
dr? + rdr 4 r2 m 1)73

2 1d B m?
Lo (getyg =1 e o BmEX)R=0
2 1d B (m+1)?
S A jr Bl FX)R =0,
@ 1d B> (m-1)?
3, R 1 3 —B(m+1)+ X )F;3=0
In the variable z = 377’2 read

1, F(z) =5 e 2R (x), Fi(z)=9(-n, [m|+1,2)

1
X:QB(‘m’;m+2+n1) >B, n=012,..
mt1]
2, Fy(x)=at " e 2Ry (x), Fy(z) = ®(—ns, m+ 1|+ 1,2)

1 11
X:23(|m+ [+m +7+n3)>B, ng =0,1,2, ...

2 2

[m—1]

3, F3(z)=a2% 2 e*x/QFg(x), Fy(z) = ®(—ng, Im — 1| + 1, 2)

—1 1 1
X:23(|m |2+m+ —|—§+n2>>B, ny =0,1,2, ...
The quantity X is the same, below we apply the variant
1
X =2BN >0, N:’m‘;m+2+n, n=0,1,2,..: (16)

note that parameter N takes half-integer values. Note the formulas

Cy=Ci=iwX—-B, (C3=Cy=ivX+ B.
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7. Solving equations in z-variable

Let us turn to the system in z-variable and take into account relations
Cy=C1=1vX — B, CgICQZi\/m;

in this way, we obtain (dividing equations in two groups):

Subsystem I, it is algebraic with respect to ®q, ®9, Ey, B3, By, B :

1 . 1 )
1 \—ﬁEl(z)zx/X - B-— ﬁEg(z)Z\/X + B — 0,E5(2)

—uE®o(z) — 2iEo(e + Ez)Es(2)+2Bo(Ez + €)Ba(z) = M®¢(2),

1 ) 1 .
ﬁBl(Z)Z\/X +B - \—@Bg(z)z X-—-B

—uE®y(2) + 2E00,F3(2)+2iBod,Ba(z) = M ®a(2),

3 +ile+ Ez)Esx(z) —

5 %éo(z)i X~ Bi(et B2)®,(2) = MEy(2), 7 —%@0(2')1'\/)( T Bi(e4 B2)Dy(2) = MEs(2),
- %@2(2)1\/X+B+azq)3(z) :MBl<Z), 10 - %@g(z)i\/X—B—azél(z) :MB3(Z),

S X NG

Subsystem 11 of 4 equations:

2 ile+ E2)Ei(2) + \%(1 —2i{Bo)By(2)ivX — B — 0,Bs(z)

—V2E0FEs(2)ivVX — B+iBu®(z) = M®,(2),

4 i(e—l—Ez)Eg(z)—i-%i@Ba—i)Bg(z)i\/X + B+8.B1(2)+V2E0Ey(2)ivVX + B—iBu®s(z) = M®3(z),
_ 1 _ 1 .
6 —0.P(2) —i(e+ E2)P3(2) = ME2(2), 9 ﬁél(z)z\/X - B+ ﬁfbg,(z)z\/X + B = M By(z).

The last equation 9 permits to eliminate the variable By from the three ones.
Let us resolve the system I with respect to the variables ®¢, o, F1, F3, B1, Bs; so we obtain

1
2
2((M2 + X) - MQEQ;B)

Dy =

X [4BM((M2 + X) (Bz+¢) — i@zMEu) 0By — 2M (z’E(Ez s (Mu + 2(M2 + X) a)
. (M2 2R oM + X))E2 n \/§(<M2 n X) (B2 4 ¢) — iazMEu) (mq>1 - \/m%ﬂ ,

1
2((M2 + X)2 - M2E2u2)

®y =

x {z (4BM (az (M2+X) +iME(Ez+e) u) 0 Bat2M (EzM2+eM2—iazEuM—l—EXz—i—Xe—i—QE (ME(Ez—i—e) "
0, (M2 n X))a) By + \/5(62 <M2 + X) +iME(Ez + 6)u) (qu - m%))] :

1
oM <M2 — EuM + X) <M2 + EuM + X)

x [ZE\/X “BVB + X203M? + ivVX — BVB + Xeby M?

