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Non-relativistic Approximation for a Spin 3/2 Particle
in Presence of Electromagnetic and Gravitational Fields
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The goal of the present paper is investigation of the non-relativistic approximation in the first
order 39-component theory for a spin 2 particle, in curved space-time, and in presence of external
electromagnetic fields. We start with the generally covariant matrix equations generalized according
to Weyl–Fock–Ivanenko tetrad method. We apply explicit expressions for four main matrices Γa

with dimension 16×16 in the relevant first order system of equations, for space-time metrics allowing
for existence of the non-relativistic equations.

For distinguishing the large and small constituents in the complete wave function, we use three
projective operators constructed on the base of the minimal polynomial of the 4-th order for the
matrix Γ0

16×16. The relevant large and small components are found in explicit form. Among them
we have found independent variables; in particular, among the large components there exist only
four independent ones.

Acting in accordance with the known general procedure, we have derived the non-relativistic
system of equations for a 4-component wave function; the relevant Hamiltonian depends on elec-
tromagnetic field and additional geometrical terms are determined by the Ricci rotation coefficients
(these terms should be determined by Ricci scalar R and Ricci tensor Rab in tetrad form. The terms
describing interaction of the magnetic moment of the spin 3/2 particle with the external magnetic
field is separated< this additional term is constructed with the use of the spin matrices Si and the
components of the magnetic field B⃗.

PACS numbers: 02.30.Gp, 02.40.Ky, 03.65Ge, 04.62.+v
Keywords: spin 3/2, curved space, tetrad formalism, non-relativistic approximation, magnetic moment,
Ricci rotation coefficients, scalar and tensor

1. Introduction. The basic equation

In the present paper, we will study the problem of non-relativistic approximation for a spin 3/2 particle
[1, 2]; see also [3] –[24] in curved space-time.

We start with the known form of the basic equation for spin 3/2 particle [19], [24]:

γ5ϵ σαβ
ρ (x)γσ

(
iDα − 1

2
Mγα

)
Ψβ = 0, Dα = ∇α + Γα + ieAα; (1)

where M = mc/~ is a mass parameter. After transition in the wave function to the tetrad representation
by vector index Ψβ = e

(b)
β Ψb, this equation takes the form

γ5ϵ can
k γc

[
i(Da)

l
n − 1

2
Mγaδ

l
n

]
Ψl = 0, (2)

where generalized derivative are used

Da = eα(a)(∂α + ieAα) +
1

2
(σps ⊗ I + I ⊗ jps) γ[ps]a = eα(a)(∂α + ieAα) + Σa. (3)

With the use of six matrices ϵ can
k = (µ[ca]) n

k , eq. (2) may be presented as follows

γ5(µ[ca]) n
k γc

[
i(Da)

l
n −Mγaδ

l
n

]
Ψl = 0, (4)
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The summing formula is

µ[ca]γcDa

=
(
γ1 ⊗ µ[01] + γ2 ⊗ µ[02] + γ3 ⊗ µ[03]

)
D0Ψ+

(
γ0 ⊗ µ[01] + γ2 ⊗ µ[12] − γ3 ⊗ µ[31]

)
D1Ψ

+
(
γ0 ⊗ µ[02] + γ3 ⊗ µ[23] − γ1 ⊗ µ[12]

)
D2Ψ+

(
γ0 ⊗ µ[03] + γ1 ⊗ µ[31] − γ2 ⊗ µ[23]

)
D3Ψ .

whence we derive the detailed form of eq. (2):(
γ1 ⊗ µ[01] + γ2 ⊗ µ[02] + γ3 ⊗ µ[03]

)
D0Ψ+

(
γ0 ⊗ µ[01] + γ2 ⊗ µ[12] − γ3 ⊗ µ[31]

)
D1Ψ

+
(
γ0 ⊗ µ[02] + γ3 ⊗ µ[23] − γ1 ⊗ µ[12]

)
D2Ψ+

(
γ0 ⊗ µ[03] + γ1 ⊗ µ[31] − γ2 ⊗ µ[23]

)
D3Ψ

+iM
1

2

{
s01 ⊗ µ[01] + s02 ⊗ µ[02] + s03 ⊗ µ[03] + s23 ⊗ µ[23] + s31 ⊗ µ[31] + s12 ⊗ µ[12]

}
Ψ = 0 , (5)

where sab = γaγb − γbγa (note the location of the indices). We need expression for matrices µ[ca]:

µ[01] =

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

∣∣∣∣∣∣∣ , µ[02] =

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

∣∣∣∣∣∣∣ , µ[03] =

∣∣∣∣∣∣∣
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

∣∣∣∣∣∣∣ ,

µ[23] =

∣∣∣∣∣∣∣
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣ , µ[31] =

∣∣∣∣∣∣∣
0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

∣∣∣∣∣∣∣ , µ[12] =

∣∣∣∣∣∣∣
0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

∣∣∣∣∣∣∣ ;
and also explicit expressions for Dirac matrices (and generators for 4-vector and bispinor)

γ0 =

∣∣∣∣∣∣∣
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

∣∣∣∣∣∣∣ , γ1 =

∣∣∣∣∣∣∣
0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

∣∣∣∣∣∣∣ , γ2 =

∣∣∣∣∣∣∣
0 0 0 i
0 0 −i 0
0 −i 0 0
i 0 0 0

∣∣∣∣∣∣∣ , γ3 =

∣∣∣∣∣∣∣
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

∣∣∣∣∣∣∣ ;

σ12 =
1

2

∣∣∣∣∣∣∣
−i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 i

∣∣∣∣∣∣∣ , j12 =

∣∣∣∣∣∣∣
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

∣∣∣∣∣∣∣ ,

s01 = −

∣∣∣∣∣∣∣
0 2 0 0
2 0 0 0
0 0 0 −2
0 0 −2 0

∣∣∣∣∣∣∣ , s02 = −

∣∣∣∣∣∣∣
0 −2i 0 0
2i 0 0 0
0 0 0 2i
0 0 −2i 0

∣∣∣∣∣∣∣ , s03 = −

∣∣∣∣∣∣∣
2 0 0 0
0 −2 0 0
0 0 −2 0
0 0 0 2

∣∣∣∣∣∣∣ ,

s23 =

∣∣∣∣∣∣∣
0 −2i 0 0

−2i 0 0 0
0 0 0 −2i
0 0 −2i 0

∣∣∣∣∣∣∣ , s31 =

∣∣∣∣∣∣∣
0 −2 0 0
2 0 0 0
0 0 0 −2
0 0 2 0

∣∣∣∣∣∣∣ , s12 =

∣∣∣∣∣∣∣
−2i 0 0 0
0 2i 0 0
0 0 −2i 0
0 0 0 2i

∣∣∣∣∣∣∣ .
Equation (5) may be written in a short form(

Γ0D0 + Γ0D0 + Γ0D0 + Γ0D0 + iMΓ
)
Ψ = 0, (6)
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where

D0 = eα(0)(∂α + ieAα) +
1

2
(σps ⊗ I + I ⊗ jps)γ[ps]0,

D1 = eα(1)(∂α + ieAα) +
1

2
(σps ⊗ I + I ⊗ jps)γ[ps]1,

D2 = eα(2)(∂α + ieAα) +
1

2
(σps ⊗ I + I ⊗ jps)γ[ps]2,

D3 = eα(3)(∂α + ieAα) +
1

2
(σps ⊗ I + I ⊗ jps)γ[ps]3;

Γ0 =
(
γ1 ⊗ µ[01] + γ2 ⊗ µ[02] + γ3 ⊗ µ[03]

)
,Γ1 =

(
γ0 ⊗ µ[01] + γ2 ⊗ µ[12] − γ3 ⊗ µ[31]

)
,

Γ2 =
(
γ0 ⊗ µ[02] + γ3 ⊗ µ[23] − γ1 ⊗ µ[12]

)
,Γ3 =

(
γ0 ⊗ µ[03] + γ1 ⊗ µ[31] − γ2 ⊗ µ[23]

)
,

Γ =
1

2

{
s01 ⊗ µ[01] + s02 ⊗ µ[02] + s03 ⊗ µ[03] + s23 ⊗ µ[23] + s31 ⊗ µ[31] + s12 ⊗ µ[12]

}
.

2. Large and small components of the wave function

The non-relativistic approximation in wave equations (independently on the value of a particle spin)
is possible only in space-time models with the following structure [19])

dS2 = (dx0)2 + gij(x)dx
idxj , e(a)α(x) =

∣∣∣∣ 1 0
0 e(i)k(x)

∣∣∣∣ , (7)

in this case, expressions for connection simplify

Σ0 =
1

2
J ikem(i) (∇0e(k)m), Σl =

1

2
J ikem(i) (∇le(k)m) , (8)

the contribution of generators J0k vanishes identically. The wave function of the particle may be presented
as a matrix (the first index is bispinor one, and the second is 4-vector one)

ΨA(n) = ΦA(n) =

∣∣∣∣∣∣∣
f0 f1 f2 f3
g0 g1 g2 g3
h0 h1 h2 h3

d0 d1 d2 d3

∣∣∣∣∣∣∣ . (9)

It is convenient to multiply Eq. (6) by Γ−1, then we have(
Y 0D0 + Y 1D1 + Y 2D2 + Y 3D3 + iM

)
Ψ = 0. (10)

let us find 16-dimensional presentation for the matrix Γ0; to this end we consider the action of the matrix
Γ0 on the wave function

Γ0Ψ = γ1Ψµ̃[01] + γ2Ψµ̃[02] + γ3Ψµ̃[03]

= γ1

∣∣∣∣∣∣∣
f0 f1 f2 f3
g0 g1 g2 g3
h0 h1 h2 h3

d0 d1 d2 d3

∣∣∣∣∣∣∣ µ̃[01] + γ2

∣∣∣∣∣∣∣
f0 f1 f2 f3
g0 g1 g2 g3
h0 h1 h2 h3

d0 d1 d2 d3

∣∣∣∣∣∣∣ µ̃[02] + γ3

∣∣∣∣∣∣∣
f0 f1 f2 f3
g0 g1 g2 g3
h0 h1 h2 h3

d0 d1 d2 d3

∣∣∣∣∣∣∣ µ̃[03]

=

∣∣∣∣∣∣∣
0 id3 + h2 d3 − h1 −id1 − d2
0 −d2 − ih3 d1 + h3 ih1 − h2

0 −f2 − ig3 f1 − g3 ig1 + g2
0 if3 + g2 −f3 − g1 f2 − if1

∣∣∣∣∣∣∣ ;
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so in 16-dimensional form we have

Γ0Ψ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . 1 . . . . i

. . . . . . . . . . . −1 . . −i .

. . . . . . . . −1 . . . . −i . .

. . . . . . . . . 1 . . i . . .

. . . . . . −1 . . . . . . . . 1

. . . . . . . 1 . . . . . . 1 .

. . . . 1 . . . . . . . . −1 . .

. . . . . −1 . . . . . . −1 . . .

. . . . . . . −i . . . −1 . . . .

. . . . . . i . . . −1 . . . . .

. . . . . i . . . 1 . . . . . .

. . . . −i . . . 1 . . . . . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f0
g0
h0

d0
f1
g1
h1

d1
f2
g2
h2

d2
f3
g3
h3

d3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Similarly, we find expressions for matrices Γi,Γ:

Γ1Ψ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . . . . . . . . . 1 . . . . i

. . . . . . . . . . . −1 . . −i .

. . . . . . . . −1 . . . . −i . .

. . . . . . . . . 1 . . i . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . 1 . . . . . . . . . . . −1 .

. . . −1 . . . . . . . . . . . −1
−1 . . . . . . . . . . . −1 . . .
. 1 . . . . . . . . . . . −1 . .
. . . i . . . . . . 1 . . . . .
. . −i . . . . . . . . 1 . . . .
. −i . . . . . . 1 . . . . . . .
i . . . . . . . . 1 . . . . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f0
g0
h0

d0
f1
g1
h1

d1
f2
g2
h2

d2
f3
g3
h3

d3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

;

Γ2Ψ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . . . . . −1 . . . . . . . . 1

. . . . . . . 1 . . . . . . 1 .

. . . . 1 . . . . . . . . −1 . .

. . . . . −1 . . . . . . −1 . . .

. . −1 . . . . . . . . . . . 1 .

. . . 1 . . . . . . . . . . . 1
1 . . . . . . . . . . . 1 . . .
. −1 . . . . . . . . . . . 1 . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . 1 . . −1 . . . . . . . . .
. . 1 . . . . −1 . . . . . . . .
. −1 . . −1 . . . . . . . . . . .

−1 . . . . −1 . . . . . . . . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f0
g0
h0

d0
f1
g1
h1

d1
f2
g2
h2

d2
f3
g3
h3

d3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

;
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Γ3Ψ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . . . . . . −i . . . −1 . . . .

. . . . . . i . . . −1 . . . . .

. . . . . i . . . 1 . . . . . .

. . . . −i . . . 1 . . . . . . .

. . . −i . . . . . . −1 . . . . .

. . i . . . . . . . . −1 . . . .

. i . . . . . . −1 . . . . . . .
−i . . . . . . . . −1 . . . . . .
. . . −1 . . 1 . . . . . . . . .
. . −1 . . . . 1 . . . . . . . .
. 1 . . 1 . . . . . . . . . . .
1 . . . . 1 . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f0
g0
h0

d0
f1
g1
h1

d1
f2
g2
h2

d2
f3
g3
h3

d3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

;

Γ =
1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . . . . −2i . . . −2 . . −2i . . .

. . . . −2i . . . 2 . . . . 2i . .

. . . . . . . −2i . . . −2 . . −2i .

. . . . . . −2i . . . 2 . . . . 2i

. −2i . . . . . . 2 . . . . 2i . .
−2i . . . . . . . . −2 . . −2i . . .
. . . −2i . . . . . . −2 . . . . −2i
. . −2i . . . . . . . . 2 . . 2i .
. −2 . . −2 . . . . . . . . 2 . .
2 . . . . 2 . . . . . . 2 . . .
. . . −2 . . 2 . . . . . . . . −2
. . 2 . . . . −2 . . . . . . −2 .

−2i . . . . −2i . . . −2 . . . . . .
. 2i . . 2i . . . −2 . . . . . . .
. . −2i . . . . 2i . . . 2 . . . .
. . . 2i . . −2i . . . 2 . . . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

;

Further we find Y 0 = Γ−1Γ0, Y i = Γ−1Γi:
In accordance with general approach, the large and small components in non-relativistic limit are to

be determined by projective operators constructed through the matrix Y 0. This matrix Y 0 = Y0 obeys
the minimal 4th order equation Y 2

0 (Y
2
0 − 1) = 0. So, there exist three projective operators

P0 = 1− Y 2
0 , P1 = P+ = +

1

2
Y 2
0 (Y + 1), P2 = P− = −1

2
Y 2
0 (Y − 1), (11)

with the needed properties

P0 + P+ + P− = 1, P 2
0 = P0, P 2

1 = P1, P 2
2 = P2.

Explicitly they read

P0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . . . . . . . . . . . . .
. 1 . . . . . . . . . . . . . .
. . 1 . . . . . . . . . . . . .
. . . 1 . . . . . . . . . . . .
. . . . 1

3
. . . i

3
. . . . − 1

3
. .

. . . . . 1
3

. . . − i
3

. . 1
3

. . .
. . . . . . 1

3
. . . i

3
. . . . − 1

3

. . . . . . . 1
3

. . . − i
3

. . 1
3

.
. . . . − i

3
. . . 1

3
. . . . i

3
. .

. . . . . i
3

. . . 1
3

. . i
3

. . .
. . . . . . − i

3
. . . 1

3
. . . . i

3

. . . . . . . i
3

. . . 1
3

. . i
3

.
. . . . . 1

3
. . . − i

3
. . 1

3
. . .

. . . . − 1
3

. . . − i
3

. . . . 1
3

. .
. . . . . . . 1

3
. . . − i

3
. . 1

3
.

. . . . . . − 1
3

. . . − i
3

. . . . 1
3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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P1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . 1
3

. 1
3

. − i
6

. − i
6

. . 1
6

. 1
6

. . . . . 1
3

. 1
3

. i
6

. i
6

− 1
6

. − 1
6

.
. . . . 1

3
. 1

3
. − i

6
. − i

6
. . 1

6
. 1

6

. . . . . 1
3

. 1
3

. i
6

. i
6

− 1
6

. − 1
6

.
. . . . i

6
. i
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6
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3
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6

1
3
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6
. i
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

P2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . 1
3

. − 1
3

. − i
6

. i
6

. . 1
6

. − 1
6

. . . . . 1
3

. − 1
3

. i
6

. − i
6

− 1
6

. 1
6

.
. . . . − 1

3
. 1

3
. i

6
. − i

6
. . − 1

6
. 1

6

. . . . . − 1
3

. 1
3

. − i
6

. i
6

1
6

. − 1
6

.
. . . . i

6
. − i

6
. 1

3
. − 1

3
. . − i

6
. i

6

. . . . . − i
6

. i
6

. 1
3

. − 1
3

− i
6

. i
6

.
. . . . − i

6
. i

6
. − 1

3
. 1

3
. . i

6
. − i

6

. . . . . i
6

. − i
6

. − 1
3

. 1
3

i
6

. − i
6

.
. . . . . − 1

6
. 1

6
. i

6
. − i

6
1
3

. − 1
3

.
. . . . 1

6
. − 1

6
. i

6
. − i

6
. . 1

3
. − 1

3

. . . . . 1
6

. − 1
6

. − i
6

. i
6

− 1
3

. 1
3

.
. . . . − 1

6
. 1

6
. − i

6
. i

6
. . − 1

3
. 1

3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Further we find three projective constituents (in each we can see a number of independent variables):

Ψ0 = P0Ψ , Ψ+ = Ψ1 = P1Ψ, Ψ− = Ψ2 = P2Ψ;

Ψ0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f0
g0
h0

d0

1
3
(f1 + if2 − g3)

1
3
(f3 + g1 − ig2)

1
3
(−d3 + h1 + ih2)
1
3
(d1 − id2 + h3)

1
3
(−if1 + f2 + ig3)
1
3
i (f3 + g1 − ig2)

1
3
(i (d3 − h1) + h2)

1
3
i (d1 − id2 + h3)

1
3
(f3 + g1 − ig2)

1
3
(−f1 − if2 + g3)

1
3
(d1 − id2 + h3)

1
3
(d3 − h1 − ih2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S0
1

S0
2

S0
3

S0
4

S1
1

S1
2

S1
3

S1
4

S2
1

S2
2

S2
3

S2
4

S3
1

S3
2

S3
3

S3
4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S0
1

S0
2

S0
3

S0
4

S1
1

S1
2

S1
3

S1
4

−iS1
1

iS1
2

−iS1
3

iS1
4

S1
2

−S1
1

S1
4

−S1
3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S1

S2

S3

S4

S5

S6

S7

S8

−iS5

iS6

−iS7

iS8

S6

−S5

S8

−S7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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Ψ+ = Ψ1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
0
0
0

1
6
(d3 + 2f1 − if2 + g3 + 2h1 − ih2)

1
6
(2d1 + id2 − f3 + 2g1 + ig2 − h3)

1
6
(d3 + 2f1 − if2 + g3 + 2h1 − ih2)

1
6
(2d1 + id2 − f3 + 2g1 + ig2 − h3)

− 1
6
i (d3 − f1 + 2if2 + g3 − h1 + 2ih2)

− 1
6
i (d1 + 2id2 + f3 + g1 + 2ig2 + h3)

− 1
6
i (d3 − f1 + 2if2 + g3 − h1 + 2ih2)

− 1
6
i (d1 + 2id2 + f3 + g1 + 2ig2 + h3)

1
6
(−d1 + id2 + 2f3 − g1 + ig2 + 2h3)

1
6
(2d3 + f1 + if2 + 2g3 + h1 + ih2)

1
6
(−d1 + id2 + 2f3 − g1 + ig2 + 2h3)

1
6
(2d3 + f1 + if2 + 2g3 + h1 + ih2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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0
0
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3

L1
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3
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4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
0
0
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L1
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L1
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1

L2
2

L2
1

L2
2

L3
1
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1

L3
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
0
0
0

L1

L2

L1

L2

L3

L4

L3

L4

L5

L6

L5

L6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

Ψ− = Ψ2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
0
0
0

1
6
(−d3 + 2f1 − if2 + g3 − 2h1 + ih2)

1
6
(−2d1 − id2 − f3 + 2g1 + ig2 + h3)

1
6
(d3 − 2f1 + if2 − g3 + 2h1 − ih2)

1
6
(2d1 + id2 + f3 − 2g1 − ig2 − h3)

1
6
i (d3 + f1 − 2if2 − g3 − h1 + 2ih2)

1
6
i (d1 + 2id2 − f3 − g1 − 2ig2 + h3)

− 1
6
i (d3 + f1 − 2if2 − g3 − h1 + 2ih2)

− 1
6
i (d1 + 2id2 − f3 − g1 − 2ig2 + h3)

1
6
(d1 − id2 + 2f3 − g1 + ig2 − 2h3)

1
6
(−2d3 + f1 + if2 + 2g3 − h1 − ih2)

1
6
(−d1 + id2 − 2f3 + g1 − ig2 + 2h3)

1
6
(2d3 − f1 − if2 − 2g3 + h1 + ih2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
0
0
0

P 1
1

P 1
2

P 1
3

P 1
4

P 2
1

P 2
2

P 2
3

P 2
4

P 3
1

P 3
2

P 3
3

P 3
4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
0
0
0

P 1
1

P 1
2

−P 1
1

−P 1
2

P 2
1

P 2
2

−P 2
1

−P 2
2

P 3
1

P 3
2

−P 3
1

−P 3
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
0
0
0

P1

P2

−P1

−P2

P3

P4

−P3

−P4

P5

P6

−P5

−P6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

While performing the non-relativistic approximation, we should consider Ψ+ as large component, and
Ψ−, Ψ0 as small ones:

Pi << Li, Si << Li ; (12)

in total we have the following 20 variables:

Ψ+, {L1, ..., L6}; Ψ0, {S1, ..., S8}; Ψ−, {P1, ..., P6}. (13)

3. Constraints for large and small components

Let us consider equations, defining the large variables L1, ..., L6; we preserve only six independent ones:

1 L1 =
1

6
(d3 + 2f1 − if2 + g3 + 2h1 − ih2)

5 L3 = −1

6
i (d3 − f1 + 2if2 + g3 − h1 + 2ih2)

10 L6 =
1

6
(2d3 + f1 + if2 + 2g3 + h1 + ih2)

=⇒ L1 + iL3 − L6 = 0; (14)

2 L2 =
1

6
(2d1 + id2 − f3 + 2g1 + ig2 − h3)

6 L4 = −1

6
i (d1 + 2id2 + f3 + g1 + 2ig2 + h3)

9 L5 =
1

6
(−d1 + id2 + 2f3 − g1 + ig2 + 2h3)

=⇒ L2 − iL4 + L5 = 0. (15)
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Therefore, exist only four independent variables; for definiteness we eliminate L3 and L4:

iL3 = L6 − L1, iL4 = L5 + L2. (16)

Let us consider the constituents of Ψ−:

Ψ− =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
6 (−d3 + 2f1 − if2 + g3 − 2h1 + ih2)
1
6 (−2d1 − id2 − f3 + 2g1 + ig2 + h3)
1
6 (d3 − 2f1 + if2 − g3 + 2h1 − ih2)
1
6 (2d1 + id2 + f3 − 2g1 − ig2 − h3)

1
6 i (d3 + f1 − 2if2 − g3 − h1 + 2ih2)
1
6 i (d1 + 2id2 − f3 − g1 − 2ig2 + h3)

− 1
6 i (d3 + f1 − 2if2 − g3 − h1 + 2ih2)

−1
6 i (d1 + 2id2 − f3 − g1 − 2ig2 + h3)

1
6 (d1 − id2 + 2f3 − g1 + ig2 − 2h3)

1
6 (−2d3 + f1 + if2 + 2g3 − h1 − ih2)
1
6 (−d1 + id2 − 2f3 + g1 − ig2 + 2h3)
1
6 (2d3 − f1 − if2 − 2g3 + h1 + ih2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+P1

+P2

−P1

−P2

+P3

+P4

−P3

−P4

+P5

+P6

−P5

−P6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(17)

We readily find two constraints

(A) P1 + iP3 − P6 = 0, (B) P2 − iP4 + P5 = 0; (18)

thew will be needed below. Now let us consider the sum

Ψ0 +Ψ− =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S5 + P1

S6 + P2

S7 − P1

S8 − P2

iS5 + P3

iS6 + P4

iS7 − P3

iS8 − P4

S6 + P5

−S5 + P6

S8 − P5

−S7 − P6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+y1
+y2
+y3
+y4

+y5
+y6
+y7
+y8

+y9
+y10
+y11
+y12

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (19)

where we introduce new notations y1, ..., y12:

S5 + P1 = y1, S6 + P2 = y2, S7 − P1 = y3, S8 − P2 = y4,

iS5 + P3 = y5, iS6 + P4 = y6, iS7 − P3 = y7, iS8 − P4 = y8,

S6 + P5 = y9, −S5 + P6 = y10, S8 − P5 = y11, −S7 − P6 = y12.

