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Spin 1 Particle with Two Additional Electromagnetic
Characteristics in Presence of the Both Magnetic and

Electric Fields
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In the paper, we study a generalized Duffin–Kemmer equation for spin 1 particle with two
characteristics, anomalous magnetic moment and polarizability in presence of external uni-
form magnetic and electric fields. After separating the variables, we get the system of ten first
order partial differential equations for 10 functions fi(r, z) . To describe the r-dependence
of 10 functions fA(r, z), A = 1, ..., 10, we apply the method by Fedorov – Gronskiy; so the
complete 10-component wave function is decomposed into the sum of three projective con-
stituents, dependence of each component on the polar coordinate r is determined by only
one corresponding function, Fi(r), i = 1, 2, 3; these three basic functions are constructed in
terms of the confluent hypergeometric functions, at this there arises the quantization rule
due to the presence of magnetic field. After that we derive a system of 10 ordinary differen-
tial equations for 10 functions fA(z). This system is solved by using the elimination method
and with the help of special linear combining of the involved functions. As the result, we
find three separated second order differential equations, their solutions are constructed in
the terms of the confluent hypergeometric functions. Thus, in this paper, the three types of
solutions for a vector particle with two additional electromagnetic characteristics in presence
of external uniform magnetic and electric fields are found.

PACS numbers: 02.30.Gp, 02.40.Ky, 03.65Ge, 04.62.+v
Keywords: spin 1 particle, anomalous magnetic moment, polarizability, magnetic field, electric
field, cylindrical symmetry, projective operators, systems of equations in partial derivatives, exact
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1. Introduction

In [2], Within the general method by Gel’fand – Yaglom [1], for a spin 1 particle it was
constructed a relativistic generalized system of the first order equations for a particle with two
additional characteristics, anomalous magnetic moment and polarizability (a number of relevant
papers see in [3]—[14]).

First, the model was developed for a free particle, and the system of spinor equations was
obtained; then it was transformed to tensor form. In tensor form, the presence of external
electromagnetic fields was taken into account. After eliminating the accessory variables of the
complete wave function, it was derived the generalized Proca system of 10 equations, it contains
two additional interaction terms which are interpreted as related to the anomalous magnetic
moment and polarizability. In [16], this equation was solved in presence of the uniform magnetic
field; in [17], this equation solved in the presence of electric field (also see [18]).

In the present paper, we will consider the situation when the both fields, magnetic and
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electric, are presented. After separating the variables, we get the system of ten first order par-
tial differential equations for 10 functions fi(r, z) . To describe the r-dependence of 10 functions
fA(r, z), A = 1, ..., 10, we apply the method by Fedorov – Gronskiy [15]; in this approach, the com-
plete 10-component wave function is decomposed into the sum of three projective constituents,
dependence of each component on the polar coordinate is determined by only one function,
Fi(r), i = 1, 2, 3; they are constructed in terms of the confluent hypergeometric functions. At
this there arises the quantization rule due to the presence of magnetic field.

After that we derive a system of 10 ordinary differential equations for 10 functions fA(z).
This system is solved, as the result, we find three independent solutions.

2. Matrix equation in Minkowski space

We start [2] with the following tensor equations (let Da = ∂a + ieAa)

DbΦab + eµFabΦ
b + eσDa(F

cdΦcd)−MΦa = 0, DaΦb −DbΦa −MΦab = 0; (1)

they may be compared with the ordinary Proca system

DbΦab −MΦa = 0, DaΦb −DbΦa −MΦab = 0. (2)

In (1), we can see two additional interaction terms, proportional to parameters µ (anomalous
magnetic moment) and σ (polarizability); in the paper [16], it was proved that that both param-
eters µ, σ are imaginary: µ =⇒ iµ, σ =⇒ iσ, we will take this into account later on. Below we
apply the 10-dimensional column:

Φ = (Φ0,Φ1,Φ2,Φ3; Φ01,Φ02,Φ03,Φ23,Φ31,Φ12) = (H1;H2).

Let us recall the matrix form of the Proca system when µ = 0, σ = 0. The first equation gives
KaDaH2 −MH1 = 0, where

K0 =

∣∣∣∣∣∣∣∣
. . . . . .

−1 . . . . .
. −1 . . . .
. . −1 . . .

∣∣∣∣∣∣∣∣ ,K
1 =

∣∣∣∣∣∣∣∣
−1 . . . . .
. . . . . .
. . . . . 1
. . . . −1 .

∣∣∣∣∣∣∣∣ ,

K2 =

∣∣∣∣∣∣∣∣
. −1 . . . .
. . . . . −1
. . . . . .
. . . +1 . .

∣∣∣∣∣∣∣∣ ,K
3 =

∣∣∣∣∣∣∣∣
. . −1 . . .
. . . . +1 .
. . . −1 . .
. . . . . .

∣∣∣∣∣∣∣∣ .
The second equation in (2) leads to DaL

aH1 −MH2 = 0 ,where

L0 =

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
, L1 =

∣∣∣∣∣∣∣∣∣∣∣∣

−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

∣∣∣∣∣∣∣∣∣∣∣∣
, L2 =

∣∣∣∣∣∣∣∣∣∣∣∣

. . . .
−1 . . .
. . . .
. . . 1
. . . .
. −1 . .

∣∣∣∣∣∣∣∣∣∣∣∣
, L3 =

∣∣∣∣∣∣∣∣∣∣∣∣

. . . .

. . . .
−1 0 0 .
. . −1 .
. 1 . .
. . . .

∣∣∣∣∣∣∣∣∣∣∣∣
.

Thus, the system of equations for the ordinary spin 1 particle is presented in the block form as

KaDaH2 −MH1 = 0, LaDaH1 −MH2 = 0.

Let us detail the first additional term in (1) (taking in mind identities: F01Φ
1 = −E1Φ1,

F12Φ
2 = B3Φ2, and so on)

eµFabΦ
b = eµ

∣∣∣∣∣∣∣∣
0 −E1 −E2 −E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Φ0

Φ1

Φ2

Φ3

∣∣∣∣∣∣∣∣ ,
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whence allowing for the structure of six Lorentzian generators for vector field

j23 = S1 =

∣∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

∣∣∣∣∣∣∣∣ , j
31 = S2 =

∣∣∣∣∣∣∣∣
0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

∣∣∣∣∣∣∣∣ , j
12 = S3 =

∣∣∣∣∣∣∣∣
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

∣∣∣∣∣∣∣∣ ,

j01 = T1 =

∣∣∣∣∣∣∣∣
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣ , j
02 = T2 =

∣∣∣∣∣∣∣∣
0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣ , j
03 = T3 =

∣∣∣∣∣∣∣∣
0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

∣∣∣∣∣∣∣∣ ,
we obtain the more short presentation for this term

eµFαβΦ
β =⇒ −eµ

(
SB+TE

)
H1.

The second additional term in (1) is

eσDa(F
cdΦcd) = 2eσDa

∣∣∣∣∣∣∣∣∣∣∣∣

E1 0 0 0 0 0
0 E2 0 0 0 0
0 0 E3 0 0 0
0 0 0 −B1 0 0
0 0 0 0 −B2 0
0 0 0 0 0 −B3

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

Φ01

Φ02

Φ03

Φ23

Φ31

Φ12

∣∣∣∣∣∣∣∣∣∣∣∣
.

