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The goal of the present paper is investigation of the non-relativistic approximation in the first
order 39-component theory for a spin 2 particle, in curved space-time, and in presence of external
electromagnetic fields. We start with the generally covariant matrix equations generalized according
to Weyl-Fock-Ivanenko tetrad method. We apply explicit expressions for four main matrices I'*
with dimension 16 x 16 in the relevant first order system of equations, for space-time metrics allowing
for existence of the non-relativistic equations.

For distinguishing the large and small constituents in the complete wave function, we use three
projective operators constructed on the base of the minimal polynomial of the 4-th order for the
matrix I'%16. The relevant large and small components are found in explicit form. Among them
we have found independent variables; in particular, among the large components there exist only
four independent ones.

Acting in accordance with the known general procedure, we have derived the non-relativistic
system of equations for a 4-component wave function; the relevant Hamiltonian depends on elec-
tromagnetic field and additional geometrical terms are determined by the Ricci rotation coefficients
(these terms should be determined by Ricci scalar R and Ricci tensor Rgp in tetrad form. The terms
describing interaction of the magnetic moment of the spin 3/2 particle with the external magnetic
field is separated< this additional term is constructed with the use of the spin matrices S; and the
components of the magnetic field B.

PACS numbers: 02.30.Gp, 02.40.Ky, 03.65Ge, 04.62.+v
Keywords: spin 3/2, curved space, tetrad formalism, non-relativistic approximation, magnetic moment,
Ricci rotation coefficients, scalar and tensor

1. Introduction. The basic equation

In the present paper, we will study the problem of non-relativistic approximation for a spin 3/2 particle
[1, 2]; see also [3] —[24] in curved space-time.
We start with the known form of the basic equation for spin 3/2 particle [19], [24]:

1
756170&[5(33)% (iDa - §M7a)‘115 =0, Do=Vy+T,+ieA,; (1)

where M = mc/h is a mass parameter. After transition in the wave function to the tetrad representation

by vector index ¥y = egb)\llb, this equation takes the form

) 1
Y€, |:Z(Da)nl — 2M7a5nl] U, =0, (2)
where generalized derivative are used
. 1, s s .
D, = € (0o +iedq) + 5(01’ &I+ 1@ j7°) Vpsja = €y (Oa +ieAa) + q. (3)

With the use of six matrices €,°*" = (ul°?),”, eq. (2) may be presented as follows

VS(N[CQ])kn’Yc [i(Da)nl - M’Yadnl] v, =0, (4)
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The summing formula is

U[ca]VcDa
_ (71 ®,u[01] e ’u[oz] 143 ® #[03]) DoV + (’YO ® H[Ol] e ®'u[u} P ®N[31}> DU
I (70 ® 02 4 43 @ ul23 _ 41 ®ﬂ[12]) DU + (,yo © ul% 44l @ uBl — 42 g H[23]> D3¥ .
whence we derive the detailed form of eq. (2):
(71 ® 1l 442 @ 40 L 43 o M[os]) DoV + (,yo @ ol 42 @ 12 _ 3 ®,u[31]) D, W
n (,yo ® % 43 @ U2 _ 4l g M[lQ]) Do + (70 @l 4l @Bl — 42 g ,u[23]) D30

1
+Z'M§{801 ® ,U[Ol] + Sp2 ® M[OQ] + S03 ® M[OS] + S23 ® M[Qg] + 531 ® H[gl] + 512 ® u[12] }‘I’ =0, (5)

where sq, = YoV — Ve (note the location of the indices). We need expression for matrices ,u[ca]:

000 0 00 00 00 0 0
0 _|000 0 07 |0 0 01| g |00 10
o=1ooo -1’ Tloo oo’ Tlo1 0 0}
001 0 0-100 00 0 0
0100 0010 0001
2] _ 1000 L5 0000 12— 0000
0000/ 1000/ 0000/
0000 0000 1000

and also explicit expressions for Dirac matrices (and generators for 4-vector and bispinor)