(20)

so that

Ψ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S1

S2

S3

S4

S5 + L1 + P1

S6 + L2 + P2

S7 + L1 − P1

S8 + L2 − P2

iS5 + L3 + P3

iS6 + L4 + P4

iS7 + L3 − P3

iS8 + L4 − P4

S6 + L5 + P5

−S5 + L6 + P6

S8 + L5 − P5

−S7 + L6 − P6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S1

S2

S3

S4

L1 + y1
L2 + y2
L1 + y3
L2 + y4
L3 + y5
L4 + y6
L3 + y7
L4 + y8
L5 + y9
L6 + y10
L5 + y11
L6 + y12

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(∗)

We can combine the above variables as follows

y1 + y3 = S5 + S7, y2 + y4 = S6 + S8, y5 + y7 = i(S5 + S7),

y6 + y8 = i(S6 + S8), y9 + y11 = S6 + S8, y10 + y12 = −(S5 + S7);
(21)
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the we get

1) y1 − y3 = S5 − S7 + 2P1,

2) y2 − y4 = S6 − S8 + 2P2,

3) y5 − y7 = i(S5 − S7) + 2P3,

4) y6 − y8 = i(S6 − S8) + 2P4,

5) y9 − y11 = S6 − S8 + 2P5,

6) y10 − y12 = −(S5 − S7) + 2P6.

(22)

From the system (21) we derive six identities (from which only four ones are independent)

(y1 + y3) + (y10 + y12) = 0, (y1 + y3) + i(y5 + y7) = 0, (y10 + y12) = i(y5 + y7);

(y2 + y4)− (y9 + y11) = 0, (y2 + y4) + i(y6 + y8) = 0, (y9 + y11) = −i(y6 + y8).
(23)

Relations (22)

P1 + iP3 − P6 = 0, P2 − iP4 + P5 = 0;

taking into account eqs. (18), we combine as follows

1) + i · 3)− 6), 2)− i · 4) + 5).

In this way, we obtain

S5 − S7 = (y1 − y3) + i(y5 − y7)− (y10 − y12),

3(S6 − S8) = (y2 − y4)− i(y6 − y8) + (y9 − y11).
(24)

In turn, from (21), it follows

y1 + y3 = S5 + S7, y2 + y4 = S6 + S8.

Therefore, the four variables S5, S6, S7, S8 may be expressed through the y-variables.

4. The non-relativistic approximation

The non-relativistic approximation is possible only for space-time models with the following structure

dS2 = (dx0)2 + gij(x)dx
idxj , e(a)α(x) =

∣∣∣∣ 1 0
0 e(i)k(x)

∣∣∣∣ . (25)

In this case, the components of the connection have the structure

Σ0 =
1

2
J ikem(i) (∇0e(k)m) , Σl =

1

2
J ikem(i) (∇le(k)m) , (26)

it should be noted that any contributions in the connections due to generators J0k vanish identically. So
the generally covariant matrix equations for a spin 3/2 particle has the form(

Y 0D̄0 + Y 1D̄1 + Y 2D̄2 + Γ3D̄3 + iM
)
Ψ = 0, (27)

where

D̄0 = (∂0 + ieA0) + (σ23 ⊗ I + I ⊗ j23)γ[23]0 + (σ31 ⊗ I + I ⊗ j31)γ[31]0 + (σ12 ⊗ I + I ⊗ j12)γ[12]0,

D̄1 = ek(1)(∂k + ieAk) + (σ23 ⊗ I + I ⊗ j23)γ[23]1 + (σ31 ⊗ I + I ⊗ j31)γ[31]1 + (σ12 ⊗ I + I ⊗ j12)γ[12]1,

D̄2 = ek(2)(∂k + ieAk) + (σ23 ⊗ I + I ⊗ j23)γ[23]2 + (σ31 ⊗ I + I ⊗ j31)γ[31]2 + (σ12 ⊗ I + I ⊗ j12)γ[12]2,

D̄3 = (∂k + ieAk) + (σ23 ⊗ I + I ⊗ j23)γ[23]3 + (σ31 ⊗ I + I ⊗ j31)γ[31]3 + (σ12 ⊗ I + I ⊗ j12)γ[12]3.

(28)
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In diagonal metrics, expressions for derivatives (28) simplify. The terms in eq. (27) may be presented as

Y 0D̄0Ψ = Y 0
[
D0Ψ+ (σ23Ψ+Ψj̃23)G10 + (σ31Ψ+Ψj̃31)G20 + (σ12Ψ+Ψj̃12)G30

]
,

Y 1D̄1Ψ = Y 1
[
D1Ψ+ (σ23Ψ+Ψj̃23)G11 + (σ31Ψ+Ψj̃31)G21 + (σ12Ψ+Ψj̃12)G31

]
,

Y 2D̄2Ψ = Y 2
[
D2Ψ+ (σ23Ψ+Ψj̃23)G12 + (σ31Ψ+Ψj̃31)G22 + (σ12Ψ+Ψj̃12)G32

]
,

Y 3D̄3Ψ = Y 3
[
D3Ψ+ (σ23Ψ+Ψj̃23)G13 + (σ31Ψ+Ψj̃31)G23 + (σ12Ψ+Ψj̃12)G33

]
;

(29)

where we have used the shortening notations for the Ricci rotation coefficients

G10 = γ230, G20 = γ310, G30 = γ120,

G11 = γ231, G21 = γ311, G31 = γ121,

G12 = γ232, G22 = γ312, G32 = γ122,

G13 = γ233, G23 = γ313, G33 = γ123.

(30)

In equation (
Y 0D̄0 + Y 1D̄1 + Y 2D̄2 + Y 3D̄3 + iM

)
Ψ = 0,

one can distinguish two parts(
Y 0D0 + Y 1D1 + Y 2D2 + Y 3D3 + iM

)
Ψ+

(
Q0Ψ+Q1Ψ+Q2Ψ+Q3Ψ

)
= 0, (31)

where D0 = (∂0 + ieA0), D1 = ek(1)(∂k + ieAk), D2 = ek(2)(∂k + ieAk), D̄3 = (∂k + ieAk), and

Q0Ψ = Y 0
[
(σ23Ψ+Ψj̃23)G10 + (σ31Ψ+Ψj̃31)G20 + (σ12Ψ+Ψj̃12)G30

]
,

Q1Ψ = Y 1
[
(σ23Ψ+Ψj̃23)G11 + (σ31Ψ+Ψj̃31)G21 + (σ12Ψ+Ψj̃12)G31

]
,

Q2Ψ = Y 2
[
(σ23Ψ+Ψj̃23)G12 + (σ31Ψ+Ψj̃31)G22 + (σ12Ψ+Ψj̃12)G32

]
,

Q3Ψ = Y 3
[
(σ23Ψ+Ψj̃23)G13 + (σ31Ψ+Ψj̃31)G23 + (σ12Ψ+Ψj̃12)G33

]
.

(32)

We need expressions for three generators

j12 =

∣∣∣∣∣∣∣
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

∣∣∣∣∣∣∣ , j31 =

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

∣∣∣∣∣∣∣ , j23 =

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

∣∣∣∣∣∣∣ ,
After performing the needed calculations, we derive 16 equations with respect to large L.. and small

y.. components (equations are collected in pairs)

1
2

3
D0(y4 − iy8 + y11) +

1

3
D1(L1 − 2S4 − iy7 + y12) +

1

3
iD2(L1 − L6 + 2S4 + y3 − y12)+

+
1

3
D3(L5 − 2S3 − y4 + iy8) + iMS1+

+G33(−iL5 + i(2S3 + y4) + y8) +G12(−L2 − 3L5 + 2S3 + y4 − 2iy8 − y11) +G11(−iL2 + 2iS3 + y8 + iy11)+

+iG22(L2 + L5 + 2S3 + y4 + y11)− 2iG30(y4 − iy8 + y11) +G21(−L2 + 2L5 − 2S3 − 2y4 + iy8 + y11)+

+iG13(2L1−3L6+2S4+y3−iy7−2y12)+G23(−2L1−L6+2S4−y3+iy7−2y12)−iG31(3L1−2L6+2S4+2y3−iy7−y12)−
−2G20(y3 + iy7 − y12) + 2G10(−iy3 + y7 + iy12) +G32(3L1 − L6 − 2S4 + y3 − 2iy7 + y12) = 0,

3

−2

3
D0(y2 − iy6 + y9) +

1

3
D1(L1 + 2S2 − iy5 + y10) +

1

3
iD2(L1 − L6 − 2S2 + y1 − y10)+

+
1

3
D3(L5 + 2S1 − y2 + iy6) + iMS3+

G33(y6 − i(L5 + 2S1 − y2)) +G12(−L2 − 3L5 − 2S1 + y2 − 2iy6 − y9) +G11(−iL2 − 2iS1 + y6 + iy9)+

+iG22(L2 + L5 − 2S1 + y2 + y9) + 2iG30(y2 − iy6 + y9) +G21(−L2 + 2L5 + 2S1 − 2y2 + iy6 + y9)+

+iG13(2L1−3L6−2S2+y1−iy5−2y10)+G23(−2L1−L6−2S2−y1+iy5−2y10)−iG31(3L1−2L6−2S2+2y1−iy5−y10)+
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+2iG10(y1 + iy5 − y10) + 2G20(y1 + iy5 − y10) +G32(3L1 − L6 + 2S2 + y1 − 2iy5 + y10) = 0,

2
2

3
D0(y3 + iy7 − y12) +

1

3
D1(L2 − 2S3 + iy8 − y11)−

1

3
iD2(L2 + L5 + 2S3 + y4 + y11)+

+
1

3
D3(L6 + 2S4 + y3 + iy7) + iMS2+

+iG33(L6 + 2S4 + y3 + iy7) +G32(3L2 + L5 − 2S3 + y4 + 2iy8 − y11)− 2iG10(y4 − iy8 + y11)+

+2G20(y4 − iy8 + y11) + iG31(3L2 + 2L5 + 2S3 + 2y4 + iy8 + y11) +G23(−2L2 + L5 + 2S3 − y4 − iy8 + 2y11)−
−iG13(2L2 + 3L5 + 2S3 + y4 + iy8 + 2y11) + iG22(L1 − L6 + 2S4 + y3 − y12) + 2iG30(y3 + iy7 − y12)+

+G12(L1 − 3L6 − 2S4 − y3 − 2iy7 − y12)− iG11(L1 − 2S4 − iy7 + y12)+G21(L1 +2L6 +2S4 +2y3 + iy7 + y12) = 0,

4 − 2

3
D0(y1 + iy5 − y10) +

1

3
D1(L2 + 2S1 + iy6 − y9)−

1

3
iD2(L2 + L5 − 2S1 + y2 + y9)+

+
1

3
D3(L6 − 2S2 + y1 + iy5) + iMS4+,

+iG33(L6 − 2S2 + y1 + iy5) +G32(3L2 + L5 + 2S1 + y2 + 2iy6 − y9) + 2iG10(y2 − iy6 + y9)−
−2G20(y2 − iy6 + y9) + iG31(3L2 + 2L5 − 2S1 + 2y2 + iy6 + y9) +G23(−2L2 + L5 − 2S1 − y2 − iy6 + 2y9)−

−iG13(2L2+3L5−2S1+y2+ iy6+2y9)+ iG22(L1−L6−2S2+y1−y10)+G12(L1−3L6+2S2−y1−2iy5−y10)+

+2G30(−iy1 + y5 + iy10)− iG11(L1 + 2S2 − iy5 + y10) +G21(L1 + 2L6 − 2S2 + 2y1 + iy5 + y10) = 0,

5
1

3
D0(3L1 + 2y3 − iy7 + y12)−

2

3
D1(L2 + S3 + iy8 − y11) +

1

3
iD2(2L2 − L5 + S3 + 2y4 − y11)+

+
1

3
D3(−3L1 + L6 − S4 − 2y3 + iy7) + iM(L1 + y1)+

+G33(9iL1−i(5L6+S4−4y3)+5y7)+G23(L2−5L5−S3+2y4−iy8−4y11)+iG13(L2−3L5+S3+2y4−iy8−2y11)+

+G32(−6L2−5L5+S3−2y4−4iy8−y11)+G10(−3iL2−2iy4+y8+ iy11)−2iG313L2+2L5−S3+2y4+ iy8+y11)+

+G20(−3L2+6L5−4y4+ iy8+5y11)+G12(4L1−3L6+S4+2y3−2iy7−y12)− iG30(9L1−6L6+4y3−5iy7−y12)+

+2iG11(L1 + S4 − iy7 + y12)− 2G21(L1 + 2L6 − S4 + 2y3 + iy7 + y12) + iG22(4L1 + 5L6 − S4 + 4y3 + 5y12),

7

1

3
D0(3L1 + 2y1 − iy5 + y10)−

2

3
D1(−L2 + S1 − iy6 + y9) +

1

3
iD2(−2L2 + L5 + S1 − 2y2 + y9)+

+
1

3
D3(3L1 − L6 − S2 + 2y1 − iy5) + iM(L1 + y3)+

G33(−i(9L1 − 5L6 + S2 + 4y1)− 5y5)− iG13(L2 − 3L5 − S1 + 2y2 − iy6 − 2y9) +G10(−3iL2 − 2iy2 + y6 + iy9)+

+2iG31(3L2+2L5+S1+2y2+iy6+y9)+G32(6L2+5L5+S1+2y2+4iy6+y9)+G23(−L2+5L5−S1−2y2+iy6+4y9)+

+G20(−3L2 + 6L5 − 4y2 + iy6 + 5y9)− iG30(9L1 − 6L6 + 4y1 − 5iy5 − y10)− 2iG11(L1 − S2 − iy5 + y10)+

+2G21(L1+2L6+S2+2y1+iy5+y10)+G12(−4L1+3L6+S2−2y1+2iy5+y10)−iG224L1+5L6+S2+4y1+5y10) = 0,

6
1

3
D0(3L2 + 2y4 + iy8 − y11)−

2

3
D1(L1 + S4 − iy7 + y12)−

1

3
iD2(2L1 + L6 + S4 + 2y3 + y12)+

+
1

3
D3(3L2 + L5 + S3 + 2y4 + iy8) + iM(L2 + y2)+

iG33(9L2 +5L5 −S3 +4y4 +5iy8) + iG22(4L2 − 5L5 −S3 +4y4 − 5y11) + 2G21(L2 − 2L5 −S3 +2y4 − iy8 − y11)+

+2iG11(L2 + S3 + iy8 − y11) +G12(−4L2 − 3L5 − S3 − 2y4 − 2iy8 − y11) + iG30(9L2 + 6L5 + 4y4 + 5iy8 + y11)+

+2iG31(3L1−2L6−S4+2y3− iy7−y12)− iG10(3L1+2y3− iy7+y12)+G32(−6L1+5L6+S4−2y3+4iy7+y12)−
−iG13(L1+3L6+S4+2y3+ iy7+2y12)+G23(L1+5L6−S4+2y3+ iy7+4y12)+G20(3L1+6L6+4y3+ iy7+5y12),

8
1

3
D0(3L2 + 2y2 + iy6 − y9) +

2

3
D1(L1 − S2 − iy5 + y10) +

1

3
iD2(2L1 + L6 − S2 + 2y1 + y10)+

+
1

3
D3(−3L2 − L5 + S1 − 2y2 − iy6) + iM(L2 + y4)+

+G33(5y6 − i(9L2 +5L5 +S1 +4y2))− iG22(4L2 − 5L5 +S1 +4y2 − 5y9)− 2G21(L2 − 2L5 +S1 +2y2 − iy6 − y9)−
−2iG11(L2 − S1 + iy6 − y9) +G12(4L2 + 3L5 − S1 + 2y2 + 2iy6 + y9) + iG30(9L2 + 6L5 + 4y2 + 5iy6 + y9)+

+G23(−L1−5L6−S2−2y1−iy5−4y10)−2iG31(3L1−2L6+S2+2y1−iy5−y10)+G32(6L1−5L6+S2+2y1−4iy5−y10)−
−iG10(3L1 + 2y1 − iy5 + y10) + iG13(L1 + 3L6 − S2 + 2y1 + iy5 + 2y10) +G20(3L1 + 6L6 + 4y1 + iy5 + 5y10),
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9

1

3
iD0(3L1 − 3L6 + y3 − 2iy7 − y12) +

1

3
iD1(2L2 + 3L5 − S3 + 2iy8 + y11) +

2

3
D2(L2 + L5 − S3 + y4 + y11)+

+
1

3
iD3(−3L1 + 2L6 + S4 − y3 + 2iy7) +M(−L1 + L6 + iy5)+

+G33(−9L1+4L6−S4−5y3+4iy7)+G10(−3L2−9L5+y4−4iy8−5y11)+2iG32(3L2+L5+S3+y4+2iy8−y11)+

+G31(−6L2−L5−S3−4y4−2iy8+y11)+iG20(3L2+3L5+y4+2iy8+y11)−iG23(L2+4L5−S3−y4+2iy8+2y11)+

+G13(L2+6L5+S3−y4+2iy8+4y11)+2iG12(L1−3L6+S4−y3−2iy7−y12)+2G22(−L1+L6+S4−y3+y12)−
−iG21(4L1−L6−S4+2y3−2iy7+y12)+G30(9L1−3L6+5y3−4iy7+y12)+G11(−4L1+9L6−S4+4iy7+5y12),

11

1

3
iD0(3L1 − 3L6 + y1 − 2iy5 − y10)−

1

3
iD1(2L2 + 3L5 + S1 + 2iy6 + y9)−

2

3
D2(L2 + L5 + S1 + y2 + y9)+

+
1

3
iD3(3L1 − 2L6 + S2 + y1 − 2iy5) +M(−L1 + L6 + iy7)+

+G33(9L1−4L6−S2+5y1−4iy5)+G10(−3L2−9L5+y2−4iy6−5y9)+G13(−L2−6L5+S1+y2−2iy6−4y9)−
−2iG32(3L2+L5−S1+y2+2iy6−y9)+G31(6L2+L5−S1+4y2+2iy6−y9)+ iG20(3L2+3L5+y2+2iy6+y9)+

+iG23(L2 + 4L5 + S1 − y2 + 2iy6 + 2y9) +G11(4L1 − 9L6 − S2 − 4iy5 − 5y10) + 2G22(L1 − L6 + S2 + y1 − y10)−
−2iG12(L1−3L6−S2−y1−2iy5−y10)+iG21(4L1−L6+S2+2y1−2iy5+y10)+G30(9L1−3L6+5y1−4iy5+y10) = 0,

10

−1

3
iD0(3L2 + 3L5 + y4 + 2iy8 + y11) +

1

3
iD1(−2L1 + 3L6 + S4 + 2iy7 + y12)−

2

3
D2(−L1 + L6 + S4 − y3 + y12)−

−1

3
iD3(3L2 + 2L5 − S3 + y4 + 2iy8) +M(L2 + L5 + iy6)+

+G33(9L2 +4L5 +S3 +5y4 +4iy8)− iG21(4L2 +L5 −S3 +2y4 +2iy8 − y11)+G30(9L2 +3L5 +5y4 +4iy8 − y11)+

+2G22(L2 +L5 − S3 + y4 + y11) + 2iG12(L2 + 3L5 + S3 − y4 + 2iy8 + y11) +G11(4L2 + 9L5 + S3 + 4iy8 + 5y11)+

+G103L1−9L6−y3−4iy7−5y12)+G13(L1−6L6+S4−y3−2iy7−4y12)+ iG23(L1−4L6−S4−y3−2iy7−2y12)+

+iG20(3L1−3L6+y3−2iy7−y12)+G31(−6L1+L6−S4−4y3+2iy7−y12)−2iG32(3L1−L6+S4+y3−2iy7+y12),

12

−1

3
iD0(3L2 + 3L5 + y2 + 2iy6 + y9) +

1

3
iD1(2L1 − 3L6 + S2 − 2iy5 − y10)−

2

3
D2(L1 − L6 + S2 + y1 − y10)+

+
1

3
iD3(3L2 + 2L5 + S1 + y2 + 2iy6) +M(L2 + L5 + iy8)+

+G33(−9L2−4L5+S1−5y2−4iy6)+G11−4L2−9L5+S1−4iy6−5y9)+ iG21(4L2+L5+S1+2y2+2iy6−y9)+

+G30(9L2 + 3L5 + 5y2 + 4iy6 − y9)− 2G22(L2 + L5 + S1 + y2 + y9)− 2iG12(L2 + 3L5 − S1 − y2 + 2iy6 + y9)+

+G10(3L1 − 9L6 − y1 − 4iy5 − 5y10)− iG23(L1 − 4L6 +S2 − y1 − 2iy5 − 2y10)+ iG20(3L1 − 3L6 + y1 − 2iy5 − y10)+

+2iG32(3L1−L6−S2+y1−2iy5+y10)+G31(6L1−L6−S2+4y1−2iy5+y10)+G13(−L1+6L6+S2+y1+2iy5+4y10),

13

1

3
D0(3L5 − y4 + iy8 + 2y11) +

1

3
D1(L1 − 3L6 + S4 − iy7 − 2y12) +

1

3
iD2(L1 + 2L6 − S4 + y3 + 2y12)−

−2

3
D3(L5 + S3 − y4 + iy8) + iM(L5 + y9)+

+2iG33(L5 + S3 − y4 + iy8)− iG22(5L2 − 4L5 + S3 + 5y4 − 4y11) +G21(5L2 − L5 + S3 + 4y4 + iy8 − 2y11)+

+G30(−3iL5 + iy4 + y8 − 2iy11) +G12(5L2 +6L5 − S3 + y4 +4iy8 +2y11) + iG11(5L2 +9L5 − S3 +5iy8 +4y11)+

+G20(−6L1−3L6−5y3+iy7−4y12)+iG10(6L1−9L6+y3−5iy7−4y12)−2iG13(2L1−3L6−S4+y3−iy7−2y12)+

+G32(3L1−4L6+S4+y3−2iy7−2y12)+2G23(2L1+L6+S4+y3−iy7+2y12)−iG313L1+L6−S4+2y3−iy7+2y12),

15

1

3
D0(3L5 − y2 + iy6 + 2y9) +

1

3
D1(−L1 + 3L6 + S2 + iy5 + 2y10)−

1

3
iD2(L1 + 2L6 + S2 + y1 + 2y10)−

−2

3
D3(−L5 + S1 + y2 − iy6) + iM(L5 + y11)+

+G33(−2iL5 +2i(S1 + y2)+ 2y6)+ iG22(5L2 − 4L5 −S1 +5y2 − 4y9) +G12(−5L2 − 6L5 −S1 − y2 − 4iy6 − 2y9)+

+G30(−3iL5 + iy2 + y6 − 2iy9) +G21(−5L2 + L5 + S1 − 4y2 − iy6 + 2y9)− iG11(5L2 + 9L5 + S1 + 5iy6 + 4y9)+

+G20(−6L1−3L6−5y1+iy5−4y10)+iG10(6L1−9L6+y1−5iy5−4y10)+2iG13(2L1−3L6+S2+y1−iy5−2y10)−

208



Non-relativistic Approximation for a Spin 3/2 Particle in Presence of Electromagnetic and
Gravitational Fields

−2G23(2L1+L6−S2+y1−iy5+2y10)+iG31(3L1+L6+S2+2y1−iy5+2y10)+G32(−3L1+4L6+S2−y1+2iy5+2y10),

14

1

3
D0(3L6 + y3 + iy7 + 2y12) +

1

3
D1(−L2 − 3L5 − S3 − iy8 − 2y11) +

1

3
iD2(L2 − 2L5 − S3 + y4 − 2y11)+

+
2

3
D3(L6 − S4 + y3 + iy7) + iM(L6 + y10)+

+2iG33(L6 −S4 + y3 + iy7)− 2G23(2L2 −L5 +S3 + y4 + iy8 − 2y11) +G32(−3L2 − 4L5 −S3 − y4 − 2iy8 − 2y11)−
−2iG13(2L2+3L5−S3+y4+iy8+2y11)+G20(−6L2+3L5−5y4−iy8+4y11)−iG10(6L2+9L5+y4+5iy8+4y11)+

+G31i(L5+S3−2y4−iy8+2y11)−3iL2)+G12(5L1−6L6−S4+y3−4iy7−2y12)+G21(5L1+L6+S4+4y3−iy7+2y12)+

+iG30(3L6 + y3 + iy7 + 2y12) + iG22(5L1 + 4L6 + S4 + 5y3 + 4y12) +G11(i(9L6 + S4 + 5iy7 + 4y12)− 5iL1),

16

1

3
D0(3L6 + y1 + iy5 + 2y10) +

1

3
D1(L2 + 3L5 − S1 + iy6 + 2y9)−

1

3
iD2(L2 − 2L5 + S1 + y2 − 2y9)−

−2

3
D3(L6 + S2 + y1 + iy5) + iM(L6 + y12)+

+G33(2y5 − 2i(L6 + S2 + y1)) + 2G23(2L2 − L5 − S1 + y2 + iy6 − 2y9) + iG31(3L2 − L5 + S1 + 2y2 + iy6 − 2y9)+

+2iG13(2L2+3L5+S1+y2+iy6+2y9)+G32(3L2+4L5−S1+y2+2iy6+2y9)+G20(−6L2+3L5−5y2−iy6+4y9)−
−iG10(6L2+9L5+y2+5iy6+4y9)+ iG11(5L1−9L6+S2−5iy5−4y10)+G21(−5L1−L6+S2−4y1+ iy5−2y10)+

+iG303L6 + y1 + iy5 + 2y10) +G12(−5L1 + 6L6 − S2 − y1 + 4iy5 + 2y10)− iG22(5L1 + 4L6 − S2 + 5y1 + 4y10).