So we have a generalized Duffin – Kemmer – Petiau equation in the block form(
KaDaH2

)
c
− eµ

[
(SB+TE)H1

]
c
+ eσDc(F

klΦkl)−M(H1)c = 0,(
LaDaH1

)
[kl]

−M(H2)[kl] = 0.
(3)

3. Extension to curved space-time models

In Riemannian space, we start with the

DβΦ
β

α + eµFαβΦ
β + eσ∂̂α(F

ρδΦρδ)−MΦα = 0, DαΦβ −DβΦα −MΦαβ = 0;

below two different derivative symbols will be used: Dα = ∇α + ieAα, ∂̂α = ∂α + ieAα. Let us
transform these equations to tetrad form (apply the notation eβ(b)(∂β + ieAβ) = ∂̂(b)) Using the
Ricci rotation coefficients, we present the above equations as follows

∂̂(b)Φ
b

c − γacbΦ
ab + eβ(b);βΦ

b
c + eµFcbΦ

b + eσ(∂(c)F
ab)Φab + eσF ab∂̂(c)Φab −MΦc = 0,

∂̂(c)Φd − ∂̂(d)Φc + γbdcΦ
b − γbcdΦ

b −MΦcd = 0.

We should recall the known matrix tetrad form of the ordinary vector particle[
βc

(
eα(c)(x)

∂

∂xα
+

1

2
Jabγabc

)
−M

]
Φ = 0, Φ =

∣∣∣∣ Φa

Φab

∣∣∣∣ = ∣∣∣∣ H1

H2

∣∣∣∣ ; (4)

two additional interactions terms are

eµFαβΦ
β = eµ

(
SB−TE

)
H1, eσ∂̂α(F

cdΦcd) = eσ

∣∣∣∣∣∣∣∣∣
∂̂(0)(F

cdΦcd)

∂̂(1)(F
cdΦcd)

∂̂(2)(F
cdΦcd)

∂̂(3)(F
cdΦcd)

∣∣∣∣∣∣∣∣∣ .
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So, we have the following generalized system of equations(
KcD(2)

c H2

)
n
− eµ

[
(SB+TE)H1

]
n
+ eσeα(n)∂̂α(F

klΦkl)−M(H1)n = 0,(
LcD(1)

c H1

)
[kl]

− (MH2)[kl] = 0.
(5)

4. Particle in the uniform magnetic and electric fields

It is convenient to use the cylindrical coordinates xα = (t, r, ϕ, z): the relevant tetrad, Ricci
rotation coefficients, the uniform magnetic and electric field are determined as

dS2 = dt2 − dr2 − r2dϕ2 − dz2, eα(a) =

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 1

r 0
0 0 0 1

∣∣∣∣∣∣∣∣ ,
γ122 =

1

r
,A0 = −Ez, F03 = et(0)e

z
(3)Ftz = E, ∂̂0 =⇒ −iϵ− ieEz,

Aϕ = −Br2/2, Frϕ = −Br, F12 = er(1)e
ϕ
(2)Frϕ = −B.

(6)

Correspondingly, the system of equations takes on the form[
K0(∂0 − ieEz) +K1∂r +K2 1

r

(
∂ϕ +

ieBr2

2
+ j122

)
+K3∂z

]
H2 −MH1

−eµBj121 H1 − eµEj031 H1 − 2Beσ

∣∣∣∣∣∣∣∣
(∂0 − ieEz)

∂r
1
r (∂ϕ + ieBr2

2 )
∂3

∣∣∣∣∣∣∣∣Φ12 + 2Eeσ

∣∣∣∣∣∣∣∣
(∂0 − ieEz)

∂r
1
r (∂ϕ + ieBr2

2 )
∂z

∣∣∣∣∣∣∣∣Φ03 = 0,

[
L0(∂0 − ieEz) + L1∂r + L2 1

r
(∂ϕ + ieBr2/2 + j121 ) + L3∂z

]
1 −MH2 = 0.

It is more convenient to apply the so called cyclic basis. It is defined by requirement to have
a diagonal generator j121 for the vector field H1 = (Φl). The needed transformation Φ̄ = UΦ is

U =

∣∣∣∣∣∣∣∣∣
1 0 0 0
0 − 1√

2
i√
2

0

0 0 0 1
0 1√

2
i√
2

0

∣∣∣∣∣∣∣∣∣ , j̄12 =

∣∣∣∣∣∣∣∣∣
0 0 0 0

0 −i 0 0

0 0 0 0

0 0 0 +i

∣∣∣∣∣∣∣∣∣ . (7)

Vector and tensor generators transform according to the rules

J̄ab
1 = UjabU−1, J̄ab

2 = j̄ab ⊗ I + I ⊗ j̄ab;

J12
(2) =

∣∣∣∣∣∣∣∣∣∣∣∣

0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
=⇒ J̄12

2 = i

∣∣∣∣∣∣∣∣∣∣∣∣

−1 . . . . .
. 0 . . . .
. . 1 . . .
. . . 1 . .
. . . . 0 .
. . . . . −1

∣∣∣∣∣∣∣∣∣∣∣∣
.
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We should transform the Duffin – Kemmer matrices βa to the cyclic basis as well; it is
convenient to apply the block presentation: H̄1 = C1H1, (C1 = U), H̄2 = (U ⊗ U)H2 = C2H2;
further we obtain ∣∣∣∣ 0 K̄a

L̄a 0

∣∣∣∣ = ∣∣∣∣ 0 C1K
aC−1

2

C2L
aC−1

1 0

∣∣∣∣ .
We derive

C1 = U =

∣∣∣∣∣∣∣∣∣
1 0 0 0
0 − 1√

2
i√
2

0

0 0 0 1
0 1√

2
i√
2

0

∣∣∣∣∣∣∣∣∣ , C2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− 1√
2

i√
2

0 0 0 0

0 0 1 0 0 0
1√
2

i√
2

0 0 0 0

0 0 0 − i√
2

1√
2

0

0 0 0 0 0 i
0 0 0 i√

2
1√
2

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (8)

Further, we readily find the needed blocks:

K̄0 =

∣∣∣∣∣∣∣∣
0 0 0 0 0 0
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0

∣∣∣∣∣∣∣∣ , K̄
1 =

∣∣∣∣∣∣∣∣∣
1√
2

0 − 1√
2

0 0 0

0 0 0 0 1√
2

0

0 0 0 − 1√
2

0 − 1√
2

0 0 0 0 1√
2

0

∣∣∣∣∣∣∣∣∣ ,

K̄2 =

∣∣∣∣∣∣∣∣∣
i√
2

0 i√
2

0 0 0

0 0 0 0 − i√
2

0

0 0 0 i√
2

0 − i√
2

0 0 0 0 i√
2

0

∣∣∣∣∣∣∣∣∣ , K̄3 =

∣∣∣∣∣∣∣∣
0 −1 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 1 0 0

∣∣∣∣∣∣∣∣ ,

L̄0 =

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
, L̄1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1/
√
2 0 0 0

0 0 0 0

−1/
√
2 0 0 0

0 0 −1/
√
2 0

0 1/
√
2 0 1√

2

0 0 −1/
√
2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

L̄2 =

∣∣∣∣∣∣∣∣∣∣∣∣

−i/
√
2 0 0 0

0 0 0 0

−i/
√
2 0 0 0

0 0 −i/
√
2 0

0 i/
√
2 0 −i/

√
2

0 0 i/
√
2 0

∣∣∣∣∣∣∣∣∣∣∣∣
, L̄3 =

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0
−1 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
,

and also expressions for the needed generators

J̄12
1 = i

∣∣∣∣∣∣∣∣∣
0 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 +1

∣∣∣∣∣∣∣∣∣ , j̄031 =

∣∣∣∣∣∣∣∣∣
0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

∣∣∣∣∣∣∣∣∣ ,
Taking this in mind, we can transform the above two equations to the cyclic basis; so we get[