0010 00 0 —1 00 0 i 00 —10
o 0001 4 Jo0O-1 0| 5 |00 —=i0| 5 |00 01|
T 110001’ Tlo1 0o o’ Tlo—-i 00T |10 0o
0100 10 0 0 i 0 00 0-1 0 0
i 0 00 00 00
g2 L1l 0i 00 2_ |00 =10
21 00 o/ 01 00/
00 0 i 00 00
02 0 0 0 -2 0 0 20 0 0
200 o0 ~ |2e 0 o0 o0 o200
S1="19g0 0 —2f 027 0 0 0 2| °B=7100 20/
00 -2 0 0 0 -2 0 00 0 2
0 -2 0 0 0-20 0 20 0 0
|=2i 0 0 0 1200 0 0o 2 0 0
2271 0 0 0 -2 % Tl0o 0 02" 27| 0 0 -2 0
0 0 -2 0 0020 0 0 0 2
Equation (5) may be written in a short form
(FODO +T°Dy +T°Dg + T°D, + iMF)\IJ -0, (6)
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where
Do = €{g)(0a +ieAq) + %(aps @I+ 1 j37%)Vpsio;
Dy = e}y (0o +iedq) + %(0”S @I+ 1 37 ) Vs,
Dy = () (0o + ieAq) + %(aps @I +1® j37%)Ypsj2;

1
D3 = 6((13) (Oa +ieAy) + i(aps ®@I+1 ®jps)7[ps]3;

FO:Cﬁ@Mm+v%mwm+f®umUJd=QW@MM+V%mﬂm—f®um0,
2 — (,yo © ul0? 443 @ u2 _4lg M[12]) T8 = (’70 @ u% 4yl Bl _ 42 g #[23]) ,

1
I'= 5{501 ® M + 500 @ pl% + 505 @ % 4 535 @ P 4 531 @ PP + 515 @ M[H]}-

2. Large and small components of the wave function

The non-relativistic approximation in wave equations (independently on the value of a particle spin)
is possible only in space-time models with the following structure [19])

P g 1 0
dS? = (dz°)* + gij(x)da’da’,  e(pya(z) = , 7
(da)? + gig(2)de'da?,eal@) = gy (o) (7)
in this case, expressions for connection simplify
1 ik _m 1 ik _m
Yo = B} J €(i) (VOe(k:)m)7 X = B J €(i) (vle(k)m) , (8)

the contribution of generators J% vanishes identically. The wave function of the particle may be presented
as a matrix (the first index is bispinor one, and the second is 4-vector one)

fo f1 f2 f3
dgo 91 92 93 _ (9)

\IJA(n) = (I)A(n) = ho hi hs hs
dy di do d3
It is convenient to multiply Eq. (6) by I'"!, then we have
(YODO FY'Dy 4 Y2Dy 4 Y3Ds + iM)\IJ —0. (10)

let us find 16-dimensional presentation for the matrix I'?; to this end we consider the action of the matrix
I'Y on the wave function

FO\I/ —_ ,Yl\Ijﬁ[Ol] + 72\1112[02] + 73\11121[03]

fo fi f2 f3 fo f1 f2 f3 fo fi f2 f3
_ 1|19 g1 92 g3 |~o1] 2|1 90 91 92 g3 | ~[02] 3190 91 92 g3 | ~[03]
“7 1 ho hy hy hg | T ho hy hy hy | T ho hi hy hg [P

do dy dy ds do dy dy ds do dy dy ds

0 4ds3+hs d3s—hy —idy —ds
0 —dy —ths di+hs thy — ho
0 —fa—igs fi—gs ig1+g2
0 ifs+g2 —fs—g1 fa—if1
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so in 16-dimensional form we have

1 . )
. -1 —1
-1 . —1
0 . 1 7
= ~1 : 1
1 . .1
1 .o —1
-1 .o =1
—1 .o—1
% .1
% o1
—1 1
Similarly, we find expressions for matrices I'*, T":
1 . 7
. -1 —1
-1 . . —1
1 . %
1 .
F= 1 -1 .
. -1 —1
-1 . -1
1 . —1
7 1 .
—1 . 1
—1 1 .
) 1
-1 . 1
1 o1
1 . -1
. —1 —1
-1 . 1
1 . 1
1 . . 1
v = -1 !
1 -1 .
1 . —1
-1 . . -1
—1 .. —1
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fo
go
ho
do
f1
g1
h1
d1
f2
g2
ha
do
fa
gs
h3

fo
go
ho

fi
g1
h1
d1
f2
g2
ha
da
f3
g3
h3

fo
go
ho

f1
g1
h1
dy
f
g2
ha
d2
f3
g3

ds
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fo
go
ho

By =

do
f1
g1
h1
dy

g2
ho
d2
f3
gs
h3
ds

. =2 . . . —2¢ .
—21 . . . 2 2 .
—29
.o =2t . . . . . . 2 .2
—29 . —2t
. . .o =2r . . . . . . .
1 . =2t . . . . . . . .2