In each pair, we sum and subtract equations; besides, we separate the rest energy by formal change

D0 ⇒ (−iM +D0).

In this way, we obtain
1 + 3

−2

3
(y2 − y4 − iy6 + iy8 + y9 − y11)D0 +

1

3
D1 (2L1 + 2S2 − 2S4 − iy5 − iy7 + y10 + y12)+

+
1

3
iD2 (2L1 − 2L6 − 2S2 + 2S4 + y1 + y3 − y10 − y12) +

1

3
D3 (2L5 + 2S1 − 2S3 − y2 − y4 + i (y6 + y8))+

+M

(
i (S1 + S3) +

2

3
i (y2 − y4 − iy6 + iy8 + y9 − y11)

)
+

+G11(−2iL2 − 2iS1 + 2iS3 + y6 + y8 + i(y9 + y11))

+iG22(2L2 + 2L5 − 2S1 + 2S3 + y2 + y4 + y9 + y11)

+G33(−2iL5 − 2iS1 + 2iS3 + iy2 + iy4 + y6 + y8)

+2iG10(y1−y3+ iy5− iy7−y10+y12)+2G20(y1−y3+ iy5− iy7−y10+y12)+2iG30(y2−y4− iy6+ iy8+y9−y11)

+G12(−2L2 − 6L5 − 2S1 + 2S3 + y2 + y4 − 2iy6 − 2iy8 − y9 − y11)

+G21(−2L2 + 4L5 + 2S1 − 2S3 − 2y2 − 2y4 + iy6 + iy8 + y9 + y11)

+iG13(4L1 − 6L6 − 2S2 + 2S4 + y1 + y3 − i(y5 + y7)− 2y10 − 2y12)

−iG31(6L1 − 4L6 − 2S2 + 2S4 + 2y1 + 2y3 − i(y5 + y7)− y10 − y12)

+G23(−4L1 − 2L6 − 2S2 + 2S4 − y1 − y3 + i(y5 + y7 + 2i(y10 + y12)))

+G32(6L1 − 2L6 + 2S2 − 2S4 + y1 + y3 − 2iy5 − 2iy7 + y10 + y12) = 0,

1− 3
2

3
(y2 + y4 − iy6 − iy8 + y9 + y11)D0 +

1

3
D1 (−2S2 − 2S4 + iy5 − iy7 − y10 + y12)+

+
1

3
iD2 (2S2 + 2S4 − y1 + y3 + y10 − y12) +

1

3
D3 (−2S1 − 2S3 + y2 − y4 − iy6 + iy8)+

+M

(
i (S1 − S3)−

2

3
i (y2 + y4 − iy6 − iy8 + y9 + y11)

)
+

+G11(2iS1+2iS3−y6+y8−iy9+iy11)+iG22(2S1+2S3−y2+y4−y9+y11)+G33(y8+i(2S1+2S3−y2+y4+iy6))

−2iG10(y1+y3+i(y5+y7+i(y10+y12)))−2G20(y1+y3+i(y5+y7+i(y10+y12)))−2iG30(y2+y4−iy6−iy8+y9+y11)

+G12(2S1 + 2S3 − y2 + y4 + 2iy6 − 2iy8 + y9 − y11) +G21(−2S1 − 2S3 + 2y2 − 2y4 − iy6 + iy8 − y9 + y11)

+iG13(2S2 + 2S4 − y1 + y3 + iy5 − iy7 + 2y10 − 2y12)− iG31(2S2 + 2S4 − 2y1 + 2y3 + iy5 − iy7 + y10 − y12)

+G23(2S2 + 2S4 + y1 − y3 − iy5 + iy7 + 2y10 − 2y12) +G32(−2S2 − 2S4 − y1 + y3 + 2iy5 − 2iy7 − y10 + y12) = 0,
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2 + 4

−2

3
(y1 − y3 + iy5 − iy7 − y10 + y12)D0 +

1

3
D1 (2L2 + 2S1 − 2S3 + i (y6 + y8 + i (y9 + y11)))−

−1

3
iD2 (2L2 + 2L5 − 2S1 + 2S3 + y2 + y4 + y9 + y11) +

1

3
D3 (2L6 − 2S2 + 2S4 + y1 + y3 + i (y5 + y7))+

+M

(
i (S2 + S4) +

2

3
i (y1 − y3 + iy5 − iy7 − y10 + y12)

)
−iG11(2L1 + 2S2 − 2S4 − iy5 − iy7 + y10 + y12) + iG22(2L1 − 2L6 − 2S2 + 2S4 + y1 + y3 − y10 − y12)

+iG33(2L6 − 2S2 + 2S4 + y1 + y3 + i(y5 + y7))

+2iG10(y2−y4−iy6+iy8+y9−y11)+G20(2(y4−iy8+y11)−2(y2−iy6+y9))−2iG30(y1−y3+iy5−iy7−y10+y12)

+G12(2L1 − 6L6 + 2S2 − 2S4 − y1 − y3 − 2iy5 − 2iy7 − y10 − y12)

+G21(2L1 + 4L6 − 2S2 + 2S4 + 2y1 + 2y3 + iy5 + iy7 + y10 + y12)

−iG13(4L2 + 6L5 − 2S1 + 2S3 + y2 + y4 + iy6 + iy8 + 2(y9 + y11))

+iG31(6L2 + 4L5 − 2S1 + 2S3 + 2y2 + 2y4 + iy6 + iy8 + y9 + y11)

+G23(−4L2 + 2L5 − 2S1 + 2S3 − y2 − y4 − i(y6 + y8 + 2i(y9 + y11)))

+G32(6L2 + 2L5 + 2S1 − 2S3 + y2 + y4 + 2iy6 + 2iy8 − y9 − y11) = 0,

2− 4
2

3
(y1 + y3 + i (y5 + y7 + i (y10 + y12)))D0 +

1

3
D1 (−2S1 − 2S3 − iy6 + iy8 + y9 − y11)−

−1

3
iD2 (2S1 + 2S3 − y2 + y4 − y9 + y11) +

1

3
D3 (2S2 + 2S4 − y1 + y3 − iy5 + iy7)+

+M

(
i (S2 − S4)−

2

3
i (y1 + y3 + i (y5 + y7 + i (y10 + y12)))

)
+G11(2iS2+2iS4+y5−y7+i(y10−y12))+iG22(2S2+2S4−y1+y3+y10−y12)+G33(2iS2+2iS4−iy1+iy3+y5−y7)

−2iG10(y2+y4− iy6− iy8+y9+y11)+2G20(y2+y4− iy6− iy8+y9+y11)+2iG30(y1+y3+ i(y5+y7+ i(y10+y12)))

+G12(−2S2 − 2S4 + y1 − y3 + 2iy5 − 2iy7 + y10 − y12) +G21(2S2 + 2S4 − 2y1 + 2y3 − iy5 + iy7 − y10 + y12)

−iG13(2S1 + 2S3 − y2 + y4 − iy6 + iy8 − 2y9 + 2y11) + iG31(2S1 + 2S3 − 2y2 + 2y4 − iy6 + iy8 − y9 + y11)

+G23(2S1 + 2S3 + y2 − y4 + iy6 − iy8 − 2y9 + 2y11) +G32(−2S1 − 2S3 − y2 + y4 − 2iy6 + 2iy8 + y9 − y11) = 0,

5 + 7
1

3
D0 (6L1 + 2y1 + 2y3 − iy5 − iy7 + y10 + y12)−

2

3
D1 (S1 + S3 − iy6 + iy8 + y9 − y11)+

+
1

3
iD2 (S1 + S3 − 2y2 + 2y4 + y9 − y11) +

1

3
D3 (−S2 − S4 + 2y1 − 2y3 − iy5 + iy7)+

+
1

3
iM (y1 + y3 + i (y5 + y7 + i (y10 + y12)))

+2iG11(S2+S4+iy5−iy7−y10+y12)−iG22(S2+S4+4y1−4y3+5y10−5y12)+G33(−i(S2+S4+4y1−4y3)−5y5+5y7)

+G10(−6iL2 − 2iy2 − 2iy4 + y6 + y8 + i(y9 + y11)) +G20(−6L2 + 12L5 − 4y2 − 4y4 + iy6 + iy8 + 5(y9 + y11))−
−iG30(18L1 − 12L6 + 4y1 + 4y3 − 5iy5 − 5iy7 − y10 − y12)

+G12(S2 + S4 − 2y1 + 2y3 + 2iy5 − 2iy7 + y10 − y12) + 2G21(S2 + S4 + 2y1 − 2y3 + iy5 − iy7 + y10 − y12)

+iG13(S1 + S3 − 2y2 + 2y4 + iy6 − iy8 + 2y9 − 2y11) + 2iG31(S1 + S3 + 2y2 − 2y4 + iy6 − iy8 + y9 − y11)+

+G23(−S1 − S3 − 2y2 + 2y4 + iy6 − iy8 + 4y9 − 4y11) +G32(S1 + S3 + 2y2 − 2y4 + 4iy6 − 4iy8 + y9 − y11) = 0,

5− 7

1

3
(−2y1 + 2y3 + iy5 − iy7 − y10 + y12)D0 −

2

3
D1 (2L2 − S1 + S3 + i (y6 + y8 + i (y9 + y11)))+

+
1

3
iD2 (4L2 − 2L5 − S1 + S3 + 2y2 + 2y4 − y9 − y11) +

1

3
D3 (−6L1 + 2L6 + S2 − S4 − 2y1 − 2y3 + i (y5 + y7))+

+
1

3
iM (5y1 − 5y3 − iy5 + iy7 + y10 − y12)

+2iG11(2L1 − S2 + S4 − iy5 − iy7 + y10 + y12) + iG22(8L1 + 10L6 + S2 − S4 + 4y1 + 4y3 + 5(y10 + y12))

+iG33(18L1 − 10L6 + S2 − S4 + 4y1 + 4y3 − 5i(y5 + y7))

+G10(2iy2−2iy4−y6+y8−iy9+iy11)+G20(4y2−4y4−iy6+iy8−5y9+5y11)+iG30(4y1−4y3−5iy5+5iy7−y10+y12)

+G12(8L1−6L6−S2+S4+2y1+2y3−2iy5−2iy7−y10−y12)−2G21(2L1+4L6+S2−S4+2y1+2y3+iy5+iy7+y10+y12)

+iG13(2L2 − 6L5 − S1 + S3 + 2y2 + 2y4 − i(y6 + y8)− 2y9 − 2y11)

−2iG31(6L2 + 4L5 + S1 − S3 + 2y2 + 2y4 + iy6 + iy8 + y9 + y11)
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+G23(2L2 − 10L5 + S1 − S3 + 2y2 + 2y4 − i(y6 + y8)− 4y9 − 4y11)

+G32(−12L2 − 10L5 − S1 + S3 − 2y2 − 2y4 − 4iy6 − 4iy8 − y9 − y11) = 0,

6 + 8

1

3
D0 (6L2 + 2y2 + 2y4 + i (y6 + y8 + i (y9 + y11)))−

2

3
D1 (S2 + S4 + iy5 − iy7 − y10 + y12)−

−1

3
iD2 (S2 + S4 − 2y1 + 2y3 − y10 + y12) +

1

3
D3 (S1 + S3 − 2y2 + 2y4 − iy6 + iy8)+

+
1

3
iM (y2 + y4 − iy6 − iy8 + y9 + y11)

+2iG11(S1+S3−iy6+iy8+y9−y11)−iG22(S1+S3+4y2−4y4−5y9+5y11)−iG33(S1+S3+4y2−4y4+5i(y6−y8))

−iG10(6L1 + 2y1 + 2y3 − iy5 − iy7 + y10 + y12) +G20(6L1 + 12L6 + 4y1 + 4y3 + iy5 + iy7 + 5(y10 + y12))

+iG30(18L2 + 12L5 + 4y2 + 4y4 + 5iy6 + 5iy8 + y9 + y11)

+G12(−S1 − S3 + 2y2 − 2y4 + 2iy6 − 2iy8 + y9 − y11)− 2G21(S1 + S3 + 2y2 − 2y4 − iy6 + iy8 − y9 + y11)

−iG13(S2 + S4 − 2y1 + 2y3 − iy5 + iy7 − 2y10 + 2y12)− 2iG31(S2 + S4 + 2y1 − 2y3 − iy5 + iy7 − y10 + y12)

+G23(−S2 − S4 − 2y1 + 2y3 − iy5 + iy7 − 4y10 + 4y12) +G32(S2 + S4 + 2y1 − 2y3 − 4iy5 + 4iy7 − y10 + y12) = 0,

6− 8

1

3
(−2y2 + 2y4 − iy6 + iy8 + y9 − y11)D0 −

2

3
D1 (2L1 − S2 + S4 − iy5 − iy7 + y10 + y12)−

−1

3
iD2 (4L1 + 2L6 − S2 + S4 + 2y1 + 2y3 + y10 + y12) +

1

3
D3 (6L2 + 2L5 − S1 + S3 + 2y2 + 2y4 + i (y6 + y8))+

+
1

3
iM (5y2 − 5y4 + iy6 − iy8 − y9 + y11)

+2iG11(2L2 − S1 + S3 + i(y6 + y8 + i(y9 + y11))) + iG22(8L2 − 10L5 + S1 − S3 + 4y2 + 4y4 − 5(y9 + y11))

+iG33(18L2 + 10L5 + S1 − S3 + 4y2 + 4y4 + 5i(y6 + y8))

G10(2iy1−2iy3+y5−y7+i(y10−y12))+G20(−4y1+4y3−iy5+iy7−5y10+5y12)−iG30(4y2−4y4+5iy6−5iy8+y9−y11)

+G12(−8L2−6L5+S1−S3−2y2−2y4−2iy6−2iy8−y9−y11)+2G21(2L2−4L5+S1−S3+2y2+2y4−i(y6+y8)−y9−y11)

−iG13(2L1 + 6L6 − S2 + S4 + 2y1 + 2y3 + iy5 + iy7 + 2(y10 + y12))

+2iG31(6L1 − 4L6 + S2 − S4 + 2y1 + 2y3 − i(y5 + y7)− y10 − y12)

+G23(2L1 + 10L6 + S2 − S4 + 2y1 + 2y3 + iy5 + iy7 + 4(y10 + y12))

+G32(−12L1 + 10L6 − S2 + S4 − 2y1 − 2y3 + 4iy5 + 4iy7 + y10 + y12) = 0,

9 + 11

1

3
iD0 (6L1 − 6L6 + y1 + y3 − 2iy5 − 2iy7 − y10 − y12)−

1

3
iD1 (S1 + S3 + 2iy6 − 2iy8 + y9 − y11)−

−2

3
D2 (S1 + S3 + y2 − y4 + y9 − y11) +

1

3
iD3 (S2 + S4 + y1 − y3 − 2iy5 + 2iy7)+

+
1

3
M (y1 + y3 + i (y5 + y7 + i (y10 + y12)))

+G11(−S2−S4−4iy5+4iy7−5y10+5y12)+2G22(S2+S4+y1−y3−y10+y12)+G33(−S2−S4+5y1−5y3−4iy5+4iy7)

+G10(−6L2 − 18L5 + y2 + y4 − 4iy6 − 4iy8 − 5(y9 + y11)) + iG20(6L2 + 6L5 + y2 + y4 + 2iy6 + 2iy8 + y9 + y11)

+G30(18L1 − 6L6 + 5y1 + 5y3 − 4iy5 − 4iy7 + y10 + y12)

+2iG12(S2 + S4 + y1 − y3 + 2iy5 − 2iy7 + y10 − y12) + iG21(S2 + S4 + 2y1 − 2y3 − 2iy5 + 2iy7 + y10 − y12)

+G13(S1 + S3 + y2 − y4 − 2iy6 + 2iy8 − 4y9 + 4y11) +G31(−S1 − S3 + 4y2 − 4y4 + 2iy6 − 2iy8 − y9 + y11)+

+iG23(S1 + S3 − y2 + y4 + 2iy6 − 2iy8 + 2y9 − 2y11) + 2iG32(S1 + S3 − y2 + y4 − 2iy6 + 2iy8 + y9 − y11) = 0,

9− 11

−1

3
i (y1 − y3 − 2iy5 + 2iy7 − y10 + y12)D0 +

1

3
iD1 (4L2 + 6L5 + S1 − S3 + 2iy6 + 2iy8 + y9 + y11)+

+
2

3
D2 (2L2 + 2L5 + S1 − S3 + y2 + y4 + y9 + y11)−

1

3
iD3 (6L1 − 4L6 + S2 − S4 + y1 + y3 − 2i (y5 + y7))+

+
1

3
M (−y1 + y3 + 5iy5 − 5iy7 + y10 − y12)

+G11(−8L1 + 18L6 + S2 − S4 + 4iy5 + 4iy7 + 5(y10 + y12))− 2G22(2L1 − 2L6 + S2 − S4 + y1 + y3 − y10 − y12)

+G33(−18L1 + 8L6 + S2 − S4 − 5y1 − 5y3 + 4i(y5 + y7))+

+G10(−y2+y4+4iy6−4iy8+5y9−5y11)−iG20(y2−y4+2iy6−2iy8+y9−y11)+G30(−5y1+5y3+4iy5−4iy7−y10+y12)
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+2iG12(2L1−6L6−S2+S4−y1−y3−2iy5−2iy7−y10−y12)−iG21(8L1−2L6+S2−S4+2y1+2y3−2iy5−2iy7+y10+y12)

+G13(2L2 + 12L5 − S1 + S3 − y2 − y4 + 2iy6 + 2iy8 + 4(y9 + y11))

+G31(−12L2 − 2L5 + S1 − S3 − 4y2 − 4y4 − 2iy6 − 2iy8 + y9 + y11)

−iG23(2L2 + 8L5 + S1 − S3 − y2 − y4 + 2(iy6 + iy8 + y9 + y11))

+2iG32(6L2 + 2L5 − S1 + S3 + y2 + y4 + 2iy6 + 2iy8 − y9 − y11) = 0,

10 + 12

−1

3
iD0 (6L2 + 6L5 + y2 + y4 + 2iy6 + 2iy8 + y9 + y11) +

1

3
iD1 (S2 + S4 − 2iy5 + 2iy7 − y10 + y12)−

−2

3
D2 (S2 + S4 + y1 − y3 − y10 + y12) +

1

3
iD3 (S1 + S3 + y2 − y4 + 2i (y6 − y8))+

+
1

3
M (−y2 − y4 + i (y6 + y8 + i (y9 + y11)))

+G11(S1+S3−4iy6+4iy8−5y9+5y11)−2G22(S1+S3+y2−y4+y9−y11)+G33(S1+S3−5y2+5y4−4iy6+4iy8)

+G10(6L1 − 18L6 − y1 − y3 − 4iy5 − 4iy7 − 5(y10 + y12)) + iG20(6L1 − 6L6 + y1 + y3 − 2iy5 − 2iy7 − y10 − y12)

+G30(18L2 + 6L5 + 5y2 + 5y4 + 4iy6 + 4iy8 − y9 − y11)

+2iG12(S1 + S3 + y2 − y4 − 2iy6 + 2iy8 − y9 + y11) + iG21(S1 + S3 + 2y2 − 2y4 + 2iy6 − 2iy8 − y9 + y11)

+G13(S2 + S4 + y1 − y3 + 2iy5 − 2iy7 + 4y10 − 4y12) +G31(−S2 − S4 + 4y1 − 4y3 − 2iy5 + 2iy7 + y10 − y12)

−iG23(S2 + S4 − y1 + y3 − 2iy5 + 2iy7 − 2y10 + 2y12)− 2iG32(S2 + S4 − y1 + y3 + 2iy5 − 2iy7 − y10 + y12) = 0,

10− 12

1

3
i (y2 − y4 + 2iy6 − 2iy8 + y9 − y11)D0 −

1

3
iD1 (4L1 − 6L6 + S2 − S4 − 2iy5 − 2iy7 − y10 − y12)+

+
2

3
D2 (2L1 − 2L6 + S2 − S4 + y1 + y3 − y10 − y12)−

1

3
iD3 (6L2 + 4L5 + S1 − S3 + y2 + y4 + 2i (y6 + y8))+

+
1

3
M (y2 − y4 + 5iy6 − 5iy8 + y9 − y11)

+G11(8L2 + 18L5 − S1 + S3 + 4iy6 + 4iy8 + 5(y9 + y11)) + 2G22(2L2 + 2L5 + S1 − S3 + y2 + y4 + y9 + y11)

+G33(18L2 + 8L5 − S1 + S3 + 5y2 + 5y4 + 4i(y6 + y8))

+G10(y1−y3+4iy5−4iy7+5y10−5y12)−iG20(y1−y3−2iy5+2iy7−y10+y12)+G30(−5y2+5y4−4iy6+4iy8+y9−y11)

+2iG12(2L2 + 6L5 − S1 + S3 − y2 − y4 + 2iy6 + 2iy8 + y9 + y11)

−iG21(8L2 + 2L5 + S1 − S3 + 2y2 + 2y4 + 2iy6 + 2iy8 − y9 − y11)

+G13(2L1 − 12L6 − S2 + S4 − y1 − y3 − 2i(y5 + y7)− 4y10 − 4y12)

+G31(−12L1 + 2L6 + S2 − S4 − 4y1 − 4y3 + 2iy5 + 2iy7 − y10 − y12)

+iG23(2L1 − 8L6 + S2 − S4 − y1 − y3 − 2i(y5 + y7)− 2y10 − 2y12)

−2iG32(6L1 − 2L6 − S2 + S4 + y1 + y3 − 2iy5 − 2iy7 + y10 + y12) = 0,

13 + 15

1

3
D0 (6L5 − y2 − y4 + iy6 + iy8 + 2 (y9 + y11)) +

1

3
D1 (S2 + S4 + iy5 − iy7 + 2y10 − 2y12)−

−1

3
iD2 (S2 + S4 + y1 − y3 + 2y10 − 2y12)−

2

3
D3 (S1 + S3 + y2 − y4 − iy6 + iy8)+

+
1

3
iM (y2 + y4 − iy6 − iy8 + y9 + y11)

−iG11(S1+S3+5iy6−5iy8+4y9−4y11)−iG22(S1+S3−5y2+5y4+4y9−4y11)+2iG33(S1+S3+y2−y4−iy6+iy8)

+iG10(12L1−18L6+y1+y3−5iy5−5iy7−4(y10+y12))+G20(−12L1−6L6−5y1−5y3+ i(y5+y7+4i(y10+y12)))

+G30(−6iL5 + iy2 + iy4 + y6 + y8 − 2i(y9 + y11))

+G12(−S1 − S3 − y2 + y4 − 4iy6 + 4iy8 − 2y9 + 2y11) +G21(S1 + S3 − 4y2 + 4y4 − iy6 + iy8 + 2y9 − 2y11)

+2iG13(S2 + S4 + y1 − y3 − iy5 + iy7 − 2y10 + 2y12) + iG31(S2 + S4 + 2y1 − 2y3 − iy5 + iy7 + 2y10 − 2y12)

+2G23(S2 + S4 − y1 + y3 + iy5 − iy7 − 2y10 + 2y12) +G32(S2 + S4 − y1 + y3 + 2iy5 − 2iy7 + 2y10 − 2y12) = 0,

13− 15

1

3
(y2 − y4 − iy6 + iy8 − 2y9 + 2y11)D0 +

1

3
D1 (2L1 − 6L6 − S2 + S4 − i (y5 + y7)− 2y10 − 2y12)+

+
1

3
iD2 (2L1 + 4L6 + S2 − S4 + y1 + y3 + 2 (y10 + y12)) +

2

3
D3 (−2L5 + S1 − S3 + y2 + y4 − i (y6 + y8))−
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−1

3
iM (y2 − y4 − iy6 + iy8 − 5y9 + 5y11)

+iG11(10L2 +18L5 +S1 −S3 +5iy6 +5iy8 +4(y9 + y11))− iG22(10L2 − 8L5 −S1 +S3 +5y2 +5y4 − 4(y9 + y11))

+2iG33(2L5 − S1 + S3 − y2 − y4 + i(y6 + y8))

−iG10(y1 − y3 − 5iy5 + 5iy7 − 4y10 + 4y12) +G20(5y1 − 5y3 − iy5 + iy7 + 4y10 − 4y12)

+G30(−iy2 + iy4 − y6 + y8 + 2i(y9 − y11))

+G12(10L2 + 12L5 + S1 − S3 + y2 + y4 + 2(2iy6 + 2iy8 + y9 + y11))