—2iV2BYX — B ((M2 + X) (Bz+¢)— iazMEu) 0By M

b =
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+\@m<iﬁz (M2 2B oM + X) _E(Ez+e) (M,u + 2<M2 + X) U))EQM
+0.EVX — BVB + Xpds M + z( COMPEX(Ez + )
+i0, ME(X—B)u+ <M2+X> (2M2+B+X) (Ez+e)) O, +iEXVX — BVB + X2®3+iXVX — BVB + Xeds),

1
- 2M(M2 — EuM + X) (M2 + EuM + X)

x [iE\/X " BVB ¥ X20,M? +ivVX — BVB + Xeb, M?

+2N§B\/m((M‘Z +X) (Bz4e)— i(?ZME,u)aBgM+ \/5\/B+7X(E(Ez+e) (MpH—Z(MQ +X)U)

Es =

—id, (M2+2E2uaM+X))E2M+aZE\/X " BVB Tt Xu® M+iEXVX — BVB 1 X20,+iXVX — BVB + X,

B ( (M2+X) (Ez-l—e)—iazMEu) Byti (—2M2E2(Ez+e) (24i0, MEX it (M2+X> (2M2+X) (Ez+e)) cbg] ,

1
B =
oM (M2 — EuM + X) (M2 + EuM + X)

x[0.v/X — BVB + X®,M? +2V2BVB + X (az (M2 n X) L iME(Ez + e)u) 0By M

+\/§\/B+7X(EZM2 4 eM? — i0,EuM + EXz + Xe + 2E(ME(Ez + ) —id, (M2 n X))o) By M
+iE*/X — BVB + Xeu® M +iEVX — BVB + Xep®d1 M+, XVX — BVB + X &, —B(é)z (M2+X)
ViME(E= + e)u) Oy + ( — 20, M2E%% — iMEX (Ez + e)u+ 0. <M2 + X) (2M2 + X))(Pg} ,

1
oM <M2 — EuM + X) (M2 + EuM + X)

X [azmmwz - mgm(@ (M2 + X) +iME(Ez + e)u) oBoM

Bs =

—ﬁﬂ(EzMQ 4 eM? — i0,EuM + EXz + Xe + 2E(ME(Ez + e — id, (M2 n X))o) By M
+iE*VX — BVB + X2u®3M +iEVX — BVB + Xep®s M
+(—28ZM2E2u2+z’ME(B—X)(Ez+e)u+8Z (M2+X) (2M2+B+X))¢1+azxm\/mcp3] :
Now, substitute these expressions in equations of the group I, this results in

! B2(_ V2B%0vX — B(M? + X)
(M2 + X)2 — 2 M2E?

VX — B((2Bo +i)(M? — uME + X)(M? + uME + X) — 2Bo(M? + X)(Ez + €)* — 2iBMMaE2))
V2((M? + X)? - 2 M2 E?)

\E (iagE\/X — B(20(M? + X) + uM)
VAR X)? - M E?)
iBVX — B(—i(M? 4+ 2uMo E* + X) +20(M? — pME + X)(M? + uME + X) — (B2 + €)*(20(M? + X) + uM))))
V(M2 + X)2 — j2M2E?)

+

Lo ( 92vV/X —BVB+X(M?+ X) N VX —BVB+ X((M?+ X)(Ez +¢)? +WME2))
\oM(M? = yME + X)(M? + uME + X) M (M2 — uME + X)(M2? + uME + X)

(63((1\42 + X)(B +2M? + X) — 242 M2E?)

i
TSN — iME 1 X) (M2 + iME + X)

189



+

A.V. Ivashkevich, A.V. Bury, V.M. Red’kov, E.M. Ovsiyuk

1
MO — ME 1 X)(M2 + iME + X)

x| 2iBuM (M?*~puME+X)(M?+uM E+X)+(M?*4+X)(B+2M?*+X)(Ez+e)? +iuM B*(B— X )+2pu> M* E?

2 M2E2(Ez + ¢)? — 2M2(M? + X)QD —0,

(2 M2E2— (M2 2_(Eate)? i 2 .
py(VEBENTTXO 4 x) | VIF R G gt Pt 4
(M2 +X)?— 2 M2E? NG}

\E (E\/B + X (2ic(M? — uME + X)(M? + uME + X) —i(Ez + €)?(20(M? + X) + uM) + M? + 2uMoE? + X)
: VA((M? + X)? — p2M2E?)
_i02EVB + X (20(M? + X) + MM))
VA(M? £ X)? — p2 MR E?)