K̄0(∂0 − ieEz) + K̄1∂r + K̄2 1

r

(
∂ϕ +

ieBr2

2
+ j̄122

)
+ K̄3∂z

]
H̄2 −MH̄1
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−eµBj̄121 H̄1 − eµEj̄031 H̄1 − 2Beσ

∣∣∣∣∣∣∣∣∣
1 0 0 0
0 − 1√

2
i√
2

0

0 0 0 1
0 1√

2
i√
2

0

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
(∂0 − ieEz)

∂r
1
r (∂ϕ + ieBr2

2 )
∂z

∣∣∣∣∣∣∣∣ (−iΦ̄31)

+2Eeσ

∣∣∣∣∣∣∣∣∣
1 0 0 0
0 − 1√

2
i√
2

0

0 0 0 1
0 1√

2
i√
2

0

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
(∂0 − ieEz)

∂r
1
r (∂ϕ + ieBr2

2 )
∂z

∣∣∣∣∣∣∣∣ Φ̄02 = 0,

so that [
L̄0(∂0 − ieEz) + L̄1∂r + L̄2 1

r
(∂ϕ +

ieBr2

2
+ j̄121 ) + L̄3∂z

]
H̄1 −MH̄2 = 0, (9)

[
L̄0(∂0 − ieEz) + L̄1∂r + L̄2 1

r
(∂ϕ + j̄121 ) + L̄3∂z

]
H̄1 −MH̄2 = 0. (10)

Now let us perform the separation of the variables, applying the substitution

H̄1 = e−iϵteimϕ

∣∣∣∣∣∣∣∣
Φ̄0(r, z)
Φ̄1(r, z)
Φ̄2(r, z)
Φ̄3(r, z)

∣∣∣∣∣∣∣∣ , H̄2 = e−iϵteimϕ

∣∣∣∣∣∣∣∣∣∣∣∣

Φ̄01(r, z)
Φ̄02(r, z)
Φ̄03(r, z)
Φ̄23(r, z)
Φ̄31(r, z)
Φ̄12(r, z)

∣∣∣∣∣∣∣∣∣∣∣∣
= e−iϵteimϕ

∣∣∣∣∣∣∣∣∣∣∣∣

Ē1(r, z)
Ē2(r, z)
Ē3(r, z)
B̄1(r, z)
B̄2(r, z)
B̄3(r, z)

∣∣∣∣∣∣∣∣∣∣∣∣
,

in this way we obtain (for brevity let as make the change in notations: eB → B, eE → E)[
K̄0(−iϵ− iEz) + K̄1∂r + K̄2 1

r

(
im+

iBr2

2
+ j̄122

)
+ K̄3∂z

]
H̄2 −MH̄1

−µBj̄121 H̄1 − 2Bσ

∣∣∣∣∣∣∣∣∣
1 0 0 0
0 − 1√

2
i√
2

0

0 0 0 1
0 1√

2
i√
2

0

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
(−iϵ− iEz)

∂r
1
r (im+ iBr2

2 )
∂z

∣∣∣∣∣∣∣∣ (−iB̄2)

−µEj̄031 H̄1 + 2Eσ

∣∣∣∣∣∣∣∣∣
1 0 0 0
0 − 1√

2
i√
2

0

0 0 0 1
0 1√

2
i√
2

0

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
(−iϵ− iEz)

∂r
1
r (im+ iBr2

2 )
∂z

∣∣∣∣∣∣∣∣ Ē2 = 0,

[
L̄0(−iϵ− iEz) + L̄1∂r + L̄2 1

r
(im+

iBr2

2
+ j̄121 ) + L̄3∂z

]
H̄1 −MH̄2 = 0;

Further we obtain the explicit form of 10 equations (for brevity we will omit the overline
symbol). With the use of shortening notations

am =
∂

∂r
+

Br

2
+

m

r
, am+1 =

∂

∂r
+

Br

2
+

m+ 1

r
,

bm =
∂

∂r
− Br

2
− m

r
, bm−1 =

∂

∂r
− Br

2
− m− 1

r
,

(11)
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these equations read

1
1√
2
bm−1E1 −

1√
2
am+1E3 − ∂zE2 + µEΦ2 − 2iEσ(ϵ+ Ez)E2+2Bσ(Ez + ϵ)B2 = MΦ0,

2 i(ϵ+ Ez)E1 +
1√
2
(1− 2iBσ)amB2 − ∂zB3

√
2EσamE2+iBµΦ1 = MΦ1,

3 + i(ϵ+ Ez)E2 −
1√
2
am+1B1 −

1√
2
bm−1B3 − µEΦ0 + 2Eσ∂zE2+2iBσ∂zB2 = MΦ2,

4 i(ϵ+ Ez)E3 +
1√
2
i(2Bσ − i)bmB2 + ∂zB1 +

√
2EσbmE2−iBµΦ3 = MΦ3,

5
1√
2
amΦ0 − i(ϵ+ Ez)Φ1 = ME1, 6 − ∂zΦ0 − i(ϵ+ Ez)Φ2 = ME2,

7 − 1√
2
bmΦ0 − i(ϵ+ Ez)Φ3 = ME3, 8 − 1√

2
bmΦ2 + ∂zΦ3 = MB1,

9
1√
2
bm−1Φ1 +

1√
2
am+1Φ3 = MB2, 10 − 1√

2
amΦ2 − ∂zΦ1 = MB3.

5. Projective operators method

To analyze the system of equations, we will use the method of projective operators. To this
end, we consider the third spin projection Y = −iJ̄12 , and make sure that it satisfies the minimal
equation Y (Y − 1)(Y + 1) = 0. This minimal equation allows us to introduce three projective
operators

P0 = 1− Y 2, P+1 =
1

2
Y (Y + 1), P−1 =

1

2
Y (Y − 1), (12)

with the needed properties P 2
0 = P0, P 2

+1 = P+1, P
2
−1 = P−1, P0 + P+1 + P−1 = 1. Accordingly,

the complete wave function can be expanded in the sum of three parts

Φ̄ = Φ̄0 + Φ̄+1 + Φ̄−1, Φ̄σ = PσΦ̄, σ = 0, +1, −1. (13)

These components have the following dependence on the variable r (in accordance with the Fe-
dorov – Gronsky method, each projective component should be determined by only one function
of r):

Φ̄0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Φ̄0(z)
0

Φ̄2(z)
0
0

Ē2(z)
0
0

B̄2(z)
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F1(r), Φ̄+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
0
0
Φ̄3

0
0

Ē3(z)
B̄1(z)
0
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F2(r),Φ−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
Φ̄1(z)
0
0

Ē1(z)
0
0
0
0

B̄3(z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F3(r); (14)

1
1√
2
E1(z)bm−1F3(r)−

1√
2
E3(z)am+1F2(r)− ∂zE2(z)F1(r)

−µEΦ2(z)F1(r)− 2iEσ(ϵ+ Ez)E2(z)F1(r)+

+2Bσ(Ez + ϵ)B2(z)F1(r) = MΦ0(z)F1(r),

2 i(ϵ+ Ez)E1(z)F3(r) +
1√
2
(1− 2iBσ)B2(z)amF1(r)− ∂zB3(z)F3(r)