+G21(10L2 − 2L5 − S1 + S3 + 4y2 + 4y4 + i(y6 + y8 + 2i(y9 + y11)))

−2iG13(4L1 − 6L6 + S2 − S4 + y1 + y3 − i(y5 + y7)− 2y10 − 2y12)

−iG31(6L1 + 2L6 + S2 − S4 + 2y1 + 2y3 − i(y5 + y7 + 2i(y10 + y12)))

+2G23(4L1 + 2L6 − S2 + S4 + y1 + y3 − i(y5 + y7 + 2i(y10 + y12)))

+G32(6L1 − 8L6 − S2 + S4 + y1 + y3 − 2i(y5 + y7)− 2y10 − 2y12) = 0,

14 + 16

1

3
D0 (6L6 + y1 + y3 + iy5 + iy7 + 2 (y10 + y12)) +

1

3
D1 (−S1 − S3 + iy6 − iy8 + 2y9 − 2y11)−

−1

3
iD2 (S1 + S3 + y2 − y4 − 2y9 + 2y11)−

2

3
D3 (S2 + S4 + y1 − y3 + i (y5 − y7))−

−1

3
iM (y1 + y3 + i (y5 + y7 + i (y10 + y12)))

+iG11(S2+S4−5iy5+5iy7−4y10+4y12)+iG22(S2+S4−5y1+5y3−4y10+4y12)−2iG33(S2+S4+y1−y3+i(y5−y7))

−iG10(12L2+18L5+y2+y4+5iy6+5iy8+4(y9+y11))+G20(−12L2+6L5−5y2−5y4− i(y6+y8+4i(y9+y11)))

+iG30(6L6 + y1 + y3 + iy5 + iy7 + 2(y10 + y12))

+G12(−S2 − S4 − y1 + y3 + 4iy5 − 4iy7 + 2y10 − 2y12) +G21(S2 + S4 − 4y1 + 4y3 + iy5 − iy7 − 2y10 + 2y12)+

+2iG13(S1 + S3 + y2 − y4 + iy6 − iy8 + 2y9 − 2y11) + iG31(S1 + S3 + 2y2 − 2y4 + iy6 − iy8 − 2y9 + 2y11)

−2G23(S1 + S3 − y2 + y4 − iy6 + iy8 + 2y9 − 2y11) +G32(−S1 − S3 + y2 − y4 + 2iy6 − 2iy8 + 2y9 − 2y11) = 0,

14− 16

1

3
(−y1 + y3 − iy5 + iy7 − 2y10 + 2y12)D0 +

1

3
D1 (−2L2 − 6L5 + S1 − S3 − i (y6 + y8)− 2y9 − 2y11)+

+
1

3
iD2 (2L2 − 4L5 + S1 − S3 + y2 + y4 − 2 (y9 + y11)) +

2

3
D3 (2L6 + S2 − S4 + y1 + y3 + i (y5 + y7))+

+
1

3
iM (y1 − y3 + iy5 − iy7 + 5y10 − 5y12)

−iG11(10L1 − 18L6 +S2 −S4 − 5iy5 − 5iy7 − 4(y10 + y12))+ iG22(10L1 +8L6 −S2 +S4 +5y1 +5y3 +4(y10 + y12))

+2iG33(2L6 + S2 − S4 + y1 + y3 + i(y5 + y7))

+iG10(y2−y4+5iy6−5iy8+4y9−4y11)+G20(5y2−5y4+iy6−iy8−4y9+4y11)+G30(−iy1+iy3+y5−y7−2iy10+2iy12)

+G12(10L1 − 12L6 + S2 − S4 + y1 + y3 − 4iy5 − 4iy7 − 2(y10 + y12))

+G21(10L1 + 2L6 − S2 + S4 + 4y1 + 4y3 − i(y5 + y7 + 2i(y10 + y12)))

−2iG13(4L2 + 6L5 + S1 − S3 + y2 + y4 + iy6 + iy8 + 2(y9 + y11))

−iG31(6L2 − 2L5 + S1 − S3 + 2y2 + 2y4 + i(y6 + y8 + 2i(y9 + y11)))

−2G23(4L2 − 2L5 − S1 + S3 + y2 + y4 + i(y6 + y8 + 2i(y9 + y11)))

+G32(−6L2 − 8L5 + S1 − S3 − y2 − y4 − 2i(y6 + y8)− 2y9 − 2y11) = 0.

When performing the non-relativistic approximation, we should assume the following smallness orders for the
involved quantities

L.. ∼ 1, S.. ∼ x, y.. ∼ x,
Dj

M
∼ x,

Gij

M
∼ x,

D0

M
∼ x2,

Gj0

M
∼ x2; (33)

in fact, we will need only the orders x and x2.
We divide equations of order x in two group; the first group is

1
2

3
D1L1 − 2iG11L2 − 2iG33L5 +

2

3
D3L5 + 2iG22(L2 + L5)− 2G12(L2 + 3L5)

+G21(4L5 − 2L2) + 2iG13(2L1 − 3L6) +G32(6L1 − 2L6)

+
2

3
iD2(L1 −L6) +G31(4iL6 − 6iL1)− 2G23(2L1 +L6) +

1

3
iM(3S1 +3S3 +2(y2 − y4 − iy6 + iy8 + y9 − y11)) = 0,
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2
1

3
iM(3S1 − 3S3 − 2(y2 + y4 − iy6 − iy8 + y9 + y11)) = 0,

3 −2iG11L1+
2

3
D1L2−

2

3
iD2(L2+L5)+2G32(3L2+L5)+G23(2L5−4L2)+2iG31(3L2+2L5)−2iG13(2L2+3L5)

+2G12(L1 − 3L6) + 2iG22(L1 − L6) + 2iG33L6 +
2

3
D3L6 + 2G21(L1 + 2L6)

+
1

3
iM(3S2 + 3S4 + 2(y1 − y3 + iy5 − iy7 − y10 + y12)) = 0,

4
1

3
iM(3S2 − 3S4 − 2(y1 + y3 + i(y5 + y7 + i(y10 + y12)))) = 0,

5
1

3
iM(y1 + y3 + i(y5 + y7 + i(y10 + y12))) = 0,

6 4iG11L1−
4

3
D1L2+2G23(L2−5L5)+2iG13(L2−3L5)+

2

3
iD2(2L2−L5)−4iG31(3L2+2L5)−2G32(6L2+5L5)

+G12(8L1 − 6L6) + 2iG33(9L1 − 5L6) +D3(
2L6

3
− 2L1)− 4G21(L1 + 2L6) + 2iG22(4L1 + 5L6)

+
1

3
iM(5y1 − 5y3 − iy5 + iy7 + y10 − y12) = 0,

7
1

3
iM(y2 + y4 − iy6 − iy8 + y9 + y11) = 0,

8 − 4

3
D1L1+4iG11L2+G12(−8L2−6L5)+2iG22(4L2−5L5)+4G21(L2−2L5)+

2

3
D3(3L2+L5)+2iG33(9L2+5L5)

+4iG31(3L1 − 2L6)−
2

3
iD2(2L1 + L6)− 2iG13(L1 + 3L6) + 2G23(L1 + 5L6)+

+G32(10L6 − 12L1) +
1

3
iM(5y2 − 5y4 + iy6 − iy8 − y9 + y11) = 0,

9
1

3
M(y1 + y3 + i(y5 + y7 + i(y10 + y12))) = 0,

10
4

3
D2(L2 + L5) + 4iG32(3L2 + L5)− 2G31(6L2 + L5) +

2

3
iD1(2L2 + 3L5)

−2iG23(L2 + 4L5) + 2G13(L2 + 6L5) + 4iG12(L1 − 3L6)

+D3(
4iL6

3
− 2iL1) +G21(2iL6 − 8iL1) +G22(4L6 − 4L1) +G33(8L6 − 18L1) +G11(18L6 − 8L1)

+
1

3
M(−y1 + y3 + 5iy5 − 5iy7 + y10 − y12) = 0,

11
1

3
M(−y2 − y4 + i(y6 + y8 + i(y9 + y11))) = 0,

12 4G22(L2 + L5)− 2iG21(4L2 + L5)−
2

3
iD3(3L2 + 2L5) + 4iG12(L2 + 3L5) +G33(18L2 + 8L5)

+G11(8L2 + 18L5) + 2G13(L1 − 6L6) + 2iG23(L1 − 4L6) +
4

3
D2(L1 − L6)− 4iG32(3L1 − L6) +D1(2iL6 −

4iL1

3
)

+2G31(L6 − 6L1) +
1

3
M(y2 − y4 + 5iy6 − 5iy8 + y9 − y11) = 0,

13
1

3
iM(y2 + y4 − iy6 − iy8 + y9 + y11) = 0,

14 −2iG22(5L2−4L5)+G21(10L2−2L5)+4iG33L5−
4

3
D3L5+2G12(5L2+6L5)+2iG11(5L2+9L5)+G32(6L1−8L6)

+
2

3
D1(L1 − 3L6)− 4iG13(2L1 − 3L6) + 4G23(2L1 + L6)− 2iG31(3L1 + L6) +

2

3
iD2(L1 + 2L6)

−1

3
iM(y2 − y4 − iy6 + iy8 − 5y9 + 5y11) = 0,

15 − 1

3
iM(y1 + y3 + i(y5 + y7 + i(y10 + y12))) = 0,

16 G32(−6L2 − 8L5) +
2

3
iD2(L2 − 2L5) +G31(2iL5 − 6iL2)−

2

3
D1(L2 + 3L5)− 4iG13(2L2 + 3L5)

+G23(4L5 − 8L2)− 2iG11(5L1 − 9L6)

+2G12(5L1 − 6L6) + 4iG33L6 +
4

3
D3L6 + 2G21(5L1 + L6) + 2iG22(5L1 + 4L6)

+
1

3
iM(y1 − y3 + iy5 − iy7 + 5y10 − 5y12) = 0.
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Remaining 8 equations of the order x are rather complex; with their help we can express 8 small
variables through the large ones and four free small variables y1, y2, y5, y6):

S1 =
1

M

[
iD1L1 + 3G11L2 − 3iG21 (L2 − 2L5) + 3G33L5 + iD3L5 − 3G22 (L2 + L5)

−3iG12 (L2 + 3L5) +G31 (9L1 − 6L6)

+3iG32 (3L1 − L6) +D2 (L6 − L1)− 3iG23 (2L1 + L6) +G13 (9L6 − 6L1)
]
,

S3 =
1

M

[
iD1L1 + 3G11L2 − 3iG21 (L2 − 2L5) + 3G33L5 + iD3L5 − 3G22 (L2 + L5)− 3iG12 (L2 + 3L5)

+G31 (9L1 − 6L6) + 3iG32 (3L1 − L6) +D2 (L6 − L1)− 3iG23 (2L1 + L6) +G13 (9L6 − 6L1)
]
,

S2 =
1

M

[
3G11L1 + iD1L2 +G31 (−9L2 − 6L5) +G23 (3iL5 − 6iL2) +D2 (L2 + L5) + 3iG32 (3L2 + L5)

+G13 (6L2 + 9L5) + 3iG12 (L1 − 3L6)− 3G33L6 + iD3L6 + 3iG21 (L1 + 2L6) +G22 (3L6 − 3L1)
]
,

S4 =
1

M

[
3G11L1 + iD1L2 +G31 (−9L2 − 6L5) +G23 (3iL5 − 6iL2) +D2 (L2 + L5) + 3iG32 (3L2 + L5)

+G13 (6L2 + 9L5) + 3iG12 (L1 − 3L6)− 3G33L6 + iD3L6 + 3iG21 (L1 + 2L6) +G22 (3L6 − 3L1)
]
,

y3 =
1

M

[
3G11L1 − 3iG12L1 + iD3L1 + 3G13L2 + iD1L2 +D2L2 +G31 (−9L2 − 6L5)− 3iG23 (L2 − 2L5)

+3iG32 (3L2 + 2L5) +G33 (9L1 − 6L6) + 3iG21 (L1 + 2L6) + 3G22 (L1 + 2L6)
]
+ y1,

y4 =
1

M

[
− 3G13L1 + iD1L1 −D2L1 + 3G11L2 + 3iG12L2 − iD3L2 − 3iG21 (L2 − 2L5) + 3G22 (L2 − 2L5)

+G33 (9L2 + 6L5) +G31 (9L1 − 6L6) + 3iG32 (3L1 − 2L6)− 3iG23 (L1 + 2L6)
]
+ y2,

y7 =
1

M

[
−3G23 (L2 + L5)+D1 (L2 + L5)−iD2 (L2 + L5)+3iG31 (3L2 + L5)+3G32 (3L2 + L5)−3iG13 (L2 + 3L5)

+3iG11 (L1 − 3L6)+3G12 (L1 − 3L6)+3iG22 (L1 − L6)+3iG33 (3L1 − L6)+D3 (L6 − L1)+G21 (3L6 − 3L1)
]
+y5,

y8 =
1

M

[
D3 (−L2 − L5)−3G21 (L2 + L5)−3iG22 (L2 + L5)−3iG33 (3L2 + L5)−3iG11 (L2 + 3L5)+3G12 (L2 + 3L5)

−3iG13 (L1 − 3L6)+3G23 (L1 − L6)− iD2 (L1 − L6)+3iG31 (3L1 − L6)+D1 (L6 − L1)+G32 (3L6 − 9L1)
]
+y6,

y9 =
1

M

[
− iD1L1 − 3G11L2 + 3iG21 (L2 − 2L5)− 3G33L5 − iD3L5 + 3G22 (L2 + L5) + 3iG12 (L2 + 3L5)

+G13 (6L1 − 9L6) +D2 (L1 − L6) +G32 (3iL6 − 9iL1) + 3iG23 (2L1 + L6) +G31 (6L6 − 9L1)
]
− y2 + iy6,

y10 =
1

M

[
3G11L1 + iD1L2 +G31 (−9L2 − 6L5) +G23 (3iL5 − 6iL2) +D2 (L2 + L5) + 3iG32 (3L2 + L5)

+G13 (6L2 + 9L5) + 3iG12 (L1 − 3L6)− 3G33L6 + iD3L6 + 3iG21 (L1 + 2L6) +G22 (3L6 − 3L1)
]
+ y1 + iy5,

y11 =
1

M

[
D2L1 − 3iG12L2 − 3iG21 (L2 + L5) + 3G11 (L2 + 3L5) +G22 (6L5 − 3L2)− iD1 (L1 − L6)

+G32 (6iL6 − 9iL1) +G31 (3L6 − 9L1)
]
− y2 + iy6,

y12 =
1

M

[
− 3iG12L1 +D2L2 + iD1 (L2 + L5)− 3G31 (3L2 + L5) + 3iG32 (3L2 + 2L5)

−3iG21 (L1 − L6) + 3G22 (L1 + 2L6) +G11 (9L6 − 3L1)
]
+ y1 + iy5.

Let us write down equations of the smallness order x2:

1′

G33(−2iS1+2iS3+ iy2+ iy4+y6+y8)+
1

3
D3(2S1−2S3−y2−y4+ i(y6+y8))− iG22(2S1−2S3−y2−y4−y9−y11)

+G12(−2S1 + 2S3 + y2 + y4 − 2iy6 − 2iy8 − y9 − y11) +G21(2S1 − 2S3 − 2y2 − 2y4 + iy6 + iy8 + y9 + y11)

+G11(−2iS1+2iS3+y6+y8+i(y9+y11))−
1

3
iD2(2S2−2S4−y1−y3+y10+y12)+

1

3
D1(2S2−2S4−iy5−iy7+y10+y12)

+iG31(2S2 − 2S4 − 2y1 − 2y3 + iy5 + iy7 + y10 + y12) +G32(2S2 − 2S4 + y1 + y3 − 2iy5 − 2iy7 + y10 + y12)

+G13(−2iS2+2iS4+ iy1+ iy3+y5+y7−2i(y10+y12))+G23(−2S2+2S4−y1−y3+ i(y5+y7+2i(y10+y12))) = 0,
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2′

1

3
D3(−2S1−2S3+y2−y4−iy6+iy8)+G33(i(2S1+2S3−y2+y4+iy6)+y8)+G12(2S1+2S3−y2+y4+2iy6−2iy8+y9−y11)

+G11(2iS1+2iS3−y6+y8−iy9+iy11)+iG22(2S1+2S3−y2+y4−y9+y11)+G21(−2S1−2S3+2y2−2y4−iy6+iy8−y9+y11)

+iG13(2S2 + 2S4 − y1 + y3 + iy5 − iy7 + 2y10 − 2y12) +G23(2S2 + 2S4 + y1 − y3 − iy5 + iy7 + 2y10 − 2y12)

+
1

3
iD2(2S2 + 2S4 − y1 + y3 + y10 − y12)− iG31(2S2 + 2S4 − 2y1 + 2y3 + iy5 − iy7 + y10 − y12)

+
1

3
D1(−2S2 − 2S4 + iy5 − iy7 − y10 + y12) +G32(−2S2 − 2S4 − y1 + y3 + 2iy5 − 2iy7 − y10 + y12) = 0,

3′

1

3
D3(−2S2+2S4+y1+y3+i(y5+y7))+G33(i(2S4+y1+y3+i(y5+y7))−2iS2)+

1

3
iD2(2S1−2S3−y2−y4−y9−y11)

+G32(2S1 − 2S3 + y2 + y4 + 2iy6 + 2iy8 − y9 − y11) +G31(i(2S3 + 2y2 + 2y4 + iy6 + iy8 + y9 + y11)− 2iS1)

+
1

3
D1(2S1 − 2S3 + i(y6 + y8 + i(y9 + y11))) +G23(−2S1 + 2S3 − y2 − y4 − i(y6 + y8 + 2i(y9 + y11)))

+G13(2iS1 − i(2S3 + y2 + y4 + iy6 + iy8 + 2(y9 + y11))) +G12(2S2 − 2S4 − y1 − y3 − 2iy5 − 2iy7 − y10 − y12)−
−iG22(2S2 − 2S4 − y1 − y3 + y10 + y12)− iG11(2S2 − 2S4 − iy5 − iy7 + y10 + y12)

+G21(−2S2 + 2S4 + 2y1 + 2y3 + iy5 + iy7 + y10 + y12) = 0,

4′

G33(2iS2+2iS4−iy1+iy3+y5−y7)+
1

3
D3(2S2+2S4−y1+y3−iy5+iy7)+

1

3
D1(−2S1−2S3−iy6+iy8+y9−y11)

+G32(−2S1 − 2S3 − y2 + y4 − 2iy6 + 2iy8 + y9 − y11)−
1

3
iD2(2S1 + 2S3 − y2 + y4 − y9 + y11)

+iG31(2S1 + 2S3 − 2y2 + 2y4 − iy6 + iy8 − y9 + y11) +G23(2S1 + 2S3 + y2 − y4 + iy6 − iy8 − 2y9 + 2y11)

−iG13(2S1 + 2S3 − y2 + y4 − iy6 + iy8 − 2y9 + 2y11) +G11(2iS2 + 2iS4 + y5 − y7 + i(y10 − y12))

+iG22(2S2 + 2S4 − y1 + y3 + y10 − y12) +G12(−2S2 − 2S4 + y1 − y3 + 2iy5 − 2iy7 + y10 − y12)

+G21(2S2 + 2S4 − 2y1 + 2y3 − iy5 + iy7 − y10 + y12) = 0,

5′

2D0L1 − 6iG10L2 − 6G20(L2 − 2L5)− 6iG30(3L1 − 2L6) +
1

3
D3(−S2 − S4 + 2y1 − 2y3 − iy5 + iy7)

+G33(−i(S2 + S4 + 4y1 − 4y3)− 5y5 + 5y7) +G23(−S1 − S3 − 2y2 + 2y4 + iy6 − iy8 + 4y9 − 4y11)

+iG13(S1 + S3 − 2y2 + 2y4 + iy6 − iy8 + 2y9 − 2y11) +
1

3
iD2(S1 + S3 − 2y2 + 2y4 + y9 − y11)

+2iG31(S1 + S3 + 2y2 − 2y4 + iy6 − iy8 + y9 − y11)−
2

3
D1(S1 + S3 − iy6 + iy8 + y9 − y11)

+G32(S1 + S3 + 2y2 − 2y4 + 4iy6 − 4iy8 + y9 − y11)− iG22(S2 + S4 + 4y1 − 4y3 + 5y10 − 5y12)

+2G21(S2 + S4 + 2y1 − 2y3 + iy5 − iy7 + y10 − y12) +G12(S2 + S4 − 2y1 + 2y3 + 2iy5 − 2iy7 + y10 − y12)

+2iG11(S2 + S4 + iy5 − iy7 − y10 + y12) = 0,

6′
1

3
D3(S2 − S4 − 2y1 − 2y3 + i(y5 + y7)) +G33(iS2 − iS4 + 4iy1 + 4iy3 + 5(y5 + y7))

+G23(S1 − S3 + 2y2 + 2y4 − i(y6 + y8)− 4y9 − 4y11)

+G32(−S1 + S3 − 2y2 − 2y4 − 4iy6 − 4iy8 − y9 − y11)−
1

3
iD2(S1 − S3 − 2y2 − 2y4 + y9 + y11)

+
2

3
D1(S1 − S3 − iy6 − iy8 + y9 + y11)− 2iG31(S1 − S3 + 2y2 + 2y4 + iy6 + iy8 + y9 + y11)

+G13(−iS1 + iS3 + 2iy2 + 2iy4 + y6 + y8 − 2i(y9 + y11)) +G12(−S2 + S4 + 2y1 + 2y3 − 2iy5 − 2iy7 − y10 − y12)−
−2G21(S2 − S4 + 2y1 + 2y3 + iy5 + iy7 + y10 + y12) + 2G11(−iS2 + iS4 + y5 + y7 + i(y10 + y12))

+iG22(S2 − S4 + 4y1 + 4y3 + 5(y10 + y12)) = 0,

7′

−6iG10L1 + 2D0L2 + 6iG30(3L2 + 2L5) + 6G20(L1 + 2L6)− iG33(S1 + S3 + 4y2 − 4y4 + 5i(y6 − y8))

+
1

3
D3(S1 + S3 − 2y2 + 2y4 − iy6 + iy8) + 2iG11(S1 + S3 − iy6 + iy8 + y9 − y11)

+G12(−S1 − S3 + 2y2 − 2y4 + 2iy6 − 2iy8 + y9 − y11)− 2G21(S1 + S3 + 2y2 − 2y4 − iy6 + iy8 − y9 + y11)
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−iG22(S1 + S3 + 4y2 − 4y4 − 5y9 + 5y11)−
1

3
iD2(S2 + S4 − 2y1 + 2y3 − y10 + y12)

−2

3
D1(S2 + S4 + iy5 − iy7 − y10 + y12)− 2iG31(S2 + S4 + 2y1 − 2y3 − iy5 + iy7 − y10 + y12)

+G32(S2 + S4 + 2y1 − 2y3 − 4iy5 + 4iy7 − y10 + y12)− iG13(S2 + S4 − 2y1 + 2y3 − iy5 + iy7 − 2y10 + 2y12)

+G23(−S2 − S4 − 2y1 + 2y3 − iy5 + iy7 − 4y10 + 4y12) = 0,

8′
1

3
D3(−S1 + S3 + 2y2 + 2y4 + i(y6 + y8)) + iG33(S1 − S3 + 4y2 + 4y4 + 5i(y6 + y8))

+G12(S1 − S3 − 2y2 − 2y4 − 2iy6 − 2iy8 − y9 − y11)

+2G21(S1 − S3 + 2y2 + 2y4 − i(y6 + y8)− y9 − y11)− 2iG11(S1 − S3 − iy6 − iy8 + y9 + y11)

+iG22(S1 − S3 + 4y2 + 4y4 − 5(y9 + y11)) +
1

3
iD2(S2 − S4 − 2y1 − 2y3 − y10 − y12)

+2iG31(S2 − S4 + 2y1 + 2y3 − i(y5 + y7)− y10 − y12) +G32(−S2 + S4 − 2y1 − 2y3 + 4iy5 + 4iy7 + y10 + y12)

+G23(S2 − S4 + 2y1 + 2y3 + iy5 + iy7 + 4(y10 + y12)) +
2

3
D1(S2 − S4 + i(y5 + y7 + i(y10 + y12)))

+G13(iS2 − i(S4 + 2y1 + 2y3 + iy5 + iy7 + 2(y10 + y12))) = 0,

9′

6iG20(L2 + L5)− 6G10(L2 + 3L5) +G30(18L1 − 6L6) + 2iD0(L1 − L6) +
1

3
iD3(S2 + S4 + y1 − y3 − 2iy5 + 2iy7)

+G33(−S2 − S4 + 5y1 − 5y3 − 4iy5 + 4iy7) + iG23(S1 + S3 − y2 + y4 + 2iy6 − 2iy8 + 2y9 − 2y11)

−2

3
D2(S1 + S3 + y2 − y4 + y9 − y11)−

1

3
iD1(S1 + S3 + 2iy6 − 2iy8 + y9 − y11)

+2iG32(S1 + S3 − y2 + y4 − 2iy6 + 2iy8 + y9 − y11) +G31(−S1 − S3 + 4y2 − 4y4 + 2iy6 − 2iy8 − y9 + y11)