—2i . . . =2
24 . . 2%
—2¢

. . . 29 . .o =2r . . .2
Further we find Y =T1T°0, Y? = I~ 1T
In accordance with general approach, the large and small components in non-relativistic limit are to

be determined by projective operators constructed through the matrix Y°. This matrix Y? = Yj obeys
the minimal 4th order equation YZ(Y# — 1) = 0. So, there exist three projective operators

1 1
Py=1-YZ, P1:P+:+§Y02(Y+1), P2:P_:75Y02(Y*1), (11)
with the needed properties
Py+P.+P_ =1, P}=PR, Pi=P, Pi=DnD.
Explicitly they read
1 .
1.
1.
1 . .
i 1
3 3y i3
3 - Ty 3 "
' 3 1 ' 3 i 1 3
P0: i 3 1 ’ o3 i 3 ’ ,
3 ; 3 ; o3
3 i : 3 l 3 1
3 i : 3 l i 3
1 3 i % 3
'\ s , 3 I
3 i 3 i3
ol T
3 3 : 3
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11 i 1 1

3 l 3 1 6 i 6 i _l 6 _l 6

R S S A T SR

SO S U R S SR T
P1: i 3 i 3 l 6 1 6 6 71 6 71 ,

6 'Z_ 6 .Z 3 1 3 .Z 6 'Z_ 6

P T R S R A S

o i % PR T T R T

D SR ¢ 3 A S L

1 6 1 6 i 6 i 6 3 1 3 1

6 _l 6 1 6 i 6 1 l 3 1 3

1 6 1 6 i 6 i 6 3 1 3 1

6 : 6 6 ° 6 ° 3 3
i _.l _ i K 1 _1
3 l 3 _l 6 i 6 _l 1 6 1 6
T T S S S
SO S ST S R SR S B
P2: i 3 _1 3 1 6 _l 6 6 i 6 i
ST TR S SR SR SR ST N SR
T S G S S L S}
L T A S SR S T
T LA B v
P SR S S S SR Y
S S T SRR S SR SR SR
T L T S G
6 ° 6 ° 6 ° 6 ° ° 3 ° 3

Further we find three projective constituents (in each we can see a number of independent variables):

Uo=PRV, V,=U =P, V_=U,=PRY

fO SOI S01 Sl

9o 5% S0, S

ho 503 S03 S3

dO S04 SO4 Su

g(hi+ifo—gs) St sh Ss

5 (fs+ g1 —ig2) St Sty Se

% (—d3 + h1 + iho) Sty Sty Sr

v 5 (di —ids + h3) s, Sty Ss
0o — = = = R

3 (=ifi + f2 +igs) 5% —iS", —iSs

31 (fs + g1 — ig2) 52, iS, iSe

3 (i (ds — h1) + ho) 52, —iSt, —iSs

3 (dv — idz + hs) 2, ist, iSs

5 (fs + 91 —ig2) 53 St, Se

3 (=fi—ifa+gs) 53, -S4 -85

% (di — ida + h3) 53, s, Ss

3 (ds — h1 —ihs) S3, -5ty =57
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0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
%(d3+2f1 —ifo + g3 + 2h1 —iha) LY LY Ly
§(2d1+id2—f3+291+i92 — h3) L'y L'y Lo
§(d3+2f1 —if2 + g3 + 2h1 — ih2) L's LYy Ly
v v 5 (2d1 +id2 — f3 4+ 2g1 + ig2 — ha) LYy L'y Lo
4+ =WV = = = = ,
—%Z (d3 —fl —|—22f2—|—g3 —hl —|—2Zh2) L21 L21 L3
—gi (di + 2id2 + f3 4+ g1 + 2ig2 + hs3) L%, L?, Ly
7§i (d3 *fl +2if2+g3 — h1 +2ih2) L23 L21 L3
—5t(di + 2id2 + f3 + g1 + 2ig2 + ha) L?, L2, Ly
& (=di +idy + 2f3 — g1 + iga + 2h3) L3 L3 Ls
3 (2ds + f1 +if2 + 293 + b1 + iha) L?, L?, Ls
é (—=dy + id2 + 2f3s — g1 + ig2 + 2h3) L3, L3, Ls
+(2ds + f1 +if2 + 293 + b1 + iha) L3, L3, Le
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
%(*d3+2f1 —if2 + gs — 2h1 +ih2) PY P4 P
8 (—2d1 —ida — f3 +2g1 +ig2 + hg) P12 P12 P
% (d3s —2f1 +if2 — g3 + 2h1 — ih2) Pl -pPY -p
v v 5 (2d1 +id2 + f3 — 291 — ig2 — ha) P, —-P4 —P,
— =Wy = = = =
%i(d?)"'fl—2if2—93_h1+2ih2) P P? Py
Ei (d1 + 2ids — f3 — g1 — 2192 + h3) P22 P22 Py
*%Z (d3+f1 *2Zf27g3 *h1+2’bh2) P23 —P21 —P3
—gi (d1+2id2 —f3 — g1 —2ig2+h3) P24 —P22 —Py
%(dl —id2+2f3—gl + 192 —2h3) P31 P31 Ps
% (=2d3 + f1 +ifo + 295 — h1 — ih2) P3, P3, Ps
5 (=di +id2 — 2f3 4 g1 — ig2 + 2h3) P3 —-P3 —Ps
% (2d3 — fi—ifs—2g3+h1 + ihz) P34 —P32 —Fs