−
√
2EσE2(z)amF1(r)+iBµΦ1(z)F 3(r) = MΦ1(z)F3(r),
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3 + i(ϵ+ Ez)E2(z)F1(r)−
1√
2
B1(z)am+1F2(r)−

1√
2
B3(z)bm−1F3(r)

−µEΦ0(z)F1(r) + 2Eσ∂zE2(z)F1(r)+2iBσ∂zB2(z)F1(r) = MΦ2(z)F1(r),

4 i(ϵ+ Ez)E3(z)F2(r) +
1√
2
i(2Bσ − i)B2(z)bmF1(r) + ∂zB1(z)F2(r)

+
√
2EσE2(z)bmF1(r)−iBµΦ3(z)F2(r) = MΦ3(z)F2(r),

5
1√
2
Φ0(z)amF1(r)− i(ϵ+ Ez)Φ1(z)F3(r) = ME1(z)F3(r),

6 − ∂zΦ0(z)F1(r)− i(ϵ+ Ez)Φ2(z)F1(r) = ME2(z)F1(r),

7 − 1√
2
Φ0(z)bmF1(r)− i(ϵ+ Ez)Φ3(z)F2(r) = ME3(z)F2(r),

8 − 1√
2
Φ2(z)bmF1(r) + ∂zΦ3(z)F2(r) = MB1(z)F2(r),

9
1√
2
Φ1(z)bm−1F3(r) +

1√
2
Φ3(z)F2(r) = MB2(z)F1(r),

10 − 1√
2
Φ2(z)amF1(r)− ∂zΦ1(z)F3(r) = MB3(z)F3(r),

In order to obtain equations in the variable z, we should impose the following constraints

bm−1F3 = C1F1, amF1 = C4F3, am+1F2 = C2F1, bmF1 = C3F2, (15)

so we get

1
1√
2
E1(z)C1−

1√
2
E3(z)C2−∂zE2(z)−µEΦ2(z)−2iEσ(ϵ+Ez)E2(z)+2Bσ(Ez + ϵ)B2(z) = MΦ0(z),

2 i(ϵ+ Ez)E1(z) +
1√
2
(1− 2iBσ)B2(z)C4 − ∂zB3(z)−

√
2EσE2(z)C4+iBµΦ1(z) = MΦ1(z),

3 + i(ϵ+ Ez)E2(z)−
1√
2
B1(z)C2 −

1√
2
B3(z)C1 − µEΦ0(z) + 2Eσ∂zE2(z)+2iBσ∂zB2(z) = MΦ2(z),

4 i(ϵ+ Ez)E3(z) +
1√
2
i(2Bσ − i)B2(z)C3 + ∂zB1(z) +

√
2EσE2(z)C3−iBµΦ3(z) = MΦ3(z),

5
1√
2
Φ0(z)C4 − i(ϵ+ Ez)Φ1(z) = ME1(z), 6 − ∂zΦ0(z)− i(ϵ+ Ez)Φ2(z) = ME2(z),

7 − 1√
2
Φ0(z)C3 − i(ϵ+ Ez)Φ3(z) = ME3(z), 8 − 1√

2
Φ2(z)C3 + ∂zΦ3(z) = MB1(z),

9
1√
2
Φ1(z)C1 +

1√
2
Φ3(z)C2 = MB2(z), 10 − 1√

2
Φ2(z)C4 − ∂zΦ1(z) = MB3(z),

6. Explicit form of three basic functions

From the differential constraints

bm−1F3(r) = C1F1(r), amF1(r) = C4F3(r),

am+1F2(r) = C2F1(r), bmF1(r) = C3F2(r);

It is obvious that the parameters in each pair can be chosen the same: C4 = C1, C3 = C2. In
this case, the obtain the following constraints

bm−1F3(r) = C1F1(r), amF1(r) = C1F3(r),

am+1F2(r) = C2F1(r), bmF1(r) = C2F2(r);
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and the following second order equations

(bm−1am − C2
1 )F1 = 0, (ambm−1 − C2

1 )F3 = 0,

(am+1bm − C2
2 )F1 = 0, (bmam+1 − C2

2 )F2 = 0.

These equations explicitly read( d2

dr2
+

1

r

d

dr
− B2r2

4
− m2

r2
−Bm+B − C2

1

)
F1 = 0,( d2

dr2
+

1

r

d

dr
− B2r2

4
− m2

r2
−Bm−B − C2

2

)
F1 = 0,

therefore C2
2 = C2

1 − 2B and( d2

dr2
+

1

r

d

dr
− B2r2

4
− (m− 1)2

r2
−Bm− C2

1

)
F3 = 0,( d2

dr2
+

1

r

d

dr
− B2r2

4
− (m+ 1)2

r2
−Bm− C2

2

)
F2 = 0.

Thus, we have only 3 and the constraint C2
2 = C2

1 − 2B):

1,
( d2

dr2
+

1

r

d

dr
− B2r2

4
− m2

r2
−Bm+B − C2

1

)
F1 = 0,

2,
( d2

dr2
+

1

r

d

dr
− B2r2

4
− (m+ 1)2

r2
−Bm− C2

1 + 2B
)
F2 = 0,

3,
( d2

dr2
+

1

r

d

dr
− B2r2

4
− (m− 1)2

r2
−Bm− C2

1

)
F3 = 0.

Let B − C2
1 = X, then

1,
( d2

dr2
+

1

r

d

dr
− B2r2

4
− m2

r2
−Bm+X

)
F1 = 0,

2,
( d2

dr2
+

1

r

d

dr
− B2r2

4
− (m+ 1)2

r2
−B(m− 1) +X

)
F2 = 0,

3,
( d2

dr2
+

1

r

d

dr
− B2r2

4
− (m− 1)2

r2
−B(m+ 1) +X

)
F3 = 0.

In the variable x = Br2

2 read

1, F1(x) = x+
|m|
2 e−x/2F1(x), F1(x) = Φ(−n1, |m|+ 1, x)

X = 2B
( |m|+m

2
+

1

2
+ n1

)
> B, n1 = 0, 1, 2, ...

2, F2(x) = x+
|m+1|

2 e−x/2F3(x), F3(x) = Φ(−n3, |m+ 1|+ 1, x)

X = 2B
( |m+ 1|+m− 1

2
+

1

2
+ n3

)
> B, n3 = 0, 1, 2, ...

3, F3(x) = x+
|m−1|

2 e−x/2F2(x), F2(x) = Φ(−n2, |m− 1|+ 1, x)

X = 2B
( |m− 1|+m+ 1

2
+

1

2
+ n2

)
> B, n2 = 0, 1, 2, ...