+G13(S1 + S3 + y2 − y4 − 2iy6 + 2iy8 − 4y9 + 4y11) + 2iG12(S2 + S4 + y1 − y3 + 2iy5 − 2iy7 + y10 − y12)

+iG21(S2 + S4 + 2y1 − 2y3 − 2iy5 + 2iy7 + y10 − y12) + 2G22(S2 + S4 + y1 − y3 − y10 + y12)

+G11(−S2 − S4 − 4iy5 + 4iy7 − 5y10 + 5y12) = 0,

10′

−1

3
iD3(S2−S4+y1+y3−2i(y5+y7))+G33(S2−S4−5y1−5y3+4i(y5+y7))+

2

3
D2(S1−S3+y2+y4+y9+y11)

+G31(S1 − S3 − 4y2 − 4y4 − 2iy6 − 2iy8 + y9 + y11)− 2iG32(S1 − S3 − y2 − y4 − 2iy6 − 2iy8 + y9 + y11)

+
1

3
iD1(S1 − S3 + 2iy6 + 2iy8 + y9 + y11) +G13(−S1 + S3 − y2 − y4 + 2iy6 + 2iy8 + 4(y9 + y11))

−iG23(S1 − S3 − y2 − y4 + 2(iy6 + iy8 + y9 + y11))− 2G22(S2 − S4 + y1 + y3 − y10 − y12)

−iG21(S2 − S4 + 2y1 + 2y3 − 2iy5 − 2iy7 + y10 + y12)

−2iG12(S2 − S4 + y1 + y3 + 2iy5 + 2iy7 + y10 + y12) +G11(S2 − S4 + 4iy5 + 4iy7 + 5(y10 + y12)) = 0,

11′

−2iD0(L2 + L5) + 6G30(3L2 + L5) + 6G10(L1 − 3L6) + 6iG20(L1 − L6) +
1

3
iD3(S1 + S3 + y2 − y4 + 2i(y6 − y8))

+G33(S1 + S3 − 5y2 + 5y4 − 4iy6 + 4iy8)− 2G22(S1 + S3 + y2 − y4 + y9 − y11)

+iG21(S1 + S3 + 2y2 − 2y4 + 2iy6 − 2iy8 − y9 + y11) + 2iG12(S1 + S3 + y2 − y4 − 2iy6 + 2iy8 − y9 + y11)

+G11(S1 + S3 − 4iy6 + 4iy8 − 5y9 + 5y11) +G13(S2 + S4 + y1 − y3 + 2iy5 − 2iy7 + 4y10 − 4y12)

+G31(−S2 − S4 + 4y1 − 4y3 − 2iy5 + 2iy7 + y10 − y12)−
2

3
D2(S2 + S4 + y1 − y3 − y10 + y12)

−2iG32(S2 + S4 − y1 + y3 + 2iy5 − 2iy7 − y10 + y12) +
1

3
iD1(S2 + S4 − 2iy5 + 2iy7 − y10 + y12)−

−iG23(S2 + S4 − y1 + y3 − 2iy5 + 2iy7 − 2y10 + 2y12) = 0,

12′

−1

3
iD3(S1 − S3 + y2 + y4 + 2i(y6 + y8)) +G33(−S1 + S3 + 5y2 + 5y4 + 4i(y6 + y8))

−2iG12(S1 − S3 + y2 + y4 − 2iy6 − 2iy8 − y9 − y11)

−iG21(S1 − S3 + 2y2 + 2y4 + 2iy6 + 2iy8 − y9 − y11) + 2G22(S1 − S3 + y2 + y4 + y9 + y11)

+G11(−S1 + S3 + 4iy6 + 4iy8 + 5(y9 + y11)) +G13(−S2 + S4 − y1 − y3 − 2i(y5 + y7)− 4y10 − 4y12)

+iG23(S2 − S4 − y1 − y3 − 2i(y5 + y7)− 2y10 − 2y12) +
2

3
D2(S2 − S4 + y1 + y3 − y10 − y12)

−1

3
iD1(S2 − S4 − 2iy5 − 2iy7 − y10 − y12) +G31(S2 − S4 − 4y1 − 4y3 + 2iy5 + 2iy7 − y10 − y12)
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+2iG32(S2 − S4 − y1 − y3 + 2iy5 + 2iy7 − y10 − y12) = 0,

13′

−6iG30L5 + 2D0L5 + 6iG10(2L1 − 3L6)− 6G20(2L1 + L6) + 2iG33(S1 + S3 + y2 − y4 − iy6 + iy8)

−2

3
D3(S1 + S3 + y2 − y4 − iy6 + iy8)

−iG22(S1 + S3 − 5y2 + 5y4 + 4y9 − 4y11)− iG11(S1 + S3 + 5iy6 − 5iy8 + 4y9 − 4y11)

+G21(S1 + S3 − 4y2 + 4y4 − iy6 + iy8 + 2y9 − 2y11) +G12(−S1 − S3 − y2 + y4 − 4iy6 + 4iy8 − 2y9 + 2y11)

−1

3
iD2(S2 + S4 + y1 − y3 + 2y10 − 2y12) +

1

3
D1(S2 + S4 + iy5 − iy7 + 2y10 − 2y12)

+iG31(S2 + S4 + 2y1 − 2y3 − iy5 + iy7 + 2y10 − 2y12) +G32(S2 + S4 − y1 + y3 + 2iy5 − 2iy7 + 2y10 − 2y12)

+2G23(S2 + S4 − y1 + y3 + iy5 − iy7 − 2y10 + 2y12) + 2iG13(S2 + S4 + y1 − y3 − iy5 + iy7 − 2y10 + 2y12) = 0,

14′

G33(−2i(S1−S3+y2+y4)−2y6−2y8)+
2

3
D3(S1−S3+y2+y4−i(y6+y8))+iG22(S1−S3−5y2−5y4+4(y9+y11))

+iG11(S1 − S3 + 5iy6 + 5iy8 + 4(y9 + y11)) +G12(S1 − S3 + y2 + y4 + 2(2iy6 + 2iy8 + y9 + y11))

+G21(−S1 + S3 + 4y2 + 4y4 + i(y6 + y8 + 2i(y9 + y11))) +
1

3
D1(−S2 + S4 − i(y5 + y7)− 2y10 − 2y12)

−2iG13(S2 − S4 + y1 + y3 − i(y5 + y7)− 2y10 − 2y12) +G32(−S2 + S4 + y1 + y3 − 2i(y5 + y7)− 2y10 − 2y12)

+
1

3
iD2(S2 − S4 + y1 + y3 + 2(y10 + y12)) + 2G23(−S2 + S4 + y1 + y3 − i(y5 + y7 + 2i(y10 + y12)))

−iG31(S2 − S4 + 2y1 + 2y3 − i(y5 + y7 + 2i(y10 + y12))) = 0,

15′

6G20(L5 − 2L2)− 6iG10(2L2 + 3L5) + 6iG30L6 + 2D0L6 − 2iG33(S2 + S4 + y1 − y3 + i(y5 − y7))

−2

3
D3(S2 + S4 + y1 − y3 + i(y5 − y7))

+
1

3
D1(−S1 − S3 + iy6 − iy8 + 2y9 − 2y11) + 2iG13(S1 + S3 + y2 − y4 + iy6 − iy8 + 2y9 − 2y11)

−2G23(S1 + S3 − y2 + y4 − iy6 + iy8 + 2y9 − 2y11) +G32(−S1 − S3 + y2 − y4 + 2iy6 − 2iy8 + 2y9 − 2y11)

−1

3
iD2(S1 + S3 + y2 − y4 − 2y9 + 2y11) + iG31(S1 + S3 + 2y2 − 2y4 + iy6 − iy8 − 2y9 + 2y11)

+G12(−S2 − S4 − y1 + y3 + 4iy5 − 4iy7 + 2y10 − 2y12) +G21(S2 + S4 − 4y1 + 4y3 + iy5 − iy7 − 2y10 + 2y12)

+iG22(S2 + S4 − 5y1 + 5y3 − 4y10 + 4y12) + iG11(S2 + S4 − 5iy5 + 5iy7 − 4y10 + 4y12) = 0,

16′

2iG33(S2−S4+y1+y3+ i(y5+y7))+
2

3
D3(S2−S4+y1+y3+ i(y5+y7))+

1

3
D1(S1−S3− i(y6+y8)−2y9−2y11)

+G32(S1 − S3 − y2 − y4 − 2i(y6 + y8)− 2y9 − 2y11)

+
1

3
iD2(S1 − S3 + y2 + y4 − 2(y9 + y11))− 2iG13(S1 − S3 + y2 + y4 + iy6 + iy8 + 2(y9 + y11))

+2G23(S1 − S3 − y2 − y4 − i(y6 + y8 + 2i(y9 + y11)))− iG31(S1 − S3 + 2y2 + 2y4 + i(y6 + y8 + 2i(y9 + y11)))

−iG22(S2 − S4 − 5y1 − 5y3 − 4(y10 + y12)) +G12(S2 − S4 + y1 + y3 − 4iy5 − 4iy7 − 2(y10 + y12))

+G11(−iS2 + iS4 − 5y5 − 5y7 + 4i(y10 + y12)) +G21(−S2 + S4 + 4y1 + 4y3 − i(y5 + y7 + 2i(y10 + y12))) = 0.

Now we should substitute expressions for small variables of order x in equations of order x2; to follow
the correct locations of multipliers, we re-designate all G.. (which t should be located at the left) by
symbols J..; and all D., (which should be located at the left) by symbols Q.).

In this way, we derive the following equations (we preserve only equations, containing D0; and introduce
the new numeration):

5 =⇒ 1)

2Q0L1 − 6iJ10L2 − 6J20

(
L2 − 2L5

)
− 6iJ30

(
3L1 − 2L6

)
+

1

M

[2
3
Q1

(
(3G13 + 3iG23 − 9G31 − 9iG32 − iD1 +D2)L1 − 3(G11 + iG12 − iG21 +G22 + 3G33)L2 + iD3L2

+6(−iG21 +G22 −G33)L5 + 6(iG23 +G31 + iG32)L6

)
+2iJ11

(
(3(G11 − iG12 + iG21 +G22 + 3G33) + iD3)L1 + (3G13 − 3iG23 − 9G31 + 9iG32 + iD1 +D2)L2
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+6i(G23 + iG31 +G32)L5 + 6(iG21 +G22 −G33)L6

)
+

+
1

3
Q2

(
4(−3iG13 + 3G23 + 9iG31 − 9G32 −D1 − iD2)L1 + 2(3i(G11 + iG12 − iG21 +G22 + 3G33) +D3)L2

+(−9iG11 + 9G12 − 21G21 − 21iG22 + 15iG33 −D3)L5 + (9iG13 + 15G23 − 21iG31 + 21G32 +D1 + iD2)L6

)
+J13

(
(9(−iG13 +G23 + 5iG31 − 5G32)− 5D1 − 5iD2)L1 + (−3iG11 − 9G12 − 3G21 + 9i(G22 +G33) +D3)L2

+(−27iG11 + 9G12 − 21G21 − 27iG22 + 9iG33 −D3)L5 + (3(3iG13 + 3G23 − 7iG31 + 9G32 +D1) + iD2)L6

)
−2iJ31

(
(3G13 + 3iG23 − 9G31 − 9iG32 − iD1 +D2)L1 + 3(3(G11 + iG12 − iG21 +G22 + 3G33)− iD3)L2

+2(9G11 + 9iG12 + 6G33 − iD3)L5 − 2(9G13 + 6iG23 − iD1 +D2)L6

)
+ J32

(
− 4(3G13 + 3iG23 − 9G31

−9iG32−iD1+D2)L1−6(3(G11+iG12−iG21+G22+3G33)−iD3)L2−(9(5G11+5iG12−iG21+G22)+21G33−5iD3)L5

+(45G13 + 21iG23 − 9G31 − 9iG32 − 5iD1 + 5D2)L6

)
+ J23

(
(9(3G13 + 3iG23 +G31 + iG32) + iD1 −D2)L1

+(−27G11 + 33iG12 + 27iG21 + 33G22 + 9G33 − iD3)L2 − (45G11 − 45iG12 + 9iG21 + 21G22 + 9G33 + 5iD3)L5

−(45G13 − 9iG23 − 9G31 + 21iG32 + 5iD1 + 5D2)L6

)
+ 2J21

(
(9G11 + 15iG12 + 9iG21 − 15G22 − 9G33 − iD3)L1

+(9G13−9i(G23+ iG31+G32)− iD1−D2)L2+2(9G13−6iG32− iD1+D2)L5−2(9G11+9iG12+6G22− iD3)L6

)
+
1

3
Q3

(
− 3(5G11 − iG12 + 5iG21 +G22 + 9G33 + iD3)L1 − 3(5G13 − 5iG23 − 9G31 + 9iG32 + iD1 +D2)L2

−(9G13 + 21iG23 − 21G31 + 15iG32 − iD1 +D2)L5 + (9G11 + 9iG12 − 21iG21 − 15G22 + 21G33 − iD3)L6

)
+J12

(
4(6G11 + 6iG21 + 9G33 + iD3)L1 + 2(9G13 − 9iG23 − 9G31 + 9iG32 + iD1 +D2)L2

+(9G13 + 27iG23 − 21G31 + 9iG32 − 3iD1 +D2)L5 + (−27G11 − 9iG12 + 21iG21 + 9G22 − 27G33 + iD3)L6

)
+J33

(
3(7iG11 + 11G12 − 7G21 + 11iG22 + 27iG33 − 3D3)L1 + 3(−5iG13 − 5G23 + 9iG31 + 9G32 +D1 − iD2)L2

+(−63iG13 − 33G23 + 3iG31 − 3G32 + 5D1 − 7iD2)L5 + (−45iG11 − 63G12 + 3G21 + 3i(G22 − 11G33) + 7D3)L6

)
+J22

(
4(6(−iG11 + 2G12 +G21 + 2iG22) + 9iG33 −D3)L1 + 2(−15iG13 − 15G23 − 9iG31 − 9G32 −D1 + iD2)L2

+(−63iG13−3G23+3iG31−33G32−5D1−7iD2)L5+(45iG11−63G12+3G21+33iG22−3iG33+7D3)L6

)]
= 0,

7 =⇒ 2)

−6iJ10L1 + 2Q0L2 + 6iJ30

(
3L2 + 2L5

)
+ 6J20

(
L1 + 2L6

)
+

1

M

[
2J11

(
(−3iG13 + 3G23 + 9iG31 − 9G32 −D1 − iD2)L1 + (3i(G11 + iG12 − iG21 +G22 + 3G33)

+D3)L2 − 6(G21 + i(G22 −G33))L5 + 6(G23 − iG31 +G32)L6

)
− 2

3
Q1

(
(3(G11 − iG12 + iG21 +G22 + 3G33)

+iD3)L1 + (3G13 − 3iG23 − 9G31 + 9iG32 + iD1 +D2)L2 + 6i(G23 + iG31 +G32)L5 + 6(iG21 +G22 −G33)L6

)
+J33

(
3(5iG13 − 5G23 − 9iG31 + 9G32 +D1 + iD2)L1 + 3(7iG11 − 11G12 + 7G21 + 11iG22 + 27iG33 + 3D3)L2

+(45iG11 − 63G12 + 3G21 − 3iG22 + 33iG33 + 7D3)L5 + (−63iG13 + 33G23 + 3iG31 + 3G32 − 5D1 − 7iD2)L6

)
+J22

(
2i(15G13 + 15iG23 + 9G31 + 9iG32 + iD1 −D2)L1 + 4(−6iG11 − 6(2G12 +G21 − 2iG22) + 9iG33 +D3)L2

+(−45iG11 − 63G12 + 3G21 − 33iG22 + 3iG33 + 7D3)L5 + (−63iG13 + 3G23 + 3iG31 + 33G32 + 5D1 − 7iD2)L6

)
−2J21

(
−

(
(9(G13 + iG23 +G31 + iG32) + iD1 −D2)L1

)
+ (9G11 − 15iG12 − 9iG21 − 15G22 − 9G33 + iD3)L2

+2(9G11 − 9iG12 + 6G22 + iD3)L5 + 2(9G13 + 6iG32 + iD1 +D2)L6

)
+

1

3
Q3

(
− 3(5G13

+5iG23 − 9G31 − 9iG32 − iD1 +D2)L1 + 3(5G11 + iG12 − 5iG21 +G22 + 9G33 − iD3)L2 + (9G11 − 9iG12

+21iG21 − 15G22 + 21G33 + iD3)L5 + (9G13 − 21iG23 − 21G31 − 15iG32 + iD1 +D2)L6

)
+ J12

(
2(9G13

+9iG23 − 9G31 − 9iG32 − iD1 +D2)L1 + 4(−6G11 + 6iG21 − 9G33 + iD3)L2 − (27G11 − 9iG12 + 21iG21 − 9G22

+27G33 + iD3)L5 − (9G13 − 27iG23 − 21G31 − 9iG32 + 3iD1 +D2)L6

)
+ J23

(
(−27G11 − 33iG12 − 27iG21
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+33G22 +9G33 + iD3)L1 +(−27G13 +27iG23 − 9G31 +9iG32 + iD1 +D2)L2 +(−45G13 − 9iG23 +9G31 +21iG32

+5iD1 − 5D2)L5 + (45G11 + 45iG12 − 9iG21 + 21G22 + 9G33 − 5iD3)L6

)
+ J32

(
− 6(3(G11 − iG12 + iG21

+G22+3G33)+ iD3)L1+4(3G13−3iG23−9G31+9iG32+ iD1+D2)L2+(45G13−21iG23−9G31+9iG32+5iD1

+5D2)L5 + (9(5G11 − 5iG12 + iG21 +G22) + 21G33 + 5iD3)L6

)
+ J31

(
6(3i(G11 − iG12 + iG21 +G22

+3G33)−D3)L1 + 2(−3iG13 − 3G23 + 9iG31 + 9G32 +D1 − iD2)L2 + 4(−9iG13 − 6G23 +D1 − iD2)L5

+4(−9iG11 − 9G12 − 6iG33 +D3)L6

)
+ J13

(
(3iG11 − 3(3G12 +G21 + 3i(G22 +G33)) +D3)L1 + (−9iG13 − 9G23

+45iG31 + 45G32 + 5D1 − 5iD2)L2 + (3(−3iG13 + 3G23 + 7iG31 + 9G32 +D1)− iD2)L5 + (−27iG11 − 9G12

+21G21 − 27iG22 + 9iG33 +D3)L6

)
+

1

3
Q2

(
2(D3 − 3i(G11 − iG12 + iG21 +G22 + 3G33))L1

+4(−3iG13−3G23+9iG31+9G32+D1−iD2)L2+(−9iG13+15G23+21iG31+21G32+D1−iD2)L5+(−9iG11−9G12

+21G21 − 21iG22 + 15iG33 +D3)L6

)]
= 0,

9 =⇒ 3)

6iJ20

(
L2 + L5

)
− 6J10

(
L2 + 3L5

)
+ J30

(
18L1 − 6L6

)
+ 2iQ0

(
L1 − L6

)
+

1

M

[
Q1

(4
3
(3iG13 − 3G23 − 9iG31 + 9G32 +D1 + iD2)L1 +

2

3
(3i(G11 + iG12 − iG21 +G22

+3G33)+D3)L2+(9iG11−9G12+5G21+ i(5G22+G33)+D3)L5+(−9iG13+G23+5iG31−5G32−D1− iD2)L6

)
+J23

(
(9(−iG13 +G23 + 5iG31 − 5G32)− 5D1 − 5iD2)L1 + (−9iG11 − 3G12 − 9G21 + 3iG22 − 9iG33 −D3)L2

+2(−18iG11 + 9G12 − 9G21 − 12iG22 −D3)L5 + 2(9iG13 − 9iG31 + 12G32 + 2D1 + iD2)L6

)
+
2

3
Q2

(
(3G13 + 3iG23 − 9G31 − 9iG32 − iD1 +D2)L1 + (3(G11 + iG12 − iG21 +G22 + 3G33)− iD3)L2

+(3(3G11 + 3iG12 − iG21 +G22 +G33)− iD3)L5 − (9G13 + 3iG23 − 3G31 − 3iG32 − iD1 +D2)L6

)
+J31

(
4(3G13 + 3iG23 − 9G31 − 9iG32 − iD1 +D2)L1 − 6(3(G11 + iG12 − iG21 +G22 + 3G33)− iD3)L2 − (9G11

+9i(G12 + 3G21 + 3iG22) + 33G33 − iD3)L5 + (9G13 + 33iG23 + 27G31 + 27iG32 − iD1 +D2)L6

)
+J13

(
−

(
(9(3G13 + 3iG23 +G31 + iG32) + iD1 −D2)L1

)
+ (33G11 − 27iG12 − 33iG21 − 27G22 + 9G33 − iD3)L2

+2(27G11 − 18iG12 + 6iG21 + 9(G22 +G33) + 2iD3)L5 + 2(18G13 − 9iG23 − 6G31 + 9iG32 + 3iD1 + 2D2)L6

)
+2J32

(
(−3iG13 + 3G23 + 9iG31 − 9G32 −D1 − iD2)L1 + 3(3i(G11 + iG12 − iG21 +G22 + 3G33) +D3)L2

+(9iG11 − 9(G12 +G21 + iG22) + 15iG33 +D3)L5 − (D1 + i(9G13 + 15iG23 + 9G31 + 9iG32 +D2))L6

)
+J21

(
− 4(6G12 + 6iG22 + 9iG33 −D3)L1 + 2i(9G13 − 9iG23 − 9G31 + 9iG32 + iD1 +D2)L2 + (45iG13

+9G23 − 9iG31 + 3G32 −D1 + 5iD2)L5 + (9iG11 + 45G12 − 9G21 − 3iG22 + 9iG33 − 5D3)L6

)
+2J12

(
i(15G11 + 9iG12 + 15iG21 − 9G22 + 9G33 + iD3)L1 + (9(iG13 +G23 + iG31 +G32) +D1 − iD2)L2

+(9iG13 − 9G23 − 3iG31 + 9G32 + 3D1 + iD2)L5 + (−27iG11 + 9G12 − 3G21 − 9i(G22 +G33)−D3)L6

)
+J11

(
− 4(12G11 + 6iG12 + 12iG21 − 6G22 + 9G33 + iD3)L1 + 2(−15G13 + 15iG23 − 9G31 + 9iG32 + iD1

+D2)L2 − 3(9G13 +11iG23 − 5G31 − 7iG32 − 3iD1 +D2)L5 +3(27G11 +9iG12 − 5iG21 +7G22 +11G33 − iD3)L6

)
+2J22

(
−

(
(3(G11 − iG12 + iG21 +G22 + 3G33) + iD3)L1

)
+ (3G13 − 3iG23 − 9G31 + 9iG32 + iD1 +D2)L2

+(9G13 − 3iG23 − 3G31 + 3iG32 + iD1 +D2)L5 + (3(3G11 − 3iG12 + iG21 +G22 +G33) + iD3)L6

)
+J33

(
− 3(11G11 − 7iG12 + 11iG21 + 7G22 + 27G33 + 3iD3)L1 − 3(5G13 − 5iG23 − 9G31 + 9iG32 + iD1 +D2)L2

+2(9G13 − 24iG23 + 15G31 − 12iG32 + 2iD1 +D2)L5 + 2(3(6G11 − 3iG12 − 5iG21 − 4G22 + 8G33) + iD3)L6

)
+Q3

(
(−iG11 − 5G12 +G21 − 5iG22 − 9iG33 +D3)L1 + (5iG13 + 5G23 − 9iG31 − 9G32 −D1 + iD2)L2

+
2

3
i
(
(18G13 − 3iG23 − 6G31 +3iG32 + iD1 +2D2)L5 +(3(3G11 − 6iG12 +2iG21 +G22 +G33)+ 2iD3)L6

))]
= 0,
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11 =⇒ 4)

−2iQ0

(
L2 + L5

)
+ 6J30

(
3L2 + L5

)
+ 6J10

(
L1 − 3L6

)
+ 6iJ20

(
L1 − L6

)
+

1

M

[
2J12

(
(9(−iG13 +G23 − iG31 +G32) +D1 + iD2)L1 + (15iG11 + 9G12 + 15G21 − 9iG22 + 9iG33 +D3)L2

+(27iG11 + 9G12 − 3G21 + 9i(G22 +G33)−D3)L5 + (9iG13 + 9G23 − 3iG31 − 9G32 − 3D1 + iD2)L6

)
+J21

(
2(−9iG13 + 9G23 + 9iG31 − 9G32 −D1 − iD2)L1 + 4(6G12 − 3i(2G22 + 3G33)−D3)L2 + (−9iG11

+45G12 − 9G21 + 3i(G22 − 3G33)− 5D3)L5 + (45iG13 − 3(3G23 + 3iG31 +G32) +D1 + 5iD2)L6

)
+2J22

(
(3G13 + 3iG23 − 9G31 − 9iG32 − iD1 +D2)L1 + (3(G11 + iG12 − iG21 +G22 + 3G33)− iD3)L2