Lo ( 92vVX —BVB+X(M?*+ X) N \/X—B\/B—I—X((MQ+X)(Ez+e)2+i,uME2))
"\oM (M2 = uME + X)(M? + uME + X) OM(M? — uME + X)(M? + uME + X)

M2+ X)2—p2 M2 E?
A0
1
TOM(ME — iME 1 X)(M2 + iME 1 X)

63(4— (2(B+X)(M2+X) )
+‘1>3(

x |2 B M3 E? —iuM (B(2(M?+X)*+E*)+E*X)+(M?*+X)(—(B—X)(Ez+e)?—2M*+2M?((Ez+¢)?— X))

Y22 M2EX(M — Ez — ) (M + Ez + e)D —0,

B ( 2iBO?uM?cE _ 2BMoE(M? —iuM(Ez + €)® + X))
2 (M2 + X)2 — 2 M2E? (M2 + X)2 — i2M2E?
( i0?2uMEVX — B _ EVX —B(M?—ipM(Ez + ¢)* + X))
V(M2 + X)2 - 2 M2E?) V2((M? + X)? — 2 M2E?)
EVB+ X(M? —ipM(Ez + €)? + X) i02uMEV/B + X )

(S Gr R e VAR £ X e

+&®

L E (8§M(M2+2,uM0E2 + X)
2 (M? + X)2 — 2 M2 E?

M(—M* + M?*(E?(p? + 2i0 + 22) 4+ 2Eze — 2X + €2) + uME?(20(Ez + €)*> + i) + X (2i0E? + (Ez +¢€)? — X)))
(M2 + X)2 — 12 M2E?

i®VX — B L i®VB+X
V2 V2

+ Bo(—M) = 0.

With the help of the fourth equation, we can eliminate the variable By from remaining three
equations (let us change the notations ®; = G, ®3 = H, F5 = F); in order to remove fractions,
we multiply each equation by

2M(M?* + X — MEp)(M? + X + MEp)((M* + X)? — M*E?1i?)),
so we get the following three equations
[iﬂagME\/X “B(M?— uME + X)(M? + uME + X)(20(M? + X) + M)

—iV2MEVX — B(M? — uME + X)(M? + uME + X)(—i(M? + 2uMoE?* + X)
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+20(M? — uME + X)(M? + uME + X) — (Ez + €)*(20(M? + X) + uM))) | F
+ 02 (M?~puM E+X)(M*4+uME+X)(2iBo(B—X)(M*+X)+BM*+BX +2M* 2> M? E*+3M? X +X?)
+(M? = uME + X)(M? + uME + X)(i(X — B)((2Bo +4)(M? — uME + X)(M?* + uME + X)
—2Bo(M? + X)(Ez + €)?> — 2iBuMo E?) + 2iBuM (M?* — uME + X)(M? + uMFE + X)
+(M2+X)(B+2M2+X)(Ez+e)2+iMME2(B—X)+2u2M4E2—Z,uQMZEQ(Ez+e)2—2M2(M2+X)2)} G
+[02(1 - 2iBo)VX = BVB + X(M? + X)(M? = yME + X)(M? + uME + X)
—H’(QBa—i—z')mm((M2+X)2—u2M2E2)(/,LQ(—M2)E2+(M2+X)(MQ—(Ez+e)2+X)—iuME2)] H =0,
2
[VEMEVE+X(M? = yME + X)(M? + uME + X)(2io(M? — uME + X)(M? + uME + X)
—i(Bz +€)*(20(M? + X) + uM) + M? + 2uMoE* + X))
—iV202PMEVB + X(M? — uME + X)(M? + pME + X)(20(M? + X) + uM)} F
+ {8?(1+2i30)mm(M2+X)(M2—MME+X) (M?*4+uME+X)—i(2Bo—i)vVX — BVB + X((M*+X)?
2 MEEY) (12 (~ M) E? + (M2 + X)(M? — (B2 + €)® + X) — szE2)} G+
+ [83(M2—/,LME+X)(M2+uME+X)(2iBa(B+X)(M2+X)—BM2—BX+2M4—2M2M2E2+3M2X+X2)
+H(M? — uME + X)(M? + uME + X)(2iBp* MPE? — ipM (B(2(M? + X)? + E?) + E*X)+
+i(B + X)(i((M? + X)? — u? M*FE?) — 2Bo(u*(—M*)E? + (M* 4+ X)(M? — (B2 + ¢)® + X) — iuM E?))
+(M2+X)(—(B—X)(Ez+e)2—2M4+2M2((Ez+e)2—X))+2M2M2E2(M—Ez—e)(M+Ez+e))] H =0,