The quantity X is the same, below we apply the variant

X = 2BN > 0, N =
|m|+m

2
+

1

2
+ n, n = 0, 1, 2, ... ; (16)

note that parameter N takes half-integer values. Note the formulas

C4 = C1 = i
√
X −B, C3 = C2 = i

√
X +B.
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7. Solving equations in z-variable

Let us turn to the system in z-variable and take into account relations

C4 = C1 = i
√
X −B, C3 = C2 = i

√
X +B;

in this way, we obtain (dividing equations in two groups):

Subsystem I, it is algebraic with respect to Φ̄0, Φ̄2, Ē1, Ē3, B̄1, B̄3 :

1
1√
2
E1(z)i

√
X −B − 1√

2
E3(z)i

√
X +B − ∂zE2(z)

−µEΦ2(z)− 2iEσ(ϵ+ Ez)E2(z)+2Bσ(Ez + ϵ)B2(z) = MΦ0(z),

3 + i(ϵ+ Ez)E2(z)−
1√
2
B1(z)i

√
X +B − 1√

2
B3(z)i

√
X −B

−µEΦ0(z) + 2Eσ∂zE2(z)+2iBσ∂zB2(z) = MΦ2(z),

5
1√
2
Φ0(z)i

√
X −B−i(ϵ+Ez)Φ1(z) = ME1(z), 7 − 1√

2
Φ0(z)i

√
X +B−i(ϵ+Ez)Φ3(z) = ME3(z),

8 − 1√
2
Φ2(z)i

√
X +B + ∂zΦ3(z) = MB1(z), 10 − 1√

2
Φ2(z)i

√
X −B − ∂zΦ1(z) = MB3(z),

Subsystem II of 4 equations:

2 i(ϵ+ Ez)E1(z) +
1√
2
(1− 2iBσ)B2(z)i

√
X −B − ∂zB3(z)

−
√
2EσE2(z)i

√
X −B+iBµΦ1(z) = MΦ1(z),

4 i(ϵ+Ez)E3(z)+
1√
2
i(2Bσ−i)B2(z)i

√
X +B+∂zB1(z)+

√
2EσE2(z)i

√
X +B−iBµΦ3(z) = MΦ3(z),

6 − ∂zΦ0(z)− i(ϵ+ Ez)Φ2(z) = ME2(z), 9
1√
2
Φ1(z)i

√
X −B +

1√
2
Φ3(z)i

√
X +B = MB2(z).

The last equation 9 permits to eliminate the variable B2 from the three ones.
Let us resolve the system I with respect to the variables Φ̄0, Φ̄2, Ē1, Ē3, B̄1, B̄3; so we obtain

Φ0 =
1

2
((

M2 +X
)2

−M2E2µ2
)

×
[
4BM

((
M2 +X

)
(Ez + ϵ)− i∂zMEµ

)
σB2 − 2M

(
iE(Ez + ϵ)

(
Mµ+ 2

(
M2 +X

)
σ
)

+∂z

(
M2 + 2E2µσM +X

))
E2 +

√
2
((

M2 +X
)
(Ez + ϵ)− i∂zMEµ

)(√
X −BΦ1 −

√
B +XΦ3

)]
,

Φ2 =
1

2
((

M2 +X
)2

−M2E2µ2
)

×
[
i
(
4BM

(
∂z

(
M2+X

)
+iME(Ez+ϵ)µ

)
σB2+2M

(
EzM2+ϵM2−i∂zEµM+EXz+Xϵ+2E

(
ME(Ez+ϵ)µ

−i∂z

(
M2 +X

))
σ
)
E2 +

√
2
(
∂z

(
M2 +X

)
+ iME(Ez + ϵ)µ

)(√
X −BΦ1 −

√
B +XΦ3

))]
,

E1 = − 1

2M
(
M2 − EµM +X

)(
M2 + EµM +X

)
×
[
iE

√
X −B

√
B +XzΦ3M

2 + i
√
X −B

√
B +XϵΦ3M

2

−2i
√
2B

√
X −B

((
M2 +X

)
(Ez + ϵ)− i∂zMEµ

)
σB2M
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+
√
2
√
X −B

(
i∂z

(
M2 + 2E2µσM +X

)
− E(Ez + ϵ)

(
Mµ+ 2

(
M2 +X

)
σ
))

E2M

+∂zE
√
X −B

√
B +XµΦ3M + i

(
− 2M2E2(Ez + ϵ)µ2

+i∂zME(X−B)µ+
(
M2+X

)(
2M2+B+X

)
(Ez+ϵ)

)
Φ1+iEX

√
X −B

√
B +XzΦ3+iX

√
X −B

√
B +XϵΦ3

]
,

E3 = − 1

2M
(
M2 − EµM +X

)(
M2 + EµM +X

)
×
[
iE

√
X −B

√
B +XzΦ1M

2 + i
√
X −B

√
B +XϵΦ1M

2

+2i
√
2B

√
B +X

((
M2+X

)
(Ez+ ϵ)− i∂zMEµ

)
σB2M +

√
2
√
B +X

(
E(Ez+ ϵ)

(
Mµ+2

(
M2+X

)
σ
)

−i∂z

(
M2+2E2µσM+X

))
E2M+∂zE

√
X −B

√
B +XµΦ1M+iEX

√
X −B

√
B +XzΦ1+iX

√
X −B

√
B +XϵΦ1

−iB
((

M2+X
)
(Ez+ϵ)−i∂zMEµ

)
Φ3+i

(
−2M2E2(Ez+ϵ)µ2+i∂zMEXµ+

(
M2+X

)(
2M2+X

)
(Ez+ϵ)

)
Φ3

]
,

B1 =
1

2M
(
M2 − EµM +X

)(
M2 + EµM +X

)
×[∂z

√
X −B

√
B +XΦ1M

2 + 2
√
2B

√
B +X

(
∂z

(
M2 +X

)
+ iME(Ez + ϵ)µ

)
σB2M

+
√
2
√
B +X

(
EzM2 + ϵM2 − i∂zEµM + EXz +Xϵ+ 2E

(
ME(Ez + ϵ)µ− i∂z

(
M2 +X

))
σ
)
E2M

+iE2
√
X −B

√
B +XzµΦ1M+iE

√
X −B

√
B +XϵµΦ1M+∂zX

√
X −B

√
B +XΦ1−B

(
∂z

(
M2+X

)
+iME(Ez + ϵ)µ

)
Φ3 +

(
− 2∂zM

2E2µ2 − iMEX(Ez + ϵ)µ+ ∂z

(
M2 +X

)(
2M2 +X

))
Φ3

]
,

B3 = − 1

2M
(
M2 − EµM +X

)(
M2 + EµM +X

)
×
[
∂z
√
X −B

√
B +XΦ3M

2 − 2
√
2B

√
X −B

(
∂z

(
M2 +X

)
+ iME(Ez + ϵ)µ

)
σB2M

−
√
2
√
X −B

(
EzM2 + ϵM2 − i∂zEµM + EXz +Xϵ+ 2E

(
ME(Ez + ϵ)µ− i∂z

(
M2 +X

))
σ
)
E2M

+iE2
√
X −B

√
B +XzµΦ3M + iE

√
X −B

√
B +XϵµΦ3M

+
(
−2∂zM

2E2µ2+iME(B−X)(Ez+ϵ)µ+∂z

(
M2+X

)(
2M2+B+X

))
Φ1+∂zX

√
X −B

√
B +XΦ3

]
,

Now, substitute these expressions in equations of the group II, this results in
1

B2

(
−

√
2B∂2

zσ
√
X −B(M2 +X)

(M2 +X)2 − µ2M2E2

+

√
X −B((2Bσ + i)(M2 − µME +X)(M2 + µME +X)− 2Bσ(M2 +X)(Ez + ϵ)2 − 2iBµMσE2)√

2((M2 +X)2 − µ2M2E2)

)
+E2

( i∂2
zE

√
X −B(2σ(M2 +X) + µM)√

2((M2 +X)2 − µ2M2E2)
−

− iE
√
X −B(−i(M2 + 2µMσE2 +X) + 2σ(M2 − µME +X)(M2 + µME +X)− ((Ez + ϵ)2(2σ(M2 +X) + µM)))√