+(3(3G11 + 3iG12 − iG21 +G22 +G33)− iD3)L5 − (9G13 + 3iG23 − 3G31 − 3iG32 − iD1 +D2)L6

)
+J33

(
− 3(5G13 + 5iG23 − 9G31 − 9iG32 − iD1 +D2)L1 + 3(11G11 + 7iG12 − 11iG21 + 7G22 + 27G33 − 3iD3)L2

+2(3(6G11 + 3iG12 + 5iG21 − 4G22 + 8G33)− iD3)L5 − 2(9G13 + 24iG23 + 15G31 + 12iG32 − 2iD1 +D2)L6

)
+J11

(
− 2(15G13 + 15iG23 + 9G31 + 9iG32 + iD1 −D2)L1 + 4(12G11 − 6iG12 − 12iG21 − 6G22 + 9G33 − iD3)L2

+3(27G11 − 9iG12 + 5iG21 + 7G22 + 11G33 + iD3)L5 + 3(9G13 − 11iG23 − 5G31 + 7iG32 + 3iD1 +D2)L6

)
+2J32

(
3(D3 − 3i(G11 − iG12 + iG21 +G22 + 3G33))L1 + (−3iG13 − 3G23 + 9iG31 + 9G32 +D1 − iD2)L2

+(9iG13 + 15G23 + 9iG31 + 9G32 −D1 + iD2)L5 + (9(iG11 +G12 +G21 − iG22) + 15iG33 −D3)L6

)
+Q1

(2
3
(D3 − 3i(G11 − iG12 + iG21 +G22 + 3G33))L1 +

4

3
i(3G13 − 3iG23 − 9G31 + 9iG32 + iD1

+D2)L2 + (9iG13 +G23 − 5iG31 − 5G32 −D1 + iD2)L5 + (9iG11 + 9G12 − 5G21 + i(5G22 +G33)−D3)L6

)
+J31

(
− 6(3(G11 − iG12 + iG21 +G22 + 3G33) + iD3)L1 − 4(3G13 − 3iG23 − 9G31 + 9iG32 + iD1 +D2)L2

+(9G13 − 33iG23 + 27G31 − 27iG32 + iD1 +D2)L5 + (9(G11 − i(G12 + 3G21)− 3G22) + 33G33 + iD3)L6

)
+
1

3
Q2

(
2(3(G11 − iG12 + iG21 +G22 + 3G33) + iD3)L1 − 2(3G13 − 3iG23 − 9G31 + 9iG32 + iD1

+D2)L2 − 2(9G13 − 3iG23 − 3G31 + 3iG32 + iD1 +D2)L5 − 2(3(3G11 − 3iG12 + iG21 +G22 +G33) + iD3)L6

)
+J13

(
(33G11 + 27iG12 + 33iG21 − 27G22 + 9G33 + iD3)L1 + (9(3G13 − 3iG23 +G31 − iG32)− iD1 −D2)L2+

+2(18G13 + 9iG23 − 6G31 − 9iG32 − 3iD1 + 2D2)L5 − 2(27G11 + 18iG12 − 6iG21 + 9(G22 +G33)− 2iD3)L6

)
+J23

(
i(9G11 + 3iG12 + 9iG21 − 3G22 + 9G33 + iD3)L1 + (−9iG13 − 9G23 + 45iG31 + 45G32

+5D1 − 5iD2)L2 − 2i(9G13 − 9G31 + 12iG32 + 2iD1 +D2)L5 + 2(−18iG11 − 9G12 + 9G21 − 12iG22 +D3)L6

)
+Q3

(
(−5iG13 + 5G23 + 9iG31 − 9G32 −D1 − iD2)L1 + (−i(G11 + 5iG12 − iG21 + 5G22 + 9G33)−D3)L2

+
2

3

(
(−3i(3G11 +6iG12 − 2iG21 +G22 +G33)− 2D3)L5 +(18iG13 − 3G23 − 6iG31 +3G32 +D1 +2iD2)L6

))]
= 0,

13 =⇒ 5)

−6iJ30L5 + 2Q0L5 + 6iJ10

(
2L1 − 3L6

)
− 6J20

(
2L1 + L6

)
+

1

M

[
J12

(
(9G13 + 9i(G23 + 5iG31 − 5G32)− 5iD1 + 5D2)L1 + (21G11 + 9iG12 − 21iG21 + 9G22

+45G33 − 5iD3)L2 + 2(27G11 + 18iG12 − 6iG21 + 9(G22 +G33)− 2iD3)L5 + 2(−18G13 − 9iG23 + 6G31 + 9iG32

+3iD1 − 2D2)L6

)
+ J11

(
(3iG13 − 3G23 − 63iG31 + 63G32 + 7D1 + 7iD2)L1 + (33iG11 + 3G12 + 33G21 − 3iG22

+45iG33 + 5D3)L2 + 3(27iG11 − 9G12 + 5G21 + 11iG22 + 7iG33 +D3)L5 + 3(−9iG13 + 7G23 + 5iG31 − 11G32

−3D1 − iD2)L6

)
+ 2J33

(
6(G23 − iG13)L1 + 6(iG11 +G12 +G21 − iG22)L2 + (3i(3G11 − 3iG12 + iG21

+G22 +G33)−D3)L5 + (9iG13 + 3G23 − 3iG31 − 3G32 −D1 + iD2)L6

)
+

2

3
Q3

(
6(G13 + iG23)L1

+6(−G11 + i(G12 +G21) +G22)L2 − (3(3G11 − 3iG12 + iG21 +G22 +G33) + iD3)L5 − (9G13 − 3iG23 − 3G31
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+3iG32 + iD1 +D2)L6

)
+ J21

(
(−9G13 − 9iG23 + 45G31 + 45iG32 + 5iD1 − 5D2)L1 + (9G11

+21iG12 − 9iG21 + 21G22 + 45G33 − 5iD3)L2 + (−9G11 + 9iG12 + 27iG21 − 33G22 + 27G33 − iD3)L5 − (9(G13

+3iG23 + 3G31) + 33iG32 + iD1 +D2)L6

)
+ J22

(
(3iG13 − 3G23 − 63iG31 + 63G32 + 7D1 + 7iD2)L1

+(3iG11 + 33G12 + 3G21 − 33iG22 − 45iG33 − 5D3)L2 + 2(3(6iG11 + 3G12 + 5G21 + 8iG22 − 4iG33)−D3)L5

+2i(9G13 + 12iG23 + 15G31 + 24iG32 + 2iD1 +D2)L6

)
+ J31

(
3(3iG11 − 3(3G12 +G21 + 3i(G22 +G33))

+D3)L1 + (21iG13 + 21G23 − 9iG31 − 9G32 −D1 + iD2)L2 + (45iG13 + 3G23 − 9iG31 + 9G32 +D1 + 5iD2)L5

+(−9iG11 + 45G12 − 9G21 − 9iG22 + 3iG33 − 5D3)L6

)
+ J23

(
4(−6iG12 + 6G22 + 9G33 + iD3)L1

+4(−9G31 + 9iG32 + iD1 +D2)L2 − 2(9(G13 − iG23 +G31)− 15iG32 − iD1 +D2)L5 + 2(9G11 + 9iG12 + 9iG21

+15G22 − 9G33 − iD3)L6

)
+Q1

((
7G11 + 5iG12 + 7iG21 − 5G22 + 3G33 +

1

3
iD3

)
L1

+
1

3
(21G13 − 21iG23 − 9G31 + 9iG32 + iD1 +D2)L2 + (9G13 + 5iG23 − 5G31 − iG32 − iD1 +D2)L5 − (9G11

+9iG12 − 5iG21 +G22 + 5G33 − iD3)L6

)
+ J32

(
3(9G11 + 3iG12 + 9iG21 − 3G22 + 9G33 + iD3)L1

+(21G13 − 21iG23 − 9G31 + 9iG32 + iD1 +D2)L2 + 2(9G13 + 12iG23 − 9G31 − 2iD1 +D2)L5 − 2(18G11

+9i(G12 −G21) + 12G33 − iD3)L6

)
+

1

3
Q2

(
(3(−5iG11 + 7G12 + 5G21 + 7iG22 + 3iG33)−D3)L1

+(−21iG13 − 21G23 + 9iG31 + 9G32 +D1 − iD2)L2 + 2(−18iG13 + 3G23 + 6iG31 − 3G32 −D1 − 2iD2)L5

+2(3i(3G11 + 6iG12 − 2iG21 +G22 +G33) + 2D3)L6

)
+ J13

(
4(−6iG11 + 6G21 − 9iG33 +D3)L1

+2i
(
2(−9G31 + 9iG32 + iD1 +D2)L2 + (9G13 − 9iG23 − 3G31 + 9iG32 + 3iD1 +D2)L5

+(27G11 − 9iG12 + 3iG21 + 9(G22 +G33) + iD3)L6

))]
= 0,

15 =⇒ 6)

6J20

(
L5 − 2L2

)
− 6iJ10

(
2L2 + 3L5

)
+ 6iJ30L6 + 2Q0L6

+
1

M

[1
3
Q2

(
(21iG13 − 21G23 − 9iG31 + 9G32 +D1 + iD2)L1

+(3(−5iG11 − 7G12 − 5G21 + 7iG22 + 3iG33) +D3)L2 + 2(2D3 − 3i(3G11 − 6iG12 + 2iG21 +G22 +G33))L5

+2(−18iG13 − 3G23 + 6iG31 + 3G32 +D1 − 2iD2)L6

)
+Q1

(1
3
(21G13 + 21iG23 − 9G31 − 9iG32 − iD1

+D2)L1 +
(
− 7G11 + 5iG12 + 7iG21 + 5G22 − 3G33 +

1

3
iD3

)
L2 − (9G11 − 9iG12 + 5iG21 +G22 + 5G33

+iD3)L5 − (9G13 − 5iG23 − 5G31 + iG32 + iD1 +D2)L6

)
+ 2J23

(
− 2(9G31 + 9iG32 + iD1 −D2)L1

+2(−6iG12 − 6G22 − 9G33 + iD3)L2 + (9G11 − 9iG12 − 9iG21 + 15G22 − 9G33 + iD3)L5 + (9(G13 + iG23 +G31)

+15iG32 + iD1 +D2)L6

)
+ J32

(
(21G13 + 21iG23 − 9G31 − 9iG32 − iD1 +D2)L1 + 3(−9G11 + 3iG12

+9iG21 + 3G22 − 9G33 + iD3)L2 − 2(18G11 − 9iG12 + 9iG21 + 12G33 + iD3)L5 − 2(9G13 − 12iG23 − 9G31

+2iD1 +D2)L6

)
− 2iJ13

(
− 2(9G31 + 9iG32 + iD1 −D2)L1 + 2(6G11 − 6iG21 + 9G33 − iD3)L2 + (27G11

+9iG12 − 3iG21 + 9(G22 +G33)− iD3)L5 − (9G13 + 9iG23 − 3G31 − 9iG32 − 3iD1 +D2)L6

)
+J31

(
(−21iG13 + 21G23 + 9iG31 − 9G32 −D1 − iD2)L1 + 3(3iG11 + 9G12 + 3G21 − 9i(G22 +G33)−D3)L2

+(9iG11 + 45G12 − 9G21 + 9iG22 − 3iG33 − 5D3)L5 + i(45G13 + 3iG23 − 9G31 + 9iG32 + iD1 + 5D2)L6

)
+J11

(
(−33iG11 +3G12 +33G21 +3i(G22 − 15G33)+ 5D3)L1 +(3iG13 +3G23 − 63iG31 − 63G32 − 7D1 +7iD2)L2

+3i(9G13 − 7iG23 − 5G31 + 11iG32 + 3iD1 +D2)L5 + 3(27iG11 + 9G12 − 5G21 + 11iG22 + 7iG33 −D3)L6

)
+J21

(
(9G11 − 21iG12 + 9iG21 + 21G22 + 45G33 + 5iD3)L1 + (9(G13 − iG23 − 5G31 + 5iG32) + 5iD1

+5D2)L2− (9(G13−3iG23+3G31)−33iG32− iD1+D2)L5+(9G11+9iG12+27iG21 +33G22−27G33 − iD3)L6

)
+
2

3
Q3

(
− 6(G11 + i(G12 +G21 + iG22))L1 − 6(G13 − iG23)L2 − (9G13 + 3iG23 − 3G31 − 3iG32 − iD1 +D2)L5

+(3(3G11 + 3iG12 − iG21 +G22 +G33)− iD3)L6

)
+ J12

(
(21G11 − 9iG12 + 21iG21 + 9G22 + 45G33
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+5iD3)L1 − (9(G13 − iG23 − 5G31 + 5iG32) + 5iD1 + 5D2)L2 − 2(18G13 − 9iG23 − 6G31 + 9iG32 + 3iD1

+2D2)L5 − 2(27G11 − 18iG12 + 6iG21 + 9(G22 +G33) + 2iD3)L6

)
+ J22

(
(−3iG11 + 33G12 + 3G21

+33iG22 + 45iG33 − 5D3)L1 + (3iG13 + 3G23 − 63iG31 − 63G32 − 7D1 + 7iD2)L2 − 2i(9G13 − 12iG23

+15G31 − 24iG32 − 2iD1 +D2)L5 + 2(3i(6G11 + 3iG12 + 5iG21 + 8G22 − 4G33) +D3)L6

)
+

+2J33

(
6(−iG11 +G12 +G21 + iG22)L1 + (−6iG13 − 6G23)L2 + (−9iG13 + 3G23 + 3iG31 − 3G32 −D1 − iD2)L5

+(3i(3G11 + 3iG12 − iG21 +G22 +G33) +D3)L6

)]
= 0,

Let us combine equations as follows

I = 1) + 4), II = 1)− i · 5), III = 4) + i · 5),

IV = 2)− 3), V = 2) + i · 6), V I = 3) + i · 6)

We readily verify that III = I − II and V I = V − IV , so exist only four independent equations; we
apply new numeration and introduce new variables

L1 → 1

3
(Ψ1 +Ψ3) , L2 → 1

3
(Ψ2 +Ψ4) , L5 → 1

3
(Ψ4 − 2Ψ2) , L6 → 1

3
(2Ψ1 −Ψ3) ;

this results in
1) (

+ 2D0M + 6iG30M − iD1D1 − iD2D2 − iD3D3 +
D2D1

3
− D1D2

3
+3G13D1−3iG23D1+G31D1−5iG32D1−iG13D2−G23D2+5iG31D2+G32D2−G11D3+iG12D3+3iG21D3+3G22D3+3G33D3

+3D3G11+5iD3G12−3D1G13−5iD2G13−9iD3G21−D3G22+9iD1G23+D2G23+3D1G31+iD2G31−iD1G32+3D2G32+3D3G33

+45iG11G11 − 39G12G11 − 9G21G11 + 45iG22G11 − 15iG33G11 + 21G11G12 + 15iG12G12 − 15iG21G12

−27G22G12 − 39G33G12 + 15iG13G13 − 9G23G13 + 45iG31G13 + 21G32G13 − 9G11G21 + 21iG12G21 + 27iG21G21

−9G22G21 + 3G33G21 + 33iG11G22 − 3G12G22 + 3G21G22 + 81iG22G22 + 21iG33G22 − 3G13G23 + 27iG23G23

−9G31G23+33iG32G23+9iG13G31+9G23G31+3iG31G31+15G32G31+3G13G32−3iG23G32−15G31G32+3iG32G32

−3iG11G33 − 3G12G33 − 9G21G33 + 9iG22G33 + 9iG33G33

)
Ψ1

+
(
+ 6iG10M − 18G20M − iD3D1 + iD1D3 −

D2D3

3
+

D3D2

3
+3G11D1 + 5iG12D1 + 3iG21D1 + 3G22D1 −G33D1 + iG11D2 +G12D2

−G21D2 + 9iG22D2 + 5iG33D2 +G13D3 + 3iG23D3 + 3G31D3 + iG32D3

+3D1G11 + 5iD2G11 − 5iD1G12 + 3D2G12 + 3D3G13 + 9iD1G21 +D2G21 −D1G22

+9iD2G22 + 9iD3G23 − 3D3G31 − iD3G32 + 3D1G33 + iD2G33

+45iG13G11 + 9G23G11 + 15iG31G11 + 39G32G11 − 21G13G12 − 15iG23G12 − 39G31G12 + 15iG32G12

−15iG11G13 + 21G12G13 − 9G21G13 + 45iG22G13 + 45iG33G13 + 9G13G21 + 27iG23G21 + 3G31G21

+21iG32G21 + 33iG13G22 − 3G23G22 − 21iG31G22 + 3G32G22 − 3G11G23 − 33iG12G23 − 27iG21G23

+9G22G23 + 9G33G23 − 9iG11G31 + 15G12G31 + 9G21G31 − 9iG22G31 + 3iG33G31 + 3G11G32

−3iG12G32 + 3iG21G32 + 27G22G32 + 15G33G32 − 3iG13G33 + 9G23G33 − 9iG31G33 + 3G32G33

)
Ψ2

+
(
− 12iG30M +

2D1D2

3
− 2D2D1

3
−6G13D1−2G31D1+4iG32D1−4iG13D2+2G23D2−4iG31D2−2G32D2+2G11D3+4iG12D3−6G22D3−6G33D3

−6D3G11−4iD3G12+6D1G13+4iD2G13+2D3G22−2D2G23−6D1G31+4iD2G31−4iD1G32−6D2G32−6D3G33

−36iG11G11 + 42G12G11 + 18G21G11 − 36iG22G11 + 12iG33G11 − 6G11G12 − 12iG12G12 + 12iG21G12

+54G22G12 + 42G33G12 − 12iG13G13 + 18G23G13 − 36iG31G13 − 6G32G13 + 18G11G21 + 12iG12G21

+18G22G21 − 6G33G21 − 12iG11G22 + 6G12G22 − 6G21G22 + 12iG33G22 + 6G13G23 + 18G31G23

−12iG32G23 + 36iG13G31 − 18G23G31 + 12iG31G31 + 6G32G31 − 42G13G32 − 12iG23G32 − 6G31G32

+12iG32G32 − 12iG11G33 + 42G12G33 + 18G21G33 + 36iG22G33 + 36iG33G33

)
Ψ3

+
(
− 12iG10M +

2D2D3

3
− 2D3D2

3
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−6G11D1−4iG12D1−6G22D1+2G33D1+4iG11D2−2G12D2+2G21D2−4iG33D2−2G13D3−6G31D3+4iG32D3

−6D1G11−4iD2G11+4iD1G12−6D2G12−6D3G13−2D2G21+2D1G22+6D3G31−4iD3G32−6D1G33+4iD2G33

−36iG13G11 − 18G23G11 − 12iG31G11 − 42G32G11 + 6G13G12 + 12iG23G12 + 42G31G12 − 12iG32G12

+12iG11G13 − 6G12G13 + 18G21G13 − 36iG22G13 − 36iG33G13 − 18G13G21 − 6G31G21 + 12iG32G21

−12iG13G22 + 6G23G22 − 12iG31G22 − 6G32G22 + 6G11G23 + 12iG12G23 − 18G22G23 − 18G33G23

−36iG11G31 + 6G12G31 − 18G21G31 − 36iG22G31 + 12iG33G31 − 42G11G32 − 12iG12G32 + 12iG21G32

−54G22G32 + 6G33G32 − 12iG13G33 − 18G23G33 − 36iG31G33 − 42G32G33

)
Ψ4 = 0,

2) (
4G13D1 − 4iG23D1 − 4iG13D2 − 4G23D2 − 4G11D3 + 4iG12D3 + 4iG21D3 + 4G22D3

+4D3G11 − 4iD3G12 − 4D1G13 + 4iD2G13 − 4iD3G21 − 4D3G22 + 4iD1G23 + 4D2G23

−36iG11G11 − 36G12G11 − 12G21G11 + 12iG22G11 − 36iG33G11 + 12G11G12 − 12iG12G12 − 36iG21G12

−36G22G12 − 36G33G12 − 12iG13G13 − 12G23G13 + 12iG31G13 + 12G32G13 − 36G11G21 + 36iG12G21

+12iG21G21 + 12G22G21 − 36G33G21 − 12iG11G22 − 12G12G22 − 36G21G22 + 36iG22G22 + 36iG33G22

−12G13G23 + 12iG23G23 + 12G31G23 − 12iG32G23 + 12iG13G31 + 12G23G31 + 12G13G32 − 12iG23G32−

−12iG11G33 − 12G12G33 − 12G21G33 + 12iG22G33

)
Ψ1+

+
(
− 12iG10M − 12G20M − 2

3
iD3D1 +

2iD1D3

3
+

2D2D3

3
− 2D3D2

3
−6G11D1 + 6iG12D1 + 2iG21D1 + 2G22D1 − 6G33D1 − 2iG11D2 − 2G12D2 − 6G21D2

+6iG22D2 + 6iG33D2 − 2G13D3 + 2iG23D3 + 2G31D3 − 2iG32D3

−6D1G11 + 6iD2G11 − 6iD1G12 − 6D2G12 − 6D3G13 + 6iD1G21 + 6D2G21 − 6D1G22

+6iD2G22 + 6iD3G23 − 2D3G31 + 2iD3G32 + 2D1G33 − 2iD2G33

+42iG13G11 + 42G23G11 + 18iG31G11 + 18G32G11 + 6G13G12 − 6iG23G12 − 18G31G12 + 18iG32G12

−6iG11G13 − 6G12G13 − 42G21G13 + 42iG22G13 + 54iG33G13 − 6G13G21 + 6iG23G21 + 18G31G21

−18iG32G21 + 42iG13G22 + 42G23G22 + 18iG31G22 + 18G32G22 + 42G11G23 − 42iG12G23 − 6iG21G23

−6G22G23 + 54G33G23 + 18iG11G31 + 18G12G31 + 6G21G31 − 6iG22G31 + 18iG33G31 − 6G11G32

+6iG12G32 + 18iG21G32 + 18G22G32 + 18G33G32 + 6iG13G33 + 6G23G33 − 6iG31G33 − 6G32G33

)
Ψ2

+
(
+ 2D0M − 18iG30M − iD1D1 − iD2D2 − iD3D3 +D1D2 −D2D1−

−5G13D1+5iG23D1−3G31D1+3iG32D1−iG13D2−G23D2−3iG31D2−3G32D2−G11D3+iG12D3−5iG21D3−5G22D3−9G33D3

−5D3G11+5iD3G12+5D1G13−5iD2G13−iD3G21−D3G22+iD1G23+D2G23−9D1G31+9iD2G31−9iD1G32−9D2G32−9D3G33

+45iG11G11 + 45G12G11 + 15G21G11 − 15iG22G11 + 45iG33G11 − 15G11G12 + 15iG12G12 + 45iG21G12

+45G22G12 + 45G33G12 + 15iG13G13 + 15G23G13 − 15iG31G13 − 15G32G13 − 9G11G21 + 9iG12G21

+3iG21G21 + 3G22G21 − 9G33G21 − 3iG11G22 − 3G12G22 − 9G21G22 + 9iG22G22 + 9iG33G22 − 3G13G23

+3iG23G23 + 3G31G23 − 3iG32G23 + 21iG13G31 + 21G23G31 + 27iG31G31 + 27G32G31 − 33G13G32

+33iG23G32 − 27G31G32 + 27iG32G32 + 33iG11G33 + 33G12G33 − 21G21G33 + 21iG22G33 + 81iG33G33

)
Ψ3

+
(
+ 6iG10M + 6G20M +

iD3D1

3
− iD1D3

3
− D2D3

3
+

D3D2

3
+3G11D1 − 3iG12D1 − iG21D1 −G22D1 + 3G33D1 + iG11D2 +G12D2

+3G21D2 − 3iG22D2 − 3iG33D2 +G13D3 − iG23D3 −G31D3 + iG32D3

+3D1G11 − 3iD2G11 + 3iD1G12 + 3D2G12 + 3D3G13 − 3iD1G21−
−3D2G21 + 3D1G22 − 3iD2G22 − 3iD3G23 +D3G31 − iD3G32 −D1G33 + iD2G33−

−39iG13G11 − 39G23G11 − 9iG31G11 − 9G32G11 − 21G13G12 + 21iG23G12 + 9G31G12 − 9iG32G12

+21iG11G13 + 21G12G13 + 39G21G13 − 39iG22G13 − 27iG33G13 − 15G13G21 + 15iG23G21 − 9G31G21

+9iG32G21 − 3iG13G22 − 3G23G22 − 9iG31G22 − 9G32G22 − 3G11G23 + 3iG12G23 − 15iG21G23

−15G22G23 − 27G33G23 − 9iG11G31 − 9G12G31 − 3G21G31 + 3iG22G31 − 9iG33G31 + 3G11G32

−3iG12G32 − 9iG21G32 − 9G22G32 − 9G33G32 − 3iG13G33 − 3G23G33 + 3iG31G33 + 3G32G33

)
Ψ4 = 0,

3) (
6iG10M + 18G20M + iD3D1 − iD1D3 −

D2D3

3
+

D3D2

3
+3G11D1 − 5iG12D1 − 3iG21D1 + 3G22D1 −G33D1 − iG11D2
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+G12D2 −G21D2 − 9iG22D2 − 5iG33D2 +G13D3 − 3iG23D3 + 3G31D3 − iG32D3