3
[233M2(M2 — uME + X)(M? + uME + X)(M? + 2uMoE? + X)

+2M?*(M? — uME + X)(M? + pME + X)(=M* + M?*(E? (i + 2i0 + 2*) + 2Eze — 2X + €%)
+uUME?*(20(Ez 4 €)? + i) + X (2i0E* 4+ (Ez 4 €)? — X)) | F
+[ - VRORUMB(2Bg — i)VX = B(M? — uME + X)(M? + uME + X)
—iV2ME(2Bo — i)V X — B(M? — uME + X)(M? + uME + X)(M? — iuM(Ez + €)* + X)|G
+[V2ME(1 - 2iBo)VB X (M? — uME + X)(M? + pME + X)(M? = iuM(Ez + ¢)? + X)
~V202uM2E(2Bo + i)VB + X(M? ~ uME + X)(M? + uME + X)| H = 0,
Let us write the last system in a symbolical form
1 aiF'+0F+cG'+diG+ 1 H +nH=0,

2 agF” + by F + CQGH + doG + ZQHH +noH =0,
3 a3F/'+b3F+03G” +d3G+lgH”+n3H =0.

We will combine equations as follows
1)-a+2)-+3)-v=0;
in this way we obtain the following equation

(aay + Bag + yaz)F" + (aby 4 Bby + vb3) F+
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(acy 4 Bea +7e3)G" + (ady + Bda + vd3)G+
(aly + Blg +~l3)H" + (any + Bng +yn3)H = 0.
Here we will distinguish 3 different cases:
aiar + Praz + maz =1,

I  ajcg + prea +7e3 =0,
arly + Bila + 11l3 = 0;

aar + Baas + y2a3 = 0, agay + B3as + y3az = 0,
II oy + PBaco + Yoc3 = 1, 111 ager + B3eo + v3c3 = 0,
aoly + Bala + y2l3 = 0; agly + Bala + y3l3 = 1;

the corresponding three solutions have the form

uE(2Bo—i)vX—B

(8% =
! 2v2((M2+X)2—p2 M2 E2)° (2iB20+ M2 +2u Mo E?)
inE(1-2iBo)vVB+X
I B = 22 )

2vV2((M2+X)2—p2 M2 E2)* (2iB20+ M2+ 2u Mo E?2)’
_ M?(M? 12 B>+ X )+2iB%0( M?+X) )
"= 2M2(M2—pME+X)?(M2+pME+X)?(2iB20+M2+2uMoE?)’

2iB%0+B(—142i0X)+2M (M+2uc E?)+ X
4((M24X)2—p2 M2 E2)* (2iB20+ M2 4 2uMo E2)’
i(2Bo+i)vVX—BvVB+X
4((M24+X)? -2 M2E?)* (2iB20+ M2 4+2uM o E2)
iEVX—B(20(M?+X)+uM)

ZﬂM((M2+X)2—M2M2E2)2(2iB2a+M2+2uMaE2) ’

Qg =

I B2 =

Y2 =

i(—2Bo+i)yX—ByvB+X
A(M24X)2—p2 M2 E?)* (2iB20+ M2 4 2uM o E2)

a3 =
'Ir By = 2iB%0—2iBo X +B+2M (M+2u0 E?)+X
5 4((M24X)2—p2 M2 E?)* (2iB20+ M2 4 2uMo E2)’

iEV/B+X (20( M?+X )+uM)
2V2M ((M24X)*—pu2 M2 E?)* (2iB20+ M2 +2uMo E2)

73 =

So the above equations can be presented as
1) F" + (c1by + Biby +y1bs) F

+(ardy + Brda + 11d3)G + (aing + Sfing + yinz)H = 0,
2)  G" + (a2by + Baba + v2b3) F

+(aady + Bada + v2d3)G + (cany + Bang + yonz)H = 0,
3) H" + (asby + Bsby + v3b3) F

+(azdy + Bada + v3d3)G + (asny + Bang + y3nz)H = 0;

Let us make the needed change 0 = io, u = iu, so we get

1) F"+ = )[(720(B2(7M2 +(Ez4€)? = X)+ ME*(M + u((Ez + €)? — X)))

M? —20(B? + uME?