While performing the non-relativistic approximation, we should consider ¥, as large component, and
U_, Uy as small ones:

P, << Li, S; << Li; (12)
in total we have the following 20 variables:

\IJ+a {Lla"'aLG}; \IJOa {‘5’17"'758}; \I/—a {Pla"'apﬁ}' (13)

3. Constraints for large and small components

Let us consider equations, defining the large variables L1, ..., Lg; we preserve only six independent ones:

1
1 L1=6(d3+2f1—if2+93+2h1—ih2)

1 .

5 L3:—gi(d3—f1+2if2+93—h1+2ih2) = Li+ils—L¢=0; (14)
1

10 L6:6(2d3+f1+if2+2g3+h1+ih2)

1
2 L2=6(2d1+id2—f3+291+i92—h3)
1 ‘
6 Ly=—ci(di+2idy+ fs+g1+2igp+hs) = Lz—ila+Ls=0. (15)

1
9 Ls= G (—=dy +idy + 2f3 — g1 +ig2 + 2h3)
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Therefore, exist only four independent variables; for definiteness we eliminate L3 and Ly:

il = Lg— Ly, iLy= L5+ Lo.

Let us consider the constituents of W_:

%(_d3+2f1 —ifa + g3 — 2h1 +ihg) +P
5.(—=2dy —idy — f3 + 291 +ig2 + h3) +P,
%(d3_2f1 +ifa — g3 + 2hy — ihy) -P

5 (2d1 +idy + f3 — 291 —ig2 — h3) —P

%i (ds + f1 — 2ifa — g3 — h1 + 2iha) +P3

v - gli (di + 2id> — fs — g1 — 2iga+ h3) | _ | +Ps
- —§i (d3 + f1—2ifs —g3—h1 + 2Zh2) —P3
767; (dl + Qidg — f3 — g1 — 2i92 + hg) _P4
%(dlfid2+2f3*gl+ing2h3) +Ps
%(—2d3+f1 +ify + 293 — hy —ih2) +%

1 (—dy +idy — 23 + g1 — igs + 2h3) —Ps

+(2d3 — f1 —ifo — 293 + hq + ihy) —Fs

We readily find two constraints
(A) P, +iP; — P =0, (B) P, —iPy+ P = 0;

thew will be needed below. Now let us consider the sum

S5 + P1 +y1
Se + P> +y2
S; — Py +ys
Sg — P +Ya
1S5 + Ps +ys
| iSe+ Py | | +ys
wo+vo=| g T =] T
ng — Py +ys
Se + Ps +y9
—Ss5 + Ps 4910
Sg — Ps +y11
—S7 — P +y12
where we introduce new notations y1, ..., y12:

Ss+Pr=y1, Se+FP=y2, St—Pi=y3 Sz— D=y,
iS5 + Py =ys5, iS¢+ Py=1ys, 1S7t— P3=y7, iS3— Py=ys,
Se+ Ps =y9, —Ss+Ps=y10, Ss—FPs=y11, —S7—Ps=uyi.

so that

Sy S1

So Sa

S3 Ss3

Sy Sy
Ss+ L1+ P1 L1+
Se+ Lo+ P» Lo+ y2
St+Li— P Li+ys3
W= Sg+ Ly — P _ Lo+ ya
iS5 + L3 + Ps Lz +ys
iS¢ + La + Py Ly+ye
iS7+ L3 — P Ls +yr
iS8 + La — Py Ls+ys
Se + Ls + Ps Ls +yo
=S5+ Le + Fs L¢ + y10
Ss+ Ls — Ps Ls +yn
=87+ Le¢ — Fs L + 312