2((M2 +X)2 − µ2M2E2)

)
+Φ3

( ∂2
z

√
X −B

√
B +X(M2 +X)

2M(M2 − µME +X)(M2 + µME +X)
+

√
X −B

√
B +X((M2 +X)(Ez + ϵ)2 + iµME2)

2M(M2 − µME +X)(M2 + µME +X)

)

+Φ1

(
∂2
z ((M

2 +X)(B + 2M2 +X)− 2µ2M2E2)

2M(M2 − µME +X)(M2 + µME +X)
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+
1

2M(M2 − µME +X)(M2 + µME +X)

×
[
2iBµM(M2−µME+X)(M2+µME+X)+(M2+X)(B+2M2+X)(Ez+ϵ)2+iµME2(B−X)+2µ2M4E2

−2µ2M2E2(Ez + ϵ)2 − 2M2(M2 +X)2
])

= 0,

2

B2

(√2B∂2
zσ

√
B +X(M2 +X)

(M2 +X)2 − µ2M2E2
+

√
B +X( 2Bσ(µ2M2E2−(M2+X)(M2−(Ez+ϵ)2+X)+iµME2)

(M2+X)2−µ2M2E2 + i)
√
2

)

+E2

(E√
B +X(2iσ(M2 − µME +X)(M2 + µME +X)− i(Ez + ϵ)2(2σ(M2 +X) + µM) +M2 + 2µMσE2 +X)√

2((M2 +X)2 − µ2M2E2)

− i∂2
zE

√
B +X(2σ(M2 +X) + µM)√

2((M2 +X)2 − µ2M2E2)

)
+Φ1

( ∂2
z

√
X −B

√
B +X(M2 +X)

2M(M2 − µME +X)(M2 + µME +X)
+

√
X −B

√
B +X((M2 +X)(Ez + ϵ)2 + iµME2)

2M(M2 − µME +X)(M2 + µME +X)

)

+Φ3

(∂2
z (4−

2(B+X)(M2+X)
(M2+X)2−µ2M2E2 )

4M

+
1

2M(M2 − µME +X)(M2 + µME +X)

×
[
2iBµ3M3E2−iµM(B(2(M2+X)2+E2)+E2X)+(M2+X)(−(B−X)(Ez+ϵ)2−2M4+2M2((Ez+ϵ)2−X))

+2µ2M2E2(M − Ez − ϵ)(M + Ez + ϵ)
])

= 0,

3

B2

( 2iB∂2
zµM

2σE

(M2 +X)2 − µ2M2E2
− 2BMσE(M2 − iµM(Ez + ϵ)2 +X)

(M2 +X)2 − µ2M2E2

)
+Φ1

( i∂2
zµME

√
X −B√

2((M2 +X)2 − µ2M2E2)
− E

√
X −B(M2 − iµM(Ez + ϵ)2 +X)√

2((M2 +X)2 − µ2M2E2)

)
+Φ3

(E√
B +X(M2 − iµM(Ez + ϵ)2 +X)√

2((M2 +X)2 − µ2M2E2)
− i∂2

zµME
√
B +X√

2((M2 +X)2 − µ2M2E2)

)
+E2

(∂2
zM(M2 + 2µMσE2 +X)

(M2 +X)2 − µ2M2E2

+
M(−M4 +M2(E2(µ2 + 2iσ + z2) + 2Ezϵ− 2X + ϵ2) + µME2(2σ(Ez + ϵ)2 + i) +X(2iσE2 + (Ez + ϵ)2 −X))

(M2 +X)2 − µ2M2E2

)
= 0,

4
iΦ1

√
X −B√
2

+
iΦ3

√
B +X√
2

+B2(−M) = 0.

With the help of the fourth equation, we can eliminate the variable B2 from remaining three
equations (let us change the notations Φ1 = G,Φ3 = H,E2 = F ); in order to remove fractions,
we multiply each equation by

2M(M2 +X −MEµ)(M2 +X +MEµ)((M2 +X)2 −M2E2µ2)),

so we get the following three equations
1 [

i
√
2∂2

zME
√
X −B(M2 − µME +X)(M2 + µME +X)(2σ(M2 +X) + µM)

−i
√
2ME

√
X −B(M2 − µME +X)(M2 + µME +X)(−i(M2 + 2µMσE2 +X)
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+2σ(M2 − µME +X)(M2 + µME +X)− ((Ez + ϵ)2(2σ(M2 +X) + µM)))
]
F

+
[
∂2
z (M

2−µME+X)(M2+µME+X)(2iBσ(B−X)(M2+X)+BM2+BX+2M4−2µ2M2E2+3M2X+X2)

+(M2 − µME +X)(M2 + µME +X)(i(X −B)((2Bσ + i)(M2 − µME +X)(M2 + µME +X)

−2Bσ(M2 +X)(Ez + ϵ)2 − 2iBµMσE2) + 2iBµM(M2 − µME +X)(M2 + µME +X)

+(M2+X)(B+2M2+X)(Ez+ϵ)2+iµME2(B−X)+2µ2M4E2−2µ2M2E2(Ez+ϵ)2−2M2(M2+X)2)
]
G

+
[
∂2
z (1− 2iBσ)

√
X −B

√
B +X(M2 +X)(M2 − µME +X)(M2 + µME +X)

+i(2Bσ+i)
√
X −B

√
B +X((M2+X)2−µ2M2E2)(µ2(−M2)E2+(M2+X)(M2−(Ez+ϵ)2+X)−iµME2)

]
H = 0,

2[√
2ME

√
B +X(M2 − µME +X)(M2 + µME +X)(2iσ(M2 − µME +X)(M2 + µME +X)

−i(Ez + ϵ)2(2σ(M2 +X) + µM) +M2 + 2µMσE2 +X)

−i
√
2∂2

zME
√
B +X(M2 − µME +X)(M2 + µME +X)(2σ(M2 +X) + µM)

]
F

+
[
∂2
z (1+2iBσ)

√
X −B

√
B +X(M2+X)(M2−µME+X)(M2+µME+X)−i(2Bσ−i)

√
X −B

√
B +X((M2+X)2

−µ2M2E2)(µ2(−M2)E2 + (M2 +X)(M2 − (Ez + ϵ)2 +X)− iµME2)
]
G+

+
[
∂2
z (M

2−µME+X)(M2+µME+X)(2iBσ(B+X)(M2+X)−BM2−BX+2M4−2µ2M2E2+3M2X+X2)

+(M2 − µME +X)(M2 + µME +X)(2iBµ3M3E2 − iµM(B(2(M2 +X)2 + E2) + E2X)+

+i(B +X)(i((M2 +X)2 − µ2M2E2)− 2Bσ(µ2(−M2)E2 + (M2 +X)(M2 − (Ez + ϵ)2 +X)− iµME2))

+(M2+X)(−(B−X)(Ez+ϵ)2−2M4+2M2((Ez+ϵ)2−X))+2µ2M2E2(M−Ez−ϵ)(M+Ez+ϵ))
]
H = 0,

3 [
2∂2

zM
2(M2 − µME +X)(M2 + µME +X)(M2 + 2µMσE2 +X)

+2M2(M2 − µME +X)(M2 + µME +X)(−M4 +M2(E2(µ2 + 2iσ + z2) + 2Ezϵ− 2X + ϵ2)

+µME2(2σ(Ez + ϵ)2 + i) +X(2iσE2 + (Ez + ϵ)2 −X))
]
F

+
[
−
√
2∂2

zµM
2E(2Bσ − i)

√
X −B(M2 − µME +X)(M2 + µME +X)

−i
√
2ME(2Bσ − i)

√
X −B(M2 − µME +X)(M2 + µME +X)(M2 − iµM(Ez + ϵ)2 +X)

]
G

+
[√

2ME(1− 2iBσ)
√
B +X(M2 − µME +X)(M2 + µME +X)(M2 − iµM(Ez + ϵ)2 +X)

−
√
2∂2

zµM
2E(2Bσ + i)

√
B +X(M2 − µME +X)(M2 + µME +X)

]
H = 0,

Let us write the last system in a symbolical form

1 a1F
′′ + b1F + c1G

′′ + d1G+ l1H
′′ + n1H = 0,

2 a2F
′′ + b2F + c2G

′′ + d2G+ l2H
′′ + n2H = 0,

3 a3F
′′ + b3F + c3G

′′ + d3G+ l3H
′′ + n3H = 0.