+4B%0?E*(uM + 1) — M(M? + M(u*E* — (Ez + €)*> + X) 4+ pE?)) | F
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+

G

E(2Bo —1)vVX — B(M(—Bp + pM(Bu+ M) + M) — 2B%0(uM + 1))
+
V2(M3 - 2Mo (B2 + uM E?))
E(2Bo + 1)V/B + X(M(Bu + puM (M — Bu) + M) — 2B%0(uM + 1))
+
V2(M3 —2Mo (B2 + pM E?))

H=0,

1 ,
1" 3 _ 2 2 — 2 +
2) G+ SN 4o (B 1 p % (2B’0(uM — 1)+ B*(20(2M* + uMX — 2(Ez +¢) X)

+uM —46* E*(uM +1) — 1) + B(—(uM — 1)(2M? + X) + 20 E*(uM (2uM — 1) + 1) + 40* B2 X (uM + 1))
—20FE*(uM(—2M? + 2(Ez + €)? — X) + X) + 2M?*(—M? + (Ez + ¢)* — X)) |G
_ MEVX — B(uM +1)(40*E* + 1)
V2(M? — 20(B2 + uM E?))

(2Bo +1)vX — BB + X(B(uM — 1) — 20 E*(uM + 1))
* 40(B% + uME?) — 2M?

H =0,

1
D ' i g e 2B 1)+ B2 (M 4 pMX 2Bz + e + X)

+uM — 46 E*(uM + 1) — 1) + B((uM — 1)(2M? + X) + 20 E*(uM (1 — 2uM) — 1) — 40? E* X (uM + 1))
20 B2 (uM(—2M? + 2(Ez + ¢)? — X) + X) + 2M2(—~M? + (Ez + €)> — X))} H
MEB + X (uM +1)(40%E? +1) P
V2(M? — 20(B2 + pM E?))

+(2BO’ —~ VX — BVB+ X(B(uM — 1) + 20 E?(uM + 1))G ~0
10(B? 1 uME?) — 202 '

It is convenient to apply the short notation (Ez + €) = ¥; in this way we obtain
1)  F'+3*F+
—M?(—2B%0 + W?2(u? + 20) + X) + uMW?(20(2B%0 + X) — 1) + 2B%0(20W? + X) — M*
M? —20(B? + uMW?2)
+W(2BU — VX — B(M(=Bp+ uM(Bu+ M) + M) — 2B%c(uM + 1))
V2(M3 — 2Ma (B2 4+ pMW?2))
+W(2Ba +1)vVB+ X(M(Bu+ uM(M — Bu) + M) —2B?0(uM + 1))
V2(M3 — 2Mo (B2 + pMW?))

F+

G+

H =0,

2) G'+32G+

1
2M? — 40 (B2 + pMW?)
+B(—(pM — 1)(2M? + X) + 20W? (uM (2uM — 1) + 1) + 40*W2X (uM + 1))+

[QB3U(MM — 1)+ B2(20(2M? + uMX + X) + puM — 402W2(uM + 1) — 1)+

F20W2(2uM? + X (uM — 1)) — 2M2(M? + X)} G
| MWVX = B(uM + 1)(40>W2 + 1)
V2(M? — 20(B2 4+ pMW?))

(2Bo + 1)VX — BVB + X(B(uM — 1) — 20W2(uM + 1))
+ 10(B? + uMW?) — 201

F+

H=0,

3)  H'+Y?H+
1
M? —40(B? + pMW?2)

+5 [ — 2B (uM — 1) + B2(20(2M? + uMX + X)+
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+uM — 42 W2(uM +1) — 1) + B((uM — 1)(2M? + X)) + 20W 2 (uM (1 — 2uM) — 1)—
—40*W2X (uM + 1)) + 20W?(2uM? + X (uM — 1)) — 2M?*(M?* + X) | H+
MW/B+ X (uM + 1)(46*W?2 + 1)

V2(M?2 — 20(B2 + puMW?2))

(2Bo — 1)vVX — BVB + X(B(uM — 1) 4+ 20W?2(uM + 1))
40(B? + uMW?2) — 2M?