‘We can combine the above variables as follows

y1+ys=95+57, ya+uya=S6+Ss, ys+yr=1i(Ss+S57),
yo +ys = 1(S6 +58), Yo +yi1 =56+ S8, Yo+ yi2 = —(S5 + 57);
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the we get
1) y1—ys=955—57+2P,

2) yg—y4256—58+2P2,
3) ys —yr =i(S5 — Sr) + 2P3,

) 22
4) ye — ys = i(S6 — Sg) + 2P, (22)
5) yo—yi =S¢ — Ss+ 2P,
6) w0 —y12 = — (55 — S7) + 2F%.
From the system (21) we derive six identities (from which only four ones are independent)
(y1 +y3)+ (yio+y12) =0, (y1+ys)+ilys +y7) =0, (y10+y12) =(ys + y7); (23)
(Y2 +y1) — (Yo +y11) =0, (y2+wa) +i(ys +ys) =0, (Yo +y11) = —i(ye + ys)-
Relations (22)
P1+iP3—P6:0, Pg—ip4+P5:O;
taking into account egs. (18), we combine as follows
1)+i-3)—6), 2)—i-4)+5).
In this way, we obtain
S5 — S7 = — +i(ys — — - ,
5 7= (y1 —y3) +i(ys — y7) — (Y10 — Y12) (24)

3(86 — Ss) = (y2 — ya) — i(ys — ys) + (Yo — y11)-
In turn, from (21), it follows
y1+y3 =55 +S7, y2+ys= 56+ Ss.

Therefore, the four variables S5, Sg, S7, Sg may be expressed through the y-variables.

4. The non-relativistic approximation

The non-relativistic approximation is possible only for space-time models with the following structure

1 0

2 _ (7.0\2 . Q7.9 _
dS* = (dz”)” + gij(x)dx'dx’ ,  e()a(x) = ’ 0 eqlx) (25)
In this case, the components of the connection have the structure
1 ik m 1 ik m
Yo = 5 J e (Voe(k)m) , = 5 J &6 (Vle(k)m) , (26)

it should be noted that any contributions in the connections due to generators J°* vanish identically. So
the generally covariant matrix equations for a spin 3/2 particle has the form

(YODO + YDy +Y2Dy +T3D;5 + z'M)\I/ =0, (27)
where
Do = (80 +iedo) + (0 @ T+ T ® %) ypso + (0% @ T+ 1@ 5 )yzno + (02 @ T+ 1@ )y,
D, = 6?1)(31@ +ieAy) + (02 @ T+ 1 ® j*)ypapn + (0 @ T+ 1 @ 5 )y + (02 @ T+ 1® 5o,
Dy = efy)(Ok +ieAr) + (0® @ T+ 1 j g2 + (0* @ T+ T @ 5 yguye + (6P @ T+ 1 ®j12)7[12]2(,2 i

D3 = (O +iedr) + (0P @I + 1 ® 5 ) gz + (0 @ T + 1 @ 7 )iz + (02 @ T + 1 ® 523
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In diagonal metrics, expressions for derivatives (28) simplify. The terms in eq. (27) may be presented as

0_12\1, +\I,3-12 G3O

)

YODoW = Y[ DoW + (6B + Wj%) o + (0310 + UF3)Gag +

) ( )
YIDiW =Y DU + (6B + U5%)Gyy 4 (0310 + U3 Goy + (0120 + \11312)031],

) ( )

) ( )

_ . § N y : (29)
Y2DoU = Y2 | Dy + (0230 + U523 G 1y + (0210 + U531 Gog + (0120 + Wyt2 G32 ,
Y3030 = V3 [ D0 + (620 + U2)Gs + (030 + U531)Goy + (0120 + U012 G33 ;
where we have used the shortening notations for the Ricci rotation coeflicients
G10 = 7230, G20 =310, G30 = Y120,
G11 =231, Go21 =311, G31 =721,
(30)
Gi2 = 7232, Gaz =312, G32 = 7122,
G13 = 7233, G2z =313, G33 = V123
In equation
(YODO +Y'D, +Y2Dy 4+ Y3Ds + iM) v =0,
one can distinguish two parts
(YODO YD +Y2Dy +Y3Ds + z’M)\I' + (QO\II L QMW+ QU + Q3\I/) —0, (31)
where Do = (9 + iedy), D; = e’(“l)(ak +iedy), Dy = e(2)(8k +iedy), D3 = (0 +ieAy), and
QU = YO (0™W + Wj)Grg + (0% + W) Gaon + (0120 + ]12) o,
Ql\If = Yl |:(0’23\I/ + \1/523)G11 + (0’31\:[/ + \I/jgl)GQl + (012\:[/ + \:[1312)G31:| )
} . N (32)
Q>0 = y? [(023\1, LU Ca + (03N 4+ U7 Gas + (0120 + lez)G32]7
Q3 = y3 {(023\1/ L UGy + (03N 4 U3 G + (0120 + xIxj”)Ggg}