We will combine equations as follows

1) · α+ 2) · β + 3) · γ = 0;

in this way we obtain the following equation

(αa1 + βa2 + γa3)F
′′ + (αb1 + βb2 + γb3)F+

191



A.V. Ivashkevich, A.V. Bury, V.M. Red’kov, E.M. Ovsiyuk

(αc1 + βc2 + γc3)G
′′ + (αd1 + βd2 + γd3)G+

(αl1 + βl2 + γl3)H
′′ + (αn1 + βn2 + γn3)H = 0.

Here we will distinguish 3 different cases:

I
α1a1 + β1a2 + γ1a3 = 1,
α1c1 + β1c2 + γ1c3 = 0,
α1l1 + β1l2 + γ1l3 = 0;

II
α2a1 + β2a2 + γ2a3 = 0,
α2c1 + β2c2 + γ2c3 = 1,
α2l1 + β2l2 + γ2l3 = 0;

III
α3a1 + β3a2 + γ3a3 = 0,
α3c1 + β3c2 + γ3c3 = 0,
α3l1 + β3l2 + γ3l3 = 1;

the corresponding three solutions have the form

I

α1 =
µE(2Bσ−i)

√
X−B

2
√
2((M2+X)2−µ2M2E2)

2
(2iB2σ+M2+2µMσE2)

,

β1 =
iµE(1−2iBσ)

√
B+X

2
√
2((M2+X)2−µ2M2E2)

2
(2iB2σ+M2+2µMσE2)

,

γ1 =
M2(M2−µ2E2+X)+2iB2σ(M2+X)

2M2(M2−µME+X)2(M2+µME+X)2(2iB2σ+M2+2µMσE2)
;

II

α2 =
2iB2σ+B(−1+2iσX)+2M(M+2µσE2)+X

4((M2+X)2−µ2M2E2)
2
(2iB2σ+M2+2µMσE2)

,

β2 =
i(2Bσ+i)

√
X−B

√
B+X

4((M2+X)2−µ2M2E2)
2
(2iB2σ+M2+2µMσE2)

,

γ2 = − iE
√
X−B(2σ(M2+X)+µM)

2
√
2M((M2+X)2−µ2M2E2)

2
(2iB2σ+M2+2µMσE2)

;

III

α3 =
i(−2Bσ+i)

√
X−B

√
B+X

4((M2+X)2−µ2M2E2)
2
(2iB2σ+M2+2µMσE2)

,

β3 =
2iB2σ−2iBσX+B+2M(M+2µσE2)+X

4((M2+X)2−µ2M2E2)
2
(2iB2σ+M2+2µMσE2)

,

γ3 =
iE

√
B+X(2σ(M2+X)+µM)

2
√
2M((M2+X)2−µ2M2E2)

2
(2iB2σ+M2+2µMσE2)

.

So the above equations can be presented as

1) F ′′ + (α1b1 + β1b2 + γ1b3)F

+(α1d1 + β1d2 + γ1d3)G+ (α1n1 + β1n2 + γ1n3)H = 0,

2) G′′ + (α2b1 + β2b2 + γ2b3)F

+(α2d1 + β2d2 + γ2d3)G+ (α2n1 + β2n2 + γ2n3)H = 0,

3) H ′′ + (α3b1 + β3b2 + γ3b3)F

+(α3d1 + β3d2 + γ3d3)G+ (α3n1 + β3n2 + γ3n3)H = 0;

Let us make the needed change σ ⇒ iσ, µ ⇒ iµ, so we get

1) F ′′ +
1

M2 − 2σ(B2 + µME2)

[
(−2σ(B2(−M2 + (Ez + ϵ)2 −X) +ME2(M + µ((Ez + ϵ)2 −X)))

+4B2σ2E2(µM + 1)−M(M3 +M(µ2E2 − (Ez + ϵ)2 +X) + µE2))
]
F
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+
E(2Bσ − 1)

√
X −B(M(−Bµ+ µM(Bµ+M) +M)− 2B2σ(µM + 1))√

2(M3 − 2Mσ(B2 + µME2))
G

+
E(2Bσ + 1)

√
B +X(M(Bµ+ µM(M −Bµ) +M)− 2B2σ(µM + 1))√

2(M3 − 2Mσ(B2 + µME2))
H = 0,

2) G′′ +
1

2M2 − 4σ(B2 + µME2)

[
(2B3σ(µM − 1) +B2(2σ(2M2 + µMX − 2(Ez + ϵ)2 +X)

+µM − 4σ2E2(µM +1)− 1)+B(−(µM − 1)(2M2+X)+2σE2(µM(2µM − 1)+1)+4σ2E2X(µM +1))

−2σE2(µM(−2M2 + 2(Ez + ϵ)2 −X) +X) + 2M2(−M2 + (Ez + ϵ)2 −X))
]
G

−ME
√
X −B(µM + 1)(4σ2E2 + 1)√
2(M2 − 2σ(B2 + µME2))

F

+
(2Bσ + 1)

√
X −B

√
B +X(B(µM − 1)− 2σE2(µM + 1))

4σ(B2 + µME2)− 2M2
H = 0,

3) H ′′ +
1

2M2 − 4σ(B2 + µME2)

[
(−2B3σ(µM − 1) +B2(2σ(2M2 + µMX − 2(Ez + ϵ)2 +X)

+µM − 4σ2E2(µM +1)− 1) +B((µM − 1)(2M2 +X) + 2σE2(µM(1− 2µM)− 1)− 4σ2E2X(µM +1))

−2σE2(µM(−2M2 + 2(Ez + ϵ)2 −X) +X) + 2M2(−M2 + (Ez + ϵ)2 −X))
]
H

+
ME

√
B +X(µM + 1)(4σ2E2 + 1)√
2(M2 − 2σ(B2 + µME2))

F

+
(2Bσ − 1)

√
X −B

√
B +X(B(µM − 1) + 2σE2(µM + 1))

4σ(B2 + µME2)− 2M2
G = 0.