+

G =0,

Let us present the system in matrix form

2 F F A1 B1 Oy
A:ﬁ+22(z)7A G|=A|G|, AU(2)=AV(2),A=|As By Co
2 H H A3 B3 C3

Now we will find the transformation which diagonalizes the system

B B o B A 000 $11 S12 S13
U = S\I/, A\IJ(Z) = A\I/(Z), A= SAS_l = 0 )\2 0 ,S = | 821 S22 S23 |,
0 0 As 531 532 S33

we should find solutions for equation SA = AS: explicitly it reads

s11 s12 s13 || A1 Br Cy A 0 0 ||s11 s12 s13
So1 S22 823 || A2 By Co | =] 0 Ao O ||s21 822 523 |;
s31 832 s33 || A3 Bz (3 0 0 Az ||s31 532 833

whence follow three similar subsystems

(Al — )\1)811 + Ags19 + Azs13 =10
Bisi1+ (B2 — A1)s12 + Bzsiz =0 ,
C1511 4+ Cas12 + (C3 — A1)s13 =0

(A1 — A2)s21 + Aasag + Azsaz =0
Bisa1 + (B2 — A\2)s22 + Bzsag =0
C1591 + Ca822 + (C5 — A2)sa3 =0

(A1 — A3)s31 + Aaszo + Azssz3 =0
Bis3i + (B2 — A3)s32 + B3szz =0
Cys31 + C2832 + (C3 — A3)s33 =0

or differently

(A — ) Ay A; sil
Bl (B2 — )\) Bg Si2 | = 0, 1= 1, 2, 3.
C1 Co  (C3—=A)||si3

From vanishing the determinant

(A1 =) Ay As
det | By (BQ — )\) Bs =0
o] Cy (C3—N)

we derive the cubic equation

A3 -\ (Al + By + 03) + A (A2B1 — A1By + A3Cy — A1C3 + B3Coy — BQO,?,)
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+)\0(A3.Bgcl — AsB3Cy — A3B1Cy + A1 B3Cy + Ay B1C3 — A1B203) =0

or shortly A3 + doA2 + diA+d = 0.
Let us write down equations, solutions of which determine the elements of the matrix S:

(A1 — Ai)si1+ Aasio+ A3 =0
Bis11+ (Bz — A1)si2+ B3 =0

(A
31821 + (Bz — A2)s22+ B3 =0"

assuming s13 = 1;

s21 + Aasga + A3 =0 assuming se3 = 1;

A2)

(
(A1 — A3)sz1 + Agsga + A3 =0 : _
31831 + (By — Ag)sgo + By =0 OIS 533 L

After performing this transformation, we get 3 separate equations

(Cf—z—s-(Ez—i—e) /\1)F:O, (%—&—(Ez—&-e) —)\2)6_120

(%—F(Ez—!—e) —/\3)H:O.

These equations have the same structure as for a scalar particle in the uniform electric field

2
(% + (B2 +¢)? )\><I>(z) ~0. (18)

We transform eq. (18) to the new variable (assuming that E > 0)

Ez+¢)? A
Z:i%, A= (19)

then we get the confluent hypergeometric equation

2 1/2d 1 A
(7 a1t 7)2@=0 (20)

describing their solutions is a simple task (see in [18]).

8. Conclusion

We have we studied a generalized Duffin—-Kemmer equation for spin 1 particle with two
characteristics, anomalous magnetic moment and polarizability in presence of external uniform
magnetic and electric fields. After separating the variables, we get the system of ten first order
partial differential equations for 10 functions f;(r, z).

To describe the r-dependence of 10 functions f4(r,2), A = 1,...,10, we applied the method
by Fedorov — Gronskiy; so the complete 10-component wave function is decomposed into the
sum of three projective constituents, dependence of each component on the polar coordinate r
is determined by only one corresponding function, F;(r),i = 1,2,3; these three basic functions
are constructed in terms of the confluent hypergeometric functions, at this there arises the
quantization rule due to the presence of magnetic field.

After that we derived a system of 10 ordinary differential equations for 10 functions fa(z).
This system is solved by using the elimination method. As the result, we find three separated
second order differential equations, their solutions are constructed in the terms of the confluent
hypergeometric functions.

Thus, the three types of solutions for a vector particle with two additional electromagnetic
characteristics in presence of external uniform magnetic and electric fields are found.
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