+3D1G11 − 5iD2G11 + 5iD1G12 + 3D2G12 + 3D3G13 − 9iD1G21

+D2G21 −D1G22 − 9iD2G22 − 9iD3G23 − 3D3G31 + iD3G32 + 3D1G33 − iD2G33

−45iG13G11 + 9G23G11 − 15iG31G11 + 39G32G11 − 21G13G12 + 15iG23G12 − 39G31G12 − 15iG32G12

+15iG11G13 + 21G12G13 − 9G21G13 − 45iG22G13 − 45iG33G13 + 9G13G21 − 27iG23G21 + 3G31G21

−21iG32G21 − 33iG13G22 − 3G23G22 + 21iG31G22 + 3G32G22 − 3G11G23 + 33iG12G23 + 27iG21G23

+9G22G23 + 9G33G23 + 9iG11G31 + 15G12G31 + 9G21G31 + 9iG22G31 − 3iG33G31 + 3G11G32

+3iG12G32 − 3iG21G32 + 27G22G32 + 15G33G32 + 3iG13G33 + 9G23G33 + 9iG31G33 + 3G32G33 +
)
Ψ1

+
(
+ 2D0M − 6iG30M − iD1D1 − iD2D2 − iD3D3 +

D1D2

3
− D2D1

3
−

−3G13D1−3iG23D1−G31D1−5iG32D1−iG13D2+G23D2+5iG31D2−G32D2+G11D3+iG12D3+3iG21D3−3G22D3−3G33D3

−3D3G11+5iD3G12+3D1G13−5iD2G13−9iD3G21+D3G22+9iD1G23−D2G23−3D1G31+iD2G31−iD1G32−3D2G32−3D3G33

+45iG11G11 + 39G12G11 + 9G21G11 + 45iG22G11 − 15iG33G11 − 21G11G12 + 15iG12G12 − 15iG21G12

+27G22G12 + 39G33G12 + 15iG13G13 + 9G23G13 + 45iG31G13 − 21G32G13 + 9G11G21 + 21iG12G21 + 27iG21G21

+9G22G21 − 3G33G21 + 33iG11G22 + 3G12G22 − 3G21G22 + 81iG22G22 + 21iG33G22 + 3G13G23

+27iG23G23 + 9G31G23 + 33iG32G23 + 9iG13G31 − 9G23G31 + 3iG31G31 − 15G32G31 − 3G13G32 − 3iG23G32

+15G31G32 + 3iG32G32 − 3iG11G33 + 3G12G33 + 9G21G33 + 9iG22G33 + 9iG33G33

)
Ψ2

+
(
− 12iG10M +

2D2D3

3
− 2D3D2

3
−6G11D1+4iG12D1−6G22D1+2G33D1−4iG11D2−2G12D2+2G21D2+4iG33D2−2G13D3−6G31D3−4iG32D3

−6D1G11+4iD2G11−4iD1G12−6D2G12−6D3G13−2D2G21+2D1G22+6D3G31+4iD3G32−6D1G33−4iD2G33

+36iG13G11 − 18G23G11 + 12iG31G11 − 42G32G11 + 6G13G12 − 12iG23G12 + 42G31G12 + 12iG32G12

−12iG11G13 − 6G12G13 + 18G21G13 + 36iG22G13 + 36iG33G13 − 18G13G21 − 6G31G21 − 12iG32G21

+12iG13G22 + 6G23G22 + 12iG31G22 − 6G32G22 + 6G11G23 − 12iG12G23 − 18G22G23 − 18G33G23

+36iG11G31 + 6G12G31 − 18G21G31 + 36iG22G31 − 12iG33G31 − 42G11G32 + 12iG12G32 − 12iG21G32

−54G22G32 + 6G33G32 + 12iG13G33 − 18G23G33 + 36iG31G33 − 42G32G33

)
Ψ3

+
(
+ 12iG30M − 2D1D2

3
+

2D2D1

3
+

+6G13D1+2G31D1+4iG32D1−4iG13D2−2G23D2−4iG31D2+2G32D2−2G11D3+4iG12D3+6G22D3+6G33D3

+6D3G11−4iD3G12−6D1G13+4iD2G13−2D3G22+2D2G23+6D1G31+4iD2G31−4iD1G32+6D2G32+6D3G33

−36iG11G11 − 42G12G11 − 18G21G11 − 36iG22G11 + 12iG33G11 + 6G11G12 − 12iG12G12 + 12iG21G12

−54G22G12 − 42G33G12 − 12iG13G13 − 18G23G13 − 36iG31G13 + 6G32G13 − 18G11G21 + 12iG12G21 − 18G22G21

+6G33G21 − 12iG11G22 − 6G12G22 + 6G21G22 + 12iG33G22 − 6G13G23 − 18G31G23 − 12iG32G23

+36iG13G31 + 18G23G31 + 12iG31G31 − 6G32G31 + 42G13G32 − 12iG23G32 + 6G31G32 + 12iG32G32 − 12iG11G33

−42G12G33 − 18G21G33 + 36iG22G33 + 36iG33G33

)
Ψ4 = 0,

4) (
− 12iG10M + 12G20M +

2iD3D1

3
− 2iD1D3

3
+

2D2D3

3
− 2D3D2

3
−6G11D1 − 6iG12D1 − 2iG21D1 + 2G22D1 − 6G33D1 + 2iG11D2 − 2G12D2

−6G21D2 − 6iG22D2 − 6iG33D2 − 2G13D3 − 2iG23D3 + 2G31D3 + 2iG32D3

−6D1G11 − 6iD2G11 + 6iD1G12 − 6D2G12 − 6D3G13 − 6iD1G21 + 6D2G21

−6D1G22 − 6iD2G22 − 6iD3G23 − 2D3G31 − 2iD3G32 + 2D1G33 + 2iD2G33

−42iG13G11 + 42G23G11 − 18iG31G11 + 18G32G11 + 6G13G12 + 6iG23G12 − 18G31G12 − 18iG32G12

+6iG11G13 − 6G12G13 − 42G21G13 − 42iG22G13 − 54iG33G13 − 6G13G21 − 6iG23G21 + 18G31G21

+18iG32G21 − 42iG13G22 + 42G23G22 − 18iG31G22 + 18G32G22 + 42G11G23 + 42iG12G23 + 6iG21G23

−6G22G23 + 54G33G23 − 18iG11G31 + 18G12G31 + 6G21G31 + 6iG22G31 − 18iG33G31 − 6G11G32 − 6iG12G32

−18iG21G32 + 18G22G32 + 18G33G32 − 6iG13G33 + 6G23G33 + 6iG31G33 − 6G32G33

)
Ψ1

+
(
− 4G13D1 − 4iG23D1 − 4iG13D2 + 4G23D2 + 4G11D3 + 4iG12D3 + 4iG21D3 − 4G22D3

−4D3G11 − 4iD3G12 + 4D1G13 + 4iD2G13 − 4iD3G21 + 4D3G22 + 4iD1G23 − 4D2G23

−36iG11G11 + 36G12G11 + 12G21G11 + 12iG22G11 − 36iG33G11 − 12G11G12 − 12iG12G12 − 36iG21G12
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+36G22G12 + 36G33G12 − 12iG13G13 + 12G23G13 + 12iG31G13 − 12G32G13 + 36G11G21 + 36iG12G21

+12iG21G21 − 12G22G21 + 36G33G21 − 12iG11G22 + 12G12G22 + 36G21G22 + 36iG22G22 + 36iG33G22

+12G13G23 + 12iG23G23 − 12G31G23 − 12iG32G23 + 12iG13G31 − 12G23G31 − 12G13G32 − 12iG23G32

−12iG11G33 + 12G12G33 + 12G21G33 + 12iG22G33

)
Ψ2

+
(
+ 6iG10M − 6G20M − 1

3
iD3D1 +

iD1D3

3
− D2D3

3
+

D3D2

3
+3G11D1 + 3iG12D1 + iG21D1 −G22D1 + 3G33D1 − iG11D2 +G12D2 + 3G21D2

+3iG22D2 + 3iG33D2 +G13D3 + iG23D3 −G31D3 − iG32D3+

+3D1G11 + 3iD2G11 − 3iD1G12 + 3D2G12 + 3D3G13 + 3iD1G21 − 3D2G21

+3D1G22 + 3iD2G22 + 3iD3G23 +D3G31 + iD3G32 −D1G33 − iD2G33

+39iG13G11 − 39G23G11 + 9iG31G11 − 9G32G11 − 21G13G12 − 21iG23G12 + 9G31G12 + 9iG32G12

−21iG11G13 + 21G12G13 + 39G21G13 + 39iG22G13 + 27iG33G13 − 15G13G21 − 15iG23G21 − 9G31G21

−9iG32G21 + 3iG13G22 − 3G23G22 + 9iG31G22 − 9G32G22 − 3G11G23 − 3iG12G23 + 15iG21G23

−15G22G23 − 27G33G23 + 9iG11G31 − 9G12G31 − 3G21G31 − 3iG22G31 + 9iG33G31 + 3G11G32 + 3iG12G32

+9iG21G32 − 9G22G32 − 9G33G32 + 3iG13G33 − 3G23G33 − 3iG31G33 + 3G32G33

)
Ψ3

+
(
+ 2D0M + 18iG30M − iD1D1 − iD2D2 − iD3D3 −D1D2 +D2D1

+5G13D1+5iG23D1+3G31D1+3iG32D1−iG13D2+G23D2−3iG31D2+3G32D2+G11D3+iG12D3−5iG21D3+5G22D3+9G33D3

+5D3G11+5iD3G12−5D1G13−5iD2G13−iD3G21+D3G22+iD1G23−D2G23+9D1G31+9iD2G31−9iD1G32+9D2G32+9D3G33

+45iG11G11 − 45G12G11 − 15G21G11 − 15iG22G11 + 45iG33G11 + 15G11G12 + 15iG12G12 + 45iG21G12

−45G22G12 − 45G33G12 + 15iG13G13 − 15G23G13 − 15iG31G13 + 15G32G13 + 9G11G21 + 9iG12G21 + 3iG21G21

−3G22G21 + 9G33G21 − 3iG11G22 + 3G12G22 + 9G21G22 + 9iG22G22 + 9iG33G22 + 3G13G23 + 3iG23G23

−3G31G23 − 3iG32G23 + 21iG13G31 − 21G23G31 + 27iG31G31 − 27G32G31 + 33G13G32 + 33iG23G32

+27G31G32 + 27iG32G32 + 33iG11G33 − 33G12G33 + 21G21G33 + 21iG22G33 + 81iG33G33

)
Ψ4 = 0,

Re-grouping the terms, and introducing the new notations

D2
1 +D2

2 +D2
3 = ∆, D1D2 −D2D1 = D12, D2D3 −D3D2 = D23, D3D1 −D1D3 = D31,

we obtain
1 {

2M(D0 + 3iG30)− i∆− D12

3

+D1(−3G13 +9iG23 +3G31 − iG32)+D2(−5iG13 +G23 + iG31 +3G32)+D3(3G11 +5iG12 − 9iG21 −G22 +3G33)

+(3G13 − 3iG23 +G31 − 5iG32)D1 + (−iG13 −G23 + 5iG31 +G32)D2 + (−G11 + iG12 + 3iG21 + 3G22 + 3G33)D3

+
(
24G13G32 + 30iG23G32 − 42G12G33 − 6G21G33 + 30iG22G33 + 45iG2

11 − 18G12G11 − 18G21G11

+78iG22G11 − 18iG33G11 + 15iG2
12 + 15iG2

13 + 27iG2
21 + 81iG2

22 + 27iG2
23 + 3iG2

31 + 3iG2
32

+9iG2
33 + 6iG12G21 − 30G12G22 − 6G21G22 − 12G13G23 + 54iG13G31

)}
Ψ1

+
{
+ (6iG10 − 18G20)M − D23

3
− iD31

+D1(3G11−5iG12+9iG21−G22+3G33)+D2(5iG11+3G12+G21+9iG22+iG33)+D3(3G13+9iG23−3G31−iG32)

+(3G11+5iG12+3iG21+3G22−G33)D1+(iG11+G12−G21+9iG22+5iG33)D2+(G13+3iG23+3G31+ iG32)D3

+
(
30iG11G13 + 78iG13G22 + 6G11G23 − 48iG12G23 + 6G22G23 + 6iG11G31 − 24G12G31

+12G21G31−30iG22G31+42G11G32+12iG12G32+24iG21G32+30G22G32+42iG13G33+18G23G33−6iG31G33+18G32G33

)}
Ψ2

+
{
− 12iG30M +

2D12

3

+D1(6G13 − 6G31 − 4iG32) +D2(4iG13 − 2G23 + 4iG31 − 6G32) +D3(−6G11 − 4iG12 + 2G22 − 6G33)

+(−6G13 − 2G31 + 4iG32)D1 + (−4iG13 + 2G23 − 4iG31 − 2G32)D2 + (2G11 + 4iG12 − 6G22 − 6G33)D3

+
(
− 36iG2

11 + 36G12G11 + 36G21G11 − 48iG22G11 − 12iG2
12 − 12iG2

13 + 12iG2
31 + 12iG2

32 + 36iG2
33

+24iG12G21+60G12G22+12G21G22+24G13G23−48G13G32−24iG23G32+84G12G33+12G21G33+48iG22G33

)}
Ψ3
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+
{
− 12iG10M +

2D23

3

+D1(−6G11 + 4iG12 + 2G22 − 6G33) +D2(−4iG11 − 6G12 − 2G21 + 4iG33) +D3(−6G13 + 6G31 − 4iG32)

+(−6G11 − 4iG12 − 6G22 + 2G33)D1 + (4iG11 − 2G12 + 2G21 − 4iG33)D2 + (−2G13 − 6G31 + 4iG32)D3

+
(
−24iG11G13−48iG13G22−12G11G23+24iG12G23−12G22G23−48iG11G31+48G12G31−24G21G31−48iG22G31−84G11G32

−24iG12G32 + 24iG21G32 − 60G22G32 − 48iG13G33 − 36G23G33 − 24iG31G33 − 36G32G33

)}
Ψ4 = 0,

2 {
+ (6iG10 + 18G20)M − D23

3
+ iD31

+D1(3G11+5iG12−9iG21−G22+3G33)+D2(−5iG11+3G12+G21−9iG22−iG33)+D3(3G13−9iG23−3G31+iG32)

+(3G11−5iG12−3iG21+3G22−G33)D1+(−iG11+G12−G21−9iG22−5iG33)D2+(G13−3iG23+3G31−iG32)D3

+
(
−30iG11G13−78iG13G22+6G11G23+48iG12G23+6G22G23−6iG11G31−24G12G31+12G21G31+30iG22G31+42G11G32

−12iG12G32 − 24iG21G32 + 30G22G32 − 42iG13G33 + 18G23G33 + 6iG31G33 + 18G32G33

)}
Ψ1

+
{
2M(D0 − 3iG30)− i∆+

D12

3

+D1(3G13 +9iG23 − 3G31 − iG32)+D2(−5iG13 −G23 + iG31 − 3G32)+D3(−3G11 +5iG12 − 9iG21 +G22 − 3G33)

+(−3G13 − 3iG23 −G31 − 5iG32)D1 + (−iG13 +G23 + 5iG31 −G32)D2 + (G11 + iG12 + 3iG21 − 3G22 − 3G33)D3

+
(
45iG2

11+18G12G11+18G21G11+78iG22G11−18iG33G11+15iG2
12+15iG2

13+27iG2
21+81iG2

22+27iG2
23+3iG2

31+3iG2
32

+9iG2
33 + 6iG12G21 + 30G12G22 + 6G21G22 + 12G13G23

+54iG13G31 − 24G13G32 + 30iG23G32 + 42G12G33 + 6G21G33 + 30iG22G33

)}
Ψ2

+
{
− 12iG10M +

2D23

3

+D1(−6G11 − 4iG12 + 2G22 − 6G33) +D2(4iG11 − 6G12 − 2G21 − 4iG33) +D3(−6G13 + 6G31 + 4iG32)

+(−6G11 + 4iG12 − 6G22 + 2G33)D1 + (−4iG11 − 2G12 + 2G21 + 4iG33)D2 + (−2G13 − 6G31 − 4iG32)D3

+
(
24iG11G13+48iG13G22−12G11G23−24iG12G23−12G22G23+48iG11G31+48G12G31−24G21G31+48iG22G31−84G11G32

+24iG12G32 − 24iG21G32 − 60G22G32 + 48iG13G33 − 36G23G33 + 24iG31G33 − 36G32G33

)}
Ψ3

+
{
+ 12iG30M − 2D12

3

+D1(−6G13 + 6G31 − 4iG32) +D2(4iG13 + 2G23 + 4iG31 + 6G32) +D3(6G11 − 4iG12 − 2G22 + 6G33)

+(6G13 + 2G31 + 4iG32)D1 + (−4iG13 − 2G23 − 4iG31 + 2G32)D2 + (−2G11 + 4iG12 + 6G22 + 6G33)D3

+
(
−36iG2

11−36G12G11−36G21G11−48iG22G11−12iG2
12−12iG2

13+12iG2
31+12iG2

32+36iG2
33+24iG12G21−60G12G22−12G21G22

−24G13G23 + 48G13G32 − 24iG23G32 − 84G12G33 − 12G21G33 + 48iG22G33

)}
Ψ4 = 0,

3 {
+D1(4iG23 − 4G13) +D2(4iG13 + 4G23) +D3(4G11 − 4iG12 − 4iG21 − 4G22)

+(4G13 − 4iG23)D1 + (−4iG13 − 4G23)D2 + (−4G11 + 4iG12 + 4iG21 + 4G22)D3

+
(
−36iG2

11−24G12G11−48G21G11−48iG33G11−12iG2
12−12iG2

13+12iG2
21+36iG2

22+12iG2
23−48G12G22−24G21G22−24G13G23

+24iG13G31 + 24G23G31 + 24G13G32 − 24iG23G32 − 48G12G33 − 48G21G33 + 48iG22G33

)}
Ψ1

+
{
(−12iG10 − 12G20)M +

2D23

3
− 2iD31

3

+D1(−6G11−6iG12+6iG21−6G22+2G33)+D2(6iG11−6G12+6G21+6iG22−2iG33)+D3(−6G13+6iG23−2G31+2iG32)

+(−6G11+6iG12+2iG21+2G22−6G33)D1+(−2iG11−2G12−6G21+6iG22+6iG33)D2+(−2G13+2iG23+2G31−2iG32)D3

+
(
36iG11G13−48G13G21+84iG13G22+84G11G23−48iG12G23+36G22G23+36iG11G31+24G21G31+12iG22G31+12G11G32

+24iG12G32 + 36G22G32 + 60iG13G33 + 60G23G33 + 12iG31G33 + 12G32G33

)}
Ψ2

+
{
2M(D0 − 9iG30)M − i∆+D12
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+D1(5G13 + iG23 − 9G31 − 9iG32)+D2(−5iG13 +G23 +9iG31 − 9G32)+D3(−5G11 +5iG12 − iG21 −G22 − 9G33)

+(−5G13+5iG23−3G31+3iG32)D1+(−iG13−G23−3iG31−3G32)D2+(−G11+ iG12−5iG21−5G22−9G33)D3

+
(
45iG2

11+30G12G11+6G21G11−18iG22G11+78iG33G11+15iG2
12+15iG2

13+3iG2
21+9iG2

22+3iG2
23+27iG2

31+27iG2
32

+81iG2
33 + 54iG12G21 + 42G12G22 − 6G21G22 + 12G13G23 + 6iG13G31

+24G23G31 − 48G13G32 + 30iG23G32 + 78G12G33 − 30G21G33 + 30iG22G33

)}
Ψ3

+
{
+ (6iG10 + 6G20)M − D23

3
+

iD31

3

+D1(3G11+3iG12−3iG21+3G22−G33)+D2(−3iG11+3G12−3G21−3iG22+iG33)+D3(3G13−3iG23+G31−iG32)

+(3G11 − 3iG12 − iG21 −G22 +3G33)D1 +(iG11 +G12 +3G21 − 3iG22 − 3iG33)D2 +(G13 − iG23 −G31 + iG32)D3

+
(
−18iG11G13+24G13G21−42iG13G22−42G11G23+24iG12G23−18G22G23−18iG11G31−12G21G31−6iG22G31−6G11G32

−12iG12G32 − 18G22G32 − 30iG13G33 − 30G23G33 − 6iG31G33 − 6G32G33

)}
Ψ4 = 0,

4 {
+ (12G20 − 12iG10)M +

2D23

3
+

2iD31

3

+D1(−6G11+6iG12−6iG21−6G22+2G33)+D2(−6iG11−6G12+6G21−6iG22+2iG33)+D3(−6G13−6iG23−2G31−2iG32)

+(−6G11−6iG12−2iG21+2G22−6G33)D1+(2iG11−2G12−6G21−6iG22−6iG33)D2+(−2G13−2iG23+2G31+2iG32)D3

+
(
−36iG11G13−48G13G21−84iG13G22+84G11G23+48iG12G23+36G22G23−36iG11G31+24G21G31−12iG22G31+12G11G32

−24iG12G32 + 36G22G32 − 60iG13G33 + 60G23G33 − 12iG31G33 + 12G32G33

)}
Ψ1

+
{
+D1(4G13 + 4iG23) +D2(4iG13 − 4G23) +D3(−4G11 − 4iG12 − 4iG21 + 4G22)

+(−4G13 − 4iG23)D1 + (4G23 − 4iG13)D2 + (4G11 + 4iG12 + 4iG21 − 4G22)D3

+
(
−36iG2

11+24G12G11+48G21G11−48iG33G11−12iG2
12−12iG2

13+12iG2
21+36iG2

22+12iG2
23+48G12G22+24G21G22+24G13G23

+24iG13G31 − 24G23G31 − 24G13G32 − 24iG23G32 + 48G12G33 + 48G21G33 + 48iG22G33

)}
Ψ2

+
{
+ (6iG10 − 6G20)M − D23

3
− iD31

3

+D1(3G11−3iG12+3iG21+3G22−G33)+D2(3iG11+3G12−3G21+3iG22−iG33)+D3(3G13+3iG23+G31+iG32)

+(3G11+3iG12+ iG21−G22+3G33)D1+(−iG11+G12+3G21+3iG22+3iG33)D2+(G13+ iG23−G31− iG32)D3

+
(
18iG11G13+24G13G21+42iG13G22−42G11G23−24iG12G23−18G22G23+18iG11G31−12G21G31+6iG22G31−6G11G32

+12iG12G32 − 18G22G32 + 30iG13G33 − 30G23G33 + 6iG31G33 − 6G32G33

)}
Ψ3

+
{
2M(D0 + 9iG30)− i∆−D12

+D1(−5G13 + iG23 +9G31 − 9iG32)+D2(−5iG13 −G23 +9iG31 +9G32)+D3(5G11 +5iG12 − iG21 +G22 +9G33)

+(5G13 +5iG23 +3G31 +3iG32)D1 + (−iG13 +G23 − 3iG31 +3G32)D2 + (G11 + iG12 − 5iG21 +5G22 +9G33)D3

+
(
45iG2

11−30G12G11−6G21G11−18iG22G11+78iG33G11+15iG2
12+15iG2

13+3iG2
21+9iG2

22+3iG2
23+27iG2

31+27iG2
32

+81iG2
33 + 54iG12G21 − 42G12G22 + 6G21G22 − 12G13G23 + 6iG13G31 − 24G23G31

+48G13G32 + 30iG23G32 − 78G12G33 + 30G21G33 + 30iG22G33

)}
Ψ4 = 0,

We can present this system in the matrix form

2M(D0 +A0)Ψ− i∆Ψ+ (a1D23 + a2D31 + a3D12)Ψ

+D1A1Ψ+B1D1Ψ+D2A2Ψ+B2D2Ψ+D3A3Ψ+B3D3Ψ+ΣΨ = 0, (34)

where

Ψ =

∣∣∣∣∣∣∣
Ψ1

Ψ2

Ψ3

Ψ4

∣∣∣∣∣∣∣ , A0 =

∣∣∣∣∣∣∣
3iG30 3i(G10 + 3iG20) −6iG30 −6iG10

3i(G10 − 3iG20) −3iG30 −6iG10 6iG30

0 −6i(G10 − iG20) −9iG30 3i(G10 − iG20)
6(G20 − iG10) 0 −3(G20 − iG10) 9iG30

∣∣∣∣∣∣∣ ,
and so on.
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For 4× 4 matrices a1, a2, a3, the commutators are valid

a1a2 − a2a1 = i
2

3
a3, ...;

by changing normalization

S1 =
3

2
a1, S2 =

3

2
a2, S3 =

3

2
a3,

we obtain three spin matrices with the needed commutation relations

S1S2 − S2S1 = iS3, ... .