It is convenient to apply the short notation (Ez + ϵ) = Σ; in this way we obtain

1) F ′′ +Σ2F+

−M2(−2B2σ +W 2(µ2 + 2σ) +X) + µMW 2(2σ(2B2σ +X)− 1) + 2B2σ(2σW 2 +X)−M4

M2 − 2σ(B2 + µMW 2)
F+

+
W (2Bσ − 1)

√
X −B(M(−Bµ+ µM(Bµ+M) +M)− 2B2σ(µM + 1))√

2(M3 − 2Mσ(B2 + µMW 2))
G+

+
W (2Bσ + 1)

√
B +X(M(Bµ+ µM(M −Bµ) +M)− 2B2σ(µM + 1))√

2(M3 − 2Mσ(B2 + µMW 2))
H = 0,

2) G′′ +Σ2G+

+
1

2M2 − 4σ(B2 + µMW 2)

[
2B3σ(µM − 1) +B2(2σ(2M2 + µMX +X) + µM − 4σ2W 2(µM + 1)− 1)+

+B(−(µM − 1)(2M2 +X) + 2σW 2(µM(2µM − 1) + 1) + 4σ2W 2X(µM + 1))+

+2σW 2(2µM3 +X(µM − 1))− 2M2(M2 +X)
]
G−

−MW
√
X −B(µM + 1)(4σ2W 2 + 1)√

2(M2 − 2σ(B2 + µMW 2))
F+

+
(2Bσ + 1)

√
X −B

√
B +X(B(µM − 1)− 2σW 2(µM + 1))

4σ(B2 + µMW 2)− 2M2
H = 0,

3) H ′′ +Σ2H+

+
1

2M2 − 4σ(B2 + µMW 2)

[
− 2B3σ(µM − 1) +B2(2σ(2M2 + µMX +X)+
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+µM − 4σ2W 2(µM + 1)− 1) +B((µM − 1)(2M2 +X) + 2σW 2(µM(1− 2µM)− 1)−

−4σ2W 2X(µM + 1)) + 2σW 2(2µM3 +X(µM − 1))− 2M2(M2 +X)
]
H+

+
MW

√
B +X(µM + 1)(4σ2W 2 + 1)√

2(M2 − 2σ(B2 + µMW 2))
F+

+
(2Bσ − 1)

√
X −B

√
B +X(B(µM − 1) + 2σW 2(µM + 1))

4σ(B2 + µMW 2)− 2M2
G = 0,

Let us present the system in matrix form

∆ =
d2

dz2
+Σ2(z),∆

∣∣∣∣∣∣
F
G
H

∣∣∣∣∣∣ = A

∣∣∣∣∣∣
F
G
H

∣∣∣∣∣∣ , ∆Ψ(z) = AΨ(z), A =

∣∣∣∣∣∣
A1 B1 C1

A2 B2 C2

A3 B3 C3

∣∣∣∣∣∣ .
Now we will find the transformation which diagonalizes the system

Ψ̄ = SΨ, ∆Ψ̄(z) = ĀΨ̄(z), Ā = SAS−1 =

∣∣∣∣∣∣
λ1 0 0
0 λ2 0
0 0 λ3

∣∣∣∣∣∣ , S =

∣∣∣∣∣∣
s11 s12 s13
s21 s22 s23
s31 s32 s33

∣∣∣∣∣∣ ,
we should find solutions for equation SA = ĀS; explicitly it reads∣∣∣∣∣∣

s11 s12 s13
s21 s22 s23
s31 s32 s33

∣∣∣∣∣∣
∣∣∣∣∣∣
A1 B1 C1

A2 B2 C2

A3 B3 C3

∣∣∣∣∣∣ =
∣∣∣∣∣∣
λ1 0 0
0 λ2 0
0 0 λ3

∣∣∣∣∣∣
∣∣∣∣∣∣
s11 s12 s13
s21 s22 s23
s31 s32 s33

∣∣∣∣∣∣ ;
whence follow three similar subsystems

(A1 − λ1)s11 +A2s12 +A3s13 = 0
B1s11 + (B2 − λ1)s12 +B3s13 = 0
C1s11 + C2s12 + (C3 − λ1)s13 = 0

,


(A1 − λ2)s21 +A2s22 +A3s23 = 0
B1s21 + (B2 − λ2)s22 +B3s23 = 0
C1s21 + C2s22 + (C3 − λ2)s23 = 0

,


(A1 − λ3)s31 +A2s32 +A3s33 = 0
B1s31 + (B2 − λ3)s32 +B3s33 = 0
C1s31 + C2s32 + (C3 − λ3)s33 = 0

,

or differently ∣∣∣∣∣∣
(A1 − λ) A2 A3

B1 (B2 − λ) B3

C1 C2 (C3 − λ)

∣∣∣∣∣∣
∣∣∣∣∣∣
si1
si2
si3

∣∣∣∣∣∣ = 0, i = 1, 2, 3. (17)

From vanishing the determinant

det

∣∣∣∣∣∣
(A1 − λ) A2 A3

B1 (B2 − λ) B3

C1 C2 (C3 − λ)

∣∣∣∣∣∣ = 0

we derive the cubic equation

λ3 − λ2 (A1 +B2 + C3) + λ (A2B1 −A1B2 +A3C1 −A1C3 +B3C2 −B2C3)
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+λ0(A3B2C1 −A2B3C1 −A3B1C2 +A1B3C2 +A2B1C3 −A1B2C3) = 0,

or shortly λ3 + d2λ
2 + d1λ+ d = 0.

Let us write down equations, solutions of which determine the elements of the matrix S:

(A1 − λ1)s11 +A2s12 +A3 = 0
B1s11 + (B2 − λ1)s12 +B3 = 0

, assuming s13 = 1;

(A1 − λ2)s21 +A2s22 +A3 = 0
B1s21 + (B2 − λ2)s22 +B3 = 0

, assuming s23 = 1;

(A1 − λ3)s31 +A2s32 +A3 = 0
B1s31 + (B2 − λ3)s32 +B3 = 0

, assuming s33 = 1.

After performing this transformation, we get 3 separate equations( d2

dz2
+ (Ez + ϵ)2 − λ1

)
F̄ = 0 ,

( d2

dz2
+ (Ez + ϵ)2 − λ2

)
Ḡ = 0 ,

( d2

dz2
+ (Ez + ϵ)2 − λ3

)
H̄ = 0 .

These equations have the same structure as for a scalar particle in the uniform electric field( d2

dz2
+ (Ez + ϵ)2 − λ

)
Φ(z) = 0 . (18)

We transform eq. (18) to the new variable (assuming that E > 0)

Z = i
(Ez + ϵ)2

E
, Λ =

λ

4E
, (19)

then we get the confluent hypergeometric equation( d2

dZ2
+

1/2

Z

d

dZ
− 1

4
+

iΛ

Z

)
Φ(Z) = 0 . (20)

describing their solutions is a simple task (see in [18]).

8. Conclusion

We have we studied a generalized Duffin–Kemmer equation for spin 1 particle with two
characteristics, anomalous magnetic moment and polarizability in presence of external uniform
magnetic and electric fields. After separating the variables, we get the system of ten first order
partial differential equations for 10 functions fi(r, z).

To describe the r-dependence of 10 functions fA(r, z), A = 1, ..., 10, we applied the method
by Fedorov – Gronskiy; so the complete 10-component wave function is decomposed into the
sum of three projective constituents, dependence of each component on the polar coordinate r
is determined by only one corresponding function, Fi(r), i = 1, 2, 3; these three basic functions
are constructed in terms of the confluent hypergeometric functions, at this there arises the
quantization rule due to the presence of magnetic field.

After that we derived a system of 10 ordinary differential equations for 10 functions fA(z).
This system is solved by using the elimination method. As the result, we find three separated
second order differential equations, their solutions are constructed in the terms of the confluent
hypergeometric functions.

Thus, the three types of solutions for a vector particle with two additional electromagnetic
characteristics in presence of external uniform magnetic and electric fields are found.
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