We need expressions for three generators

00 00 0 000 000 0
12 |00 =10 51 |0 001 25 000 O
JoZ1o1 ool 7 T|lo oo0o0|” 7 T|looo0 -1/

00 00 0-100 001 0

After performing the needed calculations, we derive 16 equations with respect to large L  and small
y.. components (equations are collected in pairs)

2 . 1 X 1.
1 gDo(y4 —iys + y11) + ng(Ll — 2854 —iyr + y12) + g'LD2(L1 — Le + 254 + y3 — y12)+

1 . .
+§D3(L5 — 253 — ya +iys) + iMS1+

+Gs3(—iLs + (253 + y4) + ys) + Gi2(—L2 — 3Ls + 253 + y4 — 2iys — y11) + G11(—iLa + 2iS3 + ys + ty11)+
+iGa2(La + Ls + 253 + ya + y11) — 2iG30(ya — tys + y11) + Go1(—La + 2Ls — 253 — 2ys + iys + y11)+
+iG13(2L1—3Le+2Sa+ys—iyr —2y12)+Ga3(—2L1— Le+2S4—ys+iyr—2y12) —iGs1(3L1—2Le+2S4+2ys —iy7—y12) —
—2G20(ys + 1y7 — y12) + 2G10(—1ys + y7 + iy12) + G32(3L1 — L — 254 + y3 — 2iyr + y12) = 0,

2 . 1 . 1.
—gDo(y2 —iys +yo) + ng (L1 4252 —iys + y10) + ngz(Ll — Le — 252+ y1 — y10)+

1
+§D3(L5 + 251 — y2 +iys) + 1M S3+

G33(y6 — i(LB + 251 — y2)) + G12(—L2 —3Ls — 251 + Y2 — 21ys — yg) + G11(—iL2 — 2151 + Yo + iy9)+
+iGa2(La + Ls — 251 + y2 + yo) + 2iG30(y2 — iys + yo) + G21(—La + 2Ls + 251 — 2y2 + iys + yo )+
+iG13(2L1—3Le—2S2+y1—iys —2y10) +G23(—2L1— Le—2S2—y1+1ys —2y10) —iG31(3L1—2Le —2S2+2y1 —iys —y10)+
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+2iG1o(y1 + tys — y10) + 2G20(y1 + iys — y10) + G32(3L1 — Le + 252 + y1 — 2iys + y10) = 0,

2 . 1 . 1.
gDo(ys +iyr —y12) + ng(Lz — 283+ dys —y11) — gZDQ(LZ + Ls + 253 + ya + y11)+

1 . .
+§D3(L6 + 254 + y3 + iyr) +iMSa+

+iGss(Le + 251 + y3 + iyr) + Gs2(3L2 + Ls — 253 + ya + 2iys — y11) — 2iG10(ya — tys + y11)+
+2G20(ya — iys + y11) + 1G31(3L2 + 2Ls5 + 253 + 2ya + iys + y11) + Goz(—2L2 + Ls + 253 — ya — tys + 2y11)—
—4G13(2L2 + 3Ls + 253 + ya + iys + 2y11) + iGa2(L1 — Le + 254 + y3 — y12) + 2iGs0(ys + ty7 — y12)+
+G12(L1 —3Le — 254 — ys — 2iy7r — y12) — 1G11(L1 — 254 — iy7 + y12) + G21(L1 + 2L + 254 + 2y3 + ty7 + y12) = 0,

2 . 1 . 1.
4 - gDo(?ﬁ +iys — y10) + ng (L2 + 251 +iye — yo) — gZDz(Lz + Ls — 251 +y2 +yo)+