Explicitly, they read

S1 =

∣∣∣∣∣∣∣∣
0 − 1

2 0 1
−1

2 0 1 0
0 1 0 − 1

2
1 0 − 1

2 0

∣∣∣∣∣∣∣∣ , S2 =

∣∣∣∣∣∣∣∣
0 −3i

2 0 0
3i
2 0 0 0
0 −i 0 i

2
i 0 − i

2 0

∣∣∣∣∣∣∣∣ , S3 =

∣∣∣∣∣∣∣∣
−1

2 0 1 0
0 1

2 0 −1
0 0 3

2 0
0 0 0 −3

2

∣∣∣∣∣∣∣∣ . (35)

We can readily find transformation

Ψ̄ = SΨ, S =

∣∣∣∣∣∣∣
0 0 0 1
−2 0 1 0
0 −2 0 1
0 0 1 0

∣∣∣∣∣∣∣ ; (36)

to a basis, in which the matrix S̄3 becomes diagonal and new spin components are given by the formulas

S̄1 =

∣∣∣∣∣∣∣∣
0 −1

2 0 0
−3

2 0 −1 0
0 −1 0 − 3

2
0 0 − 1

2 0

∣∣∣∣∣∣∣∣ , S̄2 =

∣∣∣∣∣∣∣∣
0 − i

2 0 0
3i
2 0 −i 0
0 i 0 − 3i

2
0 0 i

2 0

∣∣∣∣∣∣∣∣ , S̄3 =

∣∣∣∣∣∣∣
−3/2 0 0 0
0 −1/2 0 0
0 0 1/2 0
0 0 0 3/2

∣∣∣∣∣∣∣ . (37)

This basis is called as cyclic one; sometimes it is more convenient basis than the Cartesian one.
The Pauli like equation for spin 3/2 particle in curved space has the structure

i(D0 +A0)Ψ = − 1

2M
∆Ψ− i

3M

(
S1D23 + S2D31 + S3D12

)
Ψ−

− i

2M

[
D1A1 +D2A2 +D3A3 +B1D1 +B2D2 +B3D3 ++Σ

]
Ψ, (38)

this equation evidently include the tetrad components of the Ricci tensor Rab and scalar Ra
a = R.

Transformation to cyclic basis is reached as follows

i(D0 + Ā0)Ψ̄ = − 1

2M
∆Ψ̄− i

3M

(
S̄1D23 + S̄2D31 + S̄3D12

)
Ψ̄−

− i

2M

[
D1Ā1 +D2Ā2 +D3Ā3 + B̄1D1 + B̄2D2 + B̄3D3 + Σ̄

]
Ψ̄, (39)

where

Ψ̄ = SΨ, Ψ = S−1Ψ̄, Ā0 = SA0S
−1, , S̄i = SSiS

−1,

Āi = SAiS
−1, B̄i = SBiS

−1, Σ̄ = SΣS−1.

5. Detailed structure of the resulting equation

The matrix A0 contains the Ricci rotation coefficients Gj0, which differ from zero only in non-static
metrics. The matrices A1, A2, A3 and B1, B2, B3 are determined by 9 Ricci coefficients

G11, G12, G13, G21, G22, G23, G21, G22, G23. (40)
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So, we can search for linear expansions of all these matrices in terms of 9 basic elements:

S1 = t1, S2 = t2, S3 = t3,

S2
1 = t4, S2

2 = t5, S2
3 = t6,

S2S3 = t7, S3S1 = t8, S1S2 = t9,

(41)

We readily find the needed expansions:

A0 = x1t1 + x2t2 + x3t3 + ...+ x9t9,

x1 = −6iG10, x2 = −6iG20, x3 = −6iG30,

x4 = 0, x5 = 0, x6 = 0, x7 = 0, x8 = 0, x9 = 0,

2iM(D0 +A0)Ψ = 2iM
[
D0 + 6(G10S1 +G20S2 +G30S3)

]
Ψ; (42)

A1 = y1t1 + y2t2 + y3t3 + ...+ y9t9,

y1 = −6G11 − 4G22, y2 = −6G21, y3 = 4G13 − 6G31,

y4 = 0, y5 = 4iG23, y6 = −4iG32,

y7 = −4i(G22 −G33), y8 = −4iG12, y9 = 4iG13;

A2 = z1t1 + z2t2 + z3t3 + ...+ z9t9,

z1 = 4G21 − 6G12, z2 = −6G22 − 4G33, z3 = −6G32,

z4 = −4iG13, z5 = 0, z6 = 4iG31,

z7 = 4iG21, z8 = 4i(G11 −G33), z9 = −4iG23;

A3 = h1t1 + h2t2 + h3t3 + ...+ h9t9,

h1 = −6G13, h2 = 4G32 − 6G23, h3 = −4G11 − 6G33,

h4 = 4iG12, h5 = −4iG21, h6 = 0,

h7 = −4iG31, h8 = 4iG32, h9 = −4i(G11 −G22);

B1 = y1t1 + y2t2 + y3t3 + ...+ y9t9,

y1 = −6G11 − 4G33, y2 = −2G21, y3 = −2(2G13 +G31),

y4 =
8

5
i(G23 −G32), y5 = −4

5
i(3G23 + 2G32), y6 =

4

5
i(2G23 + 3G32),

y7 = 4i(G22 −G33), y8 = 4iG12, y9 = −4iG13;
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B2 = z1t1 + z2t2 + z3t3 + ...+ z9t9,

z1 = −2(G12 + 2G21), z2 = −4G11 − 6G22, z3 = −2G32,

z4 =
4

5
i(3G13 + 2G31), z5 = −8

5
i(G13 −G31), z6 = −4

5
i(2G13 + 3G31),

z7 = −4iG21, z8 = −4i(G11 −G33), z9 = 4iG23;

B3 = h1t1 + h2t2 + h3t3 + ...+ h9t9,

h1 = −2G13, h2 = −2(G23 + 2G32), h3 = −4G22 − 6G33,

h4 = −4

5
i(3G12 + 2G21), h5 =

4

5
i(2G12 + 3G21), h6 =

8

5
i(G12 −G21),

h7 = 4iG31, h8 = −4iG32, h9 = 4i(G11 −G22);

A1 +B1 = y1t1 + y2t2 + y3t3 + ...+ y9t9,

y1 = −4(3G11 +G22 +G33), y2 = −8G21, y3 = −8G31,

y4 =
8

5
i(G23 −G32), y5 =

8

5
i(G23 −G32), y6 =

8

5
i(G23 −G32),

y7 = 0, y8 = 0, y9 = 0;

A2 +B2 = z1t1 + z2t2 + z3t3 + ...+ z9t9,

z1 = −8G12, z2 = −4(3G22 +G11 +G33), z3 = −8G32,

z4 = −8

5
i(G13 −G31), z5 = −8

5
i(G13 −G31), z6 = −8

5
i(G13 −G31),

z7 = 0, z8 = 0, z9 = 0;

A3 +B3 = h1t1 + h2t2 + h3t3 + ...+ h9t9,

h1 = −8G13, h2 = −8G23, h3 = −4(3G33 +G11 +G22),

h4 =
8

5
i(G12 −G21), h5 =

8

5
i(G12 −G21), h6 =

8

5
i(G12 −G21),

h7 = 0, h8 = 0, h9 = 0;

Σ = x1t1 + x2t2 + x3t3 + ...+ x9t9,

x1 = 12
(
5G11G23 − 3G13G21 + 3G33G23 + 2G22G23 −G11G32 +G31G12 +G31G21 +G22G32

)
,
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x2 = 12
(
5G22G31 − 3G21G32 + 3G11G31 + 2G33G31 −G22G13 +G12G23 +G12G32 +G33G13

)
,

x3 = 12
(
5G33G12 − 3G13G32 + 3G22G12 + 2G11G12 −G33G21 +G23G13 +G23G31 +G11G21

)
,

x4 = 12i
(
3G2

11 + 2G11G22 + 2G33G11 − 2G22G33 + 2G23G32 +G2
12 +G2

13

)
,

x5 = 12i
(
3G2

22 + 2G11G22 − 2G33G11 + 2G22G33 + 2G13G31 +G2
21 +G2

23

)
,

x6 = 12i
(
3G2

33 + 2G11G33 + 2G33G22 − 2G22G11 + 2G12G21 +G2
31 +G2

32

)
,

x7 = 24i
(
2G11G23 +2G11G32 +2G22G32 +2G33G23 −G12G31 −G13G21 +G21G31 +G32G33 +G22G23

)
,

x8 = 24i
(
2G11G31 +2G22G13 +2G22G31 +2G33G13 +G11G13 −G12G23 +G12G32 −G21G32 +G33G31

)
,

x9 = 24i
(
2G11G21 +2G33G12 +2G22G12 +2G33G21 +G13G23 −G13G32 +G21G22 −G23G31 +G11G12

)
.

6. Examples: magnetic and electric uniform fields

Cylindrical coordinates xα = (t, r, ϕ, z), the relevant tetrad, Ricci rotation coefficients, and the uniform
electric field are determined by relations

dS2 = dt2 − dr2 − r2dϕ2 − dz2, gαβ =

∣∣∣∣∣∣∣
1 0 0 0
0 −1 0 0
0 0 −r2 0
0 0 0 −1

∣∣∣∣∣∣∣ , eα(a) =

∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 1

r 0
0 0 0 1

∣∣∣∣∣∣∣ ,
0 =⇒ t, 1 =⇒ r, 2 =⇒ ϕ, 3 =⇒ z, γ122 = G32 = +

1

r
, (43)

D0 = ∂0 + ieA0, D1 = ∂r + ieAr, D2 =
1

r
(∂ϕ + ieAϕ), D3 = ∂z + ieAz,

γ230 = G10 = 0, γ310 = G20 = 0, γ120 = G30 = 0,

γ231 = G11 = 0, γ311 = G21 = 0, γ121 = G31 = 0,

γ232 = G12 = 0, γ312 = G22 = 0, γ122 = G32 =
1

r
,

γ233 = G13 = 0, γ313 = G23 = 0, γ123 = G33 = 0.

(44)

To simplify the problem, let us consider the situation of presence of uniform magnetic and electric
fields along the exes z; then we have

D0 = ∂t + ieEz, D1 = ∂r, D2 =
1

r

(
∂ϕ + ie

Br2

2

)
, D3 = ∂z,

A0 = 0, ∆ =
∂2

∂r2
+
(1
r
∂ϕ +

ieB

2
r
)2

+
∂2

∂z2
,

D23 = 0, D31 = 0, D12 = ∂r

(1
r
∂ϕ +

ieB

2
r
)
−
(1
r
∂ϕ +

ieB

2
r
)
∂r = − 1

r2

(
∂ϕ − ie

Br2

2

)
,
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(∂rA1) =
i

r2

∣∣∣∣∣∣∣
1 0 4 0
0 1 0 4
0 0 9 0
0 0 0 9

∣∣∣∣∣∣∣ , A1 +B1 = −6i

r

∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣ = −6i

r
I,

A2 +B2 =
4

r

∣∣∣∣∣∣∣
1 0 −2 0
0 −1 0 2
0 0 −3 0
0 0 0 3

∣∣∣∣∣∣∣ , A3 +B3 = 0, Σ =
3i

r2

∣∣∣∣∣∣∣
1 0 4 0
0 1 0 4
0 0 9 0
0 0 0 9

∣∣∣∣∣∣∣
So the main equation takes the form

i(∂t + ieEz)Ψ = − 1

2M

[ ∂2

∂r2
+

(1
r
∂ϕ +

ieB

2
r
)2

+
∂2

∂z2

]
Ψ+

i

3M

1

r2

(
∂ϕ − ie

Br2

2

)
S3Ψ−

− i

2M

[
(∂rA1) + (A1 +B1)∂r + (A2 +B2)

1

r

(
∂ϕ + ie

Br2

2

)
+ (A3 +B3)∂z +Σ

]
Ψ = 0. (45)

В ситуации с циклической симметрией удобнее использовать циклический базис; основное
уравнение преобразуется так:

i(∂t + ieEz)Ψ̄ = − 1

2M

[ ∂2

∂r2
+
(1
r
∂ϕ +

ieB

2
r
)2

+
∂2

∂z2

]
Ψ̄ +

i

3M

1

r2

(
∂ϕ − ie

Br2

2

)
S̄3Ψ̄−

− i

2M

[
(∂rĀ1) + (Ā1 + B̄1)∂r + (Ā2 + B̄2)

1

r

(
∂ϕ + ie

Br2

2

)
+ (Ā3 + B̄3)∂z + Σ̄

]
Ψ̄ = 0, (46)

правило преобразования такое:

Ψ̄ = SΨ, Ψ = S−1Ψ̄, Ā0 = SA0S
−1, , S̄i = SSiS

−1,

Āi = SAiS
−1, B̄i = SBiS

−1, Σ̄ = SΣS−1, S =

∣∣∣∣∣∣∣
0 0 0 1
−2 0 1 0
0 −2 0 1
0 0 1 0

∣∣∣∣∣∣∣ ;
Явный вид преобразованных матриц следующий:

(∂rĀ1) =
i

r2

∣∣∣∣∣∣∣
9 0 0 0
0 1 0 0
0 0 1 0
0 0 0 9

∣∣∣∣∣∣∣ , Ā1 + B̄1 = −6i

r
I, Ā2 + B̄2 = −8

r

∣∣∣∣∣∣∣
−3/2 0 0 0
0 −1/2 0 0
0 0 1/2 0
0 0 0 3/2

∣∣∣∣∣∣∣ ,

Ā3 + B̄3 = 0, Σ̄ =
3i

r2

∣∣∣∣∣∣∣
9 0 0 0
0 1 0 0
0 0 1 0
0 0 0 9

∣∣∣∣∣∣∣ , S̄3 =

∣∣∣∣∣∣∣
−3/2 0 0 0
0 −1/2 0 0
0 0 1/2 0
0 0 0 3/2

∣∣∣∣∣∣∣ . (47)

Полученная структура нерелятивистского уравнения (46) означает, что уравнение для 4-х
компонентной волновой функции разбивается на 4 несвязанных уравнения с похожей структурой.

7. Example: spherical coordinates

Let us consider the case of spherical coordinates xα = (t, r, θ, ϕ):

dS2 = dt2 − r2dθ2 − r2 sin2 θdϕ2 − dr2 , gαβ =

∣∣∣∣∣∣∣∣
1 0 0 0
0 −r2 0 0
0 0 −r2 sin2 θ 0
0 0 0 −1

∣∣∣∣∣∣∣∣ , (48)

and the diagonal tetrad is taken as

eα(0) = (1, 0, 0, 0) , eα(3) = (0, 1, 0, 0) , eα(1) = (0, 0,
1

r
, 0) , eα(2) = (1, 0, 0,

1

r sin θ
) . (49)
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To this tetrad there correspond the following Ricci rotation coefficients

γab0 = 0, γab3 = 0 , γab1 =

∣∣∣∣∣∣∣∣
0 0 0 0
0 0 0 −1

r
0 0 0 0
0 + 1

r 0 0

∣∣∣∣∣∣∣∣ , γab2 =

∣∣∣∣∣∣∣∣
0 0 0 0
0 0 + cot θ

r 0
0 − cot θ

r 0 − 1
r

0 0 + 1
r 0

∣∣∣∣∣∣∣∣ . (50)

Therefore we have

0 =⇒ t, 1 =⇒ θ, 2 =⇒ ϕ, 3 =⇒ r, i(D0 + ieA0) =⇒ (E +
α

r
),

D1 =
1

r
∂θ, D2 =

1

r sin θ
∂ϕ, D3 = ∂r ∆ =

1

r2
∂2
θ +

1

r2 sin2 θ
∂2
ϕ + ∂2

r (51)

the Ricci rotation coefficients

γ230 = G10 = 0, γ310 = G20 = 0, γ120 = G30 = 0,

γ231 = G11 = 0, γ311 = G21 = + 1
r , γ121 = G31 = 0,

γ232 = G12 = − 1
r , γ312 = G22 = 0, γ122 = G32 = cot θ

r ,
γ233 = G13 = 0, γ313 = G23 = 0, γ123 = G33 = 0

(52)

The blocks matrices take the form

A1 =
i

r

∣∣∣∣∣∣∣∣
− cot θ 14 −4 cot θ −4
−14 − cot θ 4 −4 cot θ
0 12 −9 cot θ −6

−12 0 6 −9 cot θ

∣∣∣∣∣∣∣∣ , A2 =
1

r

∣∣∣∣∣∣∣∣
3 cot θ −2 −6 cot θ 4
−2 −3 cot θ 4 6 cot θ
0 12 −9 cot θ −6
12 0 −6 9 cot θ

∣∣∣∣∣∣∣∣ ,

A3 =
i

r

∣∣∣∣∣∣∣∣
−14 − cot θ 4 −4 cot θ
cot θ −14 4 cot θ 4
0 2 cot θ −6 − cot θ

−2 cot θ 0 cot θ −6

∣∣∣∣∣∣∣∣
D3 = ∂3, (∂rA1) =

i

r2

∣∣∣∣∣∣∣∣
cot θ −14 4 cot θ 4
14 cot θ −4 4 cot θ
0 −12 9 cot θ 6
12 0 −6 9 cot θ

∣∣∣∣∣∣∣∣ ,

B1 =
i

r

∣∣∣∣∣∣∣∣
−5 cot θ −2 4 cot θ 4

2 −5 cot θ −4 4 cot θ
0 −4 3 cot θ 2
4 0 −2 3 cot θ

∣∣∣∣∣∣∣∣ , B2 =
1

r

∣∣∣∣∣∣∣∣
cot θ −2 −2 cot θ 4
−2 − cot θ 4 2 cot θ
0 −4 −3 cot θ 2
−4 0 2 3 cot θ

∣∣∣∣∣∣∣∣ ,

B3 =
i

r

∣∣∣∣∣∣∣∣
2 cot θ −4 4 cot θ

− cot θ 2 −4 cot θ −4
0 −2 cot θ −6 cot θ

2 cot θ 0 − cot θ −6

∣∣∣∣∣∣∣∣
A1 +B1 =

2i

r

∣∣∣∣∣∣∣∣
−3 cot θ 6 0 0

−6 −3 cot θ 0 0
0 4 −3 cot θ −2
−4 0 2 −3 cot θ

∣∣∣∣∣∣∣∣ , A2 +B2 =
4

r

∣∣∣∣∣∣∣∣
cot θ −1 −2 cot θ 2
−1 − cot θ 2 2 cot θ
0 2 −3 cot θ −1
2 0 −1 3 cot θ

∣∣∣∣∣∣∣∣ ,
A3 +B3 = −12i

r
I

Σ =
1

r2

∣∣∣∣∣∣∣∣
3i

(
cot2 θ + 12

)
12i cot θ 12i

(
cot2 θ − 3

)
48i cot θ

−12i cot θ 3i
(
cot2 θ + 12

)
−48i cot θ 12i

(
cot2 θ − 3

)
0 −24i cot θ 9i

(
3 cot2 θ − 4

)
12i cot θ

24i cot θ 0 −12i cot θ 9i
(
3 cot2 θ − 4

)
∣∣∣∣∣∣∣∣

Преобразуем эти матрицы к циклическому базису

A1 =
i

r

∣∣∣∣∣∣∣∣
−9 cot θ 6 0 0

−6 − cot θ 8 0
0 −8 − cot θ 6
0 0 −6 −9 cot θ

∣∣∣∣∣∣∣∣ , A2 =
1

r

∣∣∣∣∣∣∣∣
9 cot θ −6 0 0
−6 3 cot θ −8 0
0 −8 −3 cot θ −6
0 0 −6 −9 cot θ

∣∣∣∣∣∣∣∣ ,

A3 =
i

r

∣∣∣∣∣∣∣∣
−6 cot θ 0 0

9 cot θ −14 −2 cot θ 0
0 2 cot θ −14 −9 cot θ
0 0 − cot θ −6

∣∣∣∣∣∣∣∣
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(∂rA1) =

∣∣∣∣∣∣∣∣
9i cot θ

r2
− 6i

r2
0 0

6i
r2

i cot θ
r2

− 8i
r2

0
0 8i

r2
i cot θ
r2

− 6i
r2

0 0 6i
r2

9i cot θ
r2

∣∣∣∣∣∣∣∣ =
i

r2

∣∣∣∣∣∣∣∣
9 cot θ −6 0 0

6 cot θ −8 0
0 8 cot θ −6
0 0 6 9 cot θ

∣∣∣∣∣∣∣∣ ,

B1 =

∣∣∣∣∣∣∣∣
3i cot θ

r
− 2i

r
0 0

− 6i
r

− 5i cot θ
r

0 0
0 0 − 5i cot θ

r
6i
r

0 0 2i
r

3i cot θ
r

∣∣∣∣∣∣∣∣ =
i

r

∣∣∣∣∣∣∣∣
3 cot θ −2 0 0
−6 −5 cot θ 0 0
0 0 −5 cot θ 6
0 0 2 3 cot θ

∣∣∣∣∣∣∣∣ ,

B2 =

∣∣∣∣∣∣∣∣
3 cot θ

r
2
r

0 0
− 6

r
cot θ
r

0 0
0 0 − cot θ

r
− 6

r

0 0 2
r

− 3 cot θ
r

∣∣∣∣∣∣∣∣ =
1

r

∣∣∣∣∣∣∣∣
3 cot θ 2 0 0
−6 cot θ 0 0
0 0 − cot θ −6
0 0 2 −3 cot θ

∣∣∣∣∣∣∣∣ ,

B3 =

∣∣∣∣∣∣∣∣
− 6i

r
− i cot θ

r
0 0

− 9i cot θ
r

2i
r

2i cot θ
r

0
0 − 2i cot θ

r
2i
r

9i cot θ
r

0 0 i cot θ
r

− 6i
r

∣∣∣∣∣∣∣∣ =
i

r

∣∣∣∣∣∣∣∣
−6 − cot θ 0 0

−9 cot θ 2 2 cot θ 0
0 −2 cot θ 2 9 cot θ
0 0 cot θ −6

∣∣∣∣∣∣∣∣
A1 +B1 =

2i

r

∣∣∣∣∣∣∣∣
−3 cot θ 2 0 0

−6 −3 cot θ 4 0
0 −4 −3 cot θ 6
0 0 −2 −3 cot θ

∣∣∣∣∣∣∣∣ , A2 +B2 =
4

r

∣∣∣∣∣∣∣∣
3 cot θ −1 0 0
−3 cot θ −2 0
0 −2 − cot θ −3
0 0 −1 −3 cot θ

∣∣∣∣∣∣∣∣ ,

A3 +B3 =

∣∣∣∣∣∣∣∣
− 12i

r
0 0 0

0 − 12i
r

0 0
0 0 − 12i

r
0

0 0 0 − 12i
r

∣∣∣∣∣∣∣∣ = −12i

r
I,

Σ =

∣∣∣∣∣∣∣∣∣∣

27i cot2 θ
r2

− 36i
r2

− 12i cot θ
r2

0 0

− 108i cot θ
r2

3i cot2 θ
r2

+ 36i
r2

24i cot θ
r2

24i cot2 θ
r2

− 2
(

12i cot2 θ
r2

− 36i
r2

)
− 72i

r2

24i cot2 θ
r2

− 2
(

12i cot2 θ
r2

− 36i
r2

)
− 72i

r2
− 24i cot θ

r2
3i cot2 θ

r2
+ 36i

r2
108i cot θ

r2

0 0 12i cot θ
r2

27i cot2 θ
r2

− 36i
r2

∣∣∣∣∣∣∣∣∣∣
=

=
3

r2

∣∣∣∣∣∣∣∣
3i

(
3 cot2 θ − 4

)
−4i cot θ 0 0

−36i cot θ i
(
cot2 θ + 12

)
8i cot θ 0

0 −8i cot θ i
(
cot2 θ + 12

)
36i cot θ

0 0 4i cot θ 3i
(
3 cot2 θ − 4

)
∣∣∣∣∣∣∣∣

The Pauli-like equation reads

(ϵ+
α

r
)Ψ = − 1

2M

[
∂2
r +

1

r2
∂2
ϕ +

∂2

∂z2

]
Ψ−

− i

2M

[1
3
(∂θA1) + 0 + (∂3A3) +

1

r
(A1 +B1)∂θ +

1

r sin θ
(A2 +B2)∂ϕ + (A3 +B3)∂r +Σ

]
Ψ,

8. Conclusions

The goal of the present paper is investigation of the non-relativistic approximation in the first order 39-
component theory for a spin 2 particle, in curved space-time, and in presence of external electromagnetic
fields.

For distinguishing the large and small constituents in the complete wave function, we use three pro-
jective operators constructed on the base of the minimal polynomial of the 4-th order for the matrix
Γ0
16×16. The relevant large and small components are found in explicit form. Among them we have found

independent variables; in particular, among the large components there exist only four independent ones.
Acting in accordance with the known general procedure, we have derived the non-relativistic system of

equations for a 4-component wave function; the relevant Hamiltonian depends on electromagnetic field
and additional geometrical terms are determined by the Ricci rotation coefficients (these terms should be
determined by Ricci scalar R and Ricci tensor Rab in tetrad form. The terms describing interaction of the
magnetic moment of the spin 3/2 particle with the external magnetic field is separated; this additional
term is constructed with the use of the spin matrices Si and the components of the magnetic field B⃗.
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