1 . .
+§D3(L6 — 2S5 +y1 +iys) + 1M Sa+,

+iG33(Le — 252 + y1 + tys) + G32(3L2 + Ls + 251 + y2 + 2iys — yo) + 2iGro(y2 — ty6 + yo)—
—2G20(y2 — iys + yo) + 1G31(3L2 + 2L5 — 251 4 2y2 + iys + yo) + Gas(—2L2 + Ls — 251 — y2 — iys + 2y9)—
—iG13(2L2 +3L5 — 251 +y2 +iys + 2yo) +iGa2(L1 — Le — 252 +y1 — y10) + G12(L1 —3Le + 252 — y1 — 2iys — y10)+
+2G30(—ty1 + ys + ty10) — iG11 (L1 + 252 — iys + y10) + G21(L1 + 2Le — 252 + 2y1 + iys + y10) = 0,

1 . 2 X 1.
§D0(3L1 + 2y3 — ty7 + y12) — ng(Lz + S3 4+ iys — y11) + 51D2(2L2 — L5+ S3 4 2ys — y11)+

1 . .
+§D3(*3L1 + Le — S4 — 2y3 + dyr) + iM (L1 + y1)+
+G33(9iL1 —i(5Le+Sa—4ys3)+5y7) + Gas(La—5Ls — S3+2ysa —iys —4y11) +iG13(La —3Ls+ Ss+2ya —iys — 2y11)+
+G32(—6Lo —5L5+ S5 —2ys —4iys —y11) + G1o(—3iL2 — 2iya +ys +iy11) — 20G313L2 +2L5 — S5+ 2ya +iys +y11)+
+G20(—3L2+6Ls —4ys+iys+5y11) + G12(4L1 —3Le + Sa+2ys — 2iy7 —y12) —1G30(9L1 — 6 Le +4ys — Hiyr —y12)+
+2iG11 (L1 + Sa — iy7 + y12) — 2G21(L1 4+ 2Le — Sa + 2y3 + ty7 + y12) + i1G22(4L1 + 5Le — S + 4ys + 5y12),
7

1 . 2 . 1.
§D0(3L1 + 2y1 — 1ys + y10) — ng(—L2 + S1—iys + yo) + ngz(—2L2 + Ls + S1—2y2 +yo)+

1
+§D3(3L1 — Lg — So + 2y1 — iy5) —+ iM(L1 + y3)+

G33(—i(9L1 — 5L6 + S2 + 4y1) — bys) — iG13(L2 — 3Ls — S1 + 2y2 — iys — 2y9) + G10(—3iL2 — 2iy2 + ye + iys)+
+2iG31(3L2+2L5+ 514 2y2+iys +yo) +G32(6La+5Ls+51+2y2+4iye+yo )+ Gas(— La+5L5 — S1—2y2 +iys +4yo )+
+Ga0(—3L2 + 6Ls — 4ya + tys + 5y9) — 1G30(9L1 — 6Ls + 4y1 — Hiys — y10) — 2¢G11(L1 — S2 — iys + y10)+
+2G21(L142Le+S2+2y1 +iys +y10) +Gi2(—4L1 +3Le+S2 —2y1 +2iys +y10) —1G224L1 +5 L6 +S2+4y1 +5y10) = 0,

6

1 . 2 . 1.
§D0(3L2 + 2ys +iys — y11) — §D1(L1 + S4 —iyr + y12) — §1D2(2L1 + Le + Sa + 2ys + y12)+

1 . .
+§D3(3L2 + Ls + Ss 4+ 2ya +iys) + iM (L2 + y2)+

1G33(9L2 + 5L5 — S35 + 4ya + 5iys) + 1G22(4L2 — 5L5 — S3 + 4ys — 5y11) + 2G21 (L2 —2L5 — S5+ 2ys — iys — y11)+
+2iG11 (L2 + S3 +iys — y11) + G12(—4Ls — 3Ls — S3 — 2ys — 2iys — y11) + 1G30(9L2 + 6 L5 + 4dys + biys + y11)—+
+2iG31(3L1 —2Lg — Sa + 2ys —iy7 — y12) —1G10(3L1 + 2y3 — iy7 +y12) + Gs2(—6L1 + 5L + Sa — 2y3 + 4iyr + y12)—
—iG13(L1+3Le+Sa+2ys +iyr + 2y12) + Ga3 (L1 +5Le — Sa+2ys +iyr +4y12) + G20(3L1 + 6 Le + 4ys +iyr + 5y12),

1 . 2 . 1.
8 §D0(3L2 + 2y2 + iys — yo) + §D1 (L1 — S2 —iys + yi0) + §1D2(2L1 + Le — S2 + 2y1 + y10)+

1 . .
+§D3(—3L2 — Ls+ 51— 2y2 —iys) + iM (L2 + ya)+

+G33(5ys —1(9L2 +5L5 + S1 +4y2)) —iG22(4L2 — 5Ls + S1 +4y2 — 5y9) — 2G21 (L2 — 2L5 + S1 + 2y2 — iys — Yo ) —
—2iG11(L2 — S1 +iys — yo) + G12(4L2 + 3Ls — S1 + 2y2 + 2iys + yo) + 1Gs0(9L2 + 6 L5 + 4y2 + 5iys + yo)+

+Ga3(—L1—5L6—S2—2y1 —iys—4y10)—2iG31(3L1—2Le+S2+2y1 —1ys—y10)+G32 (6 L1 —5 L +S2+2y1 —4iys —y10) —
—1G10(3L1 + 2y1 — iys + y10) + iG13(L1 + 3Le — S2 + 2y1 + tys + 2y10) + G20(3L1 + 6L + 4y1 + iys + 5y10),

207



A.V. Ivashkevich, V.M. Red’kov, A.M. Ishkhanyan

9

1. . 1. . 2
§ZD0(3L1 —3Le + y3 — 2iy7 — y12) + 51D1(2L2 +3Ls — S3 + 2iys + y11) + §D2(L2 + Ls — Ss+ya +y11)+

1. . .
+§ZD3(—3L1 +2L6 + Sa — y3 + 2iy7) + M(—L1 + Le + iys)+

+G33(—9L1 +4Le — S4 —bys +4iyr) +Gio(—3L2 —9L5 +ys — 4iys — Sy11) +2¢Gs2(3L2 + Ls + Ss +ya + 2iys —y11)+

+G31(—6Ly — Ly — S3—4ys—2iys +y11) +9G20(3L2+3Ls +ya+2iys +y11) —iGa3(Lo+4Ls — Sz —ya+2iys +2y11)+

+G13(L2+6Ls5+ S3 — ya + 2iys + 4y11) +2iG12(L1 —3Le + Sa — y3 — 2iyr — y12) + 2G22(— L1+ Le + Sa —y3 + y12)—

—1G21(4L1 — Le — Sa+2ys — 2iy7 + y12) + G30(9L1 — 3Le + bys — 4iy7r +y12) + G11(—4L1 +9Le — S4 + 4iy7 + 5y12),
11

1. . 1. . 2
51D0(3L1 —3Le +y1 — 2iys — y10) — §2D1 (2L2 + 3Ls + S1 + 2iys + yo) — gDz(Lz +Ls+S1+y2+yo)+

1. . .
+§ZD3(3L1 —2Le + So + y1 — 2iys) + M(—L1 + Le + iy7)+
+G33(9L1 —4Le — S2 + 5y1 — 4iys) + G1o(—3L2 — 9Ls +y2 — 4iye — 5yo) + G13(—L2 — 6Ls + S1 + y2 — 2iye — 4yo) —
—2iG32(3La+ Ls — S1+y2 + 2iys — yo) + G31(6La + Ls — S1 + 4y2 + 2iye —yo) + iG20(3L2 + 3Ls + y2 + 2iys +yo )+
+iGa3(La +4Ls + S1 — y2 + 2iye + 2y9) + G11(4L1 — 9Le — S2 — 4iys — 5y10) + 2G22(L1 — L + S2 + y1 — y10)—
—2iG12(L1—3Le—S2—y1—2iys —y10) +iG21(4L1 — Le +S2+2y1 —2iys +y10) +G30(9L1 —3Le +5y1 —4iys +y10) = 0,
10

1. . 1. . 2
*52D0(3L2 + 3Ls5 + ya + 2iys + y11) + 51D1(*2L1 + 3Le + S + 2iyr + y12) — §D2(7L1 + Le + Sa — ys + y12)—

1. . .
—§ZD3(3L2 +2L5 — S3 4+ ya + 2iys) + M (L2 + Ls + iys )+

+G33(9L2 +4L5 + Ss + 5ya + 4iys) —iGa1(4L2 + Ls — S3 + 2ys + 2iys — y11) + Gs0(9L2 + 3Ls + by + 4iys — y11)+

+2G22(La + Ls — S3+ ya + y11) + 26G12(L2 + 3Ls + S3 — ya + 2iys + y11) + G11(4L2 + 9Ls + Ss + 4iys + 5y11)+

+G103L1 —9Le —y3 — 4iyr —5y12) + G13(L1 — 6L + Sa — y3 — 2iy7 — dy12) +iGa3 (L1 —4Le — Sa — y3 — 2iy7 — 2y12)+

+iG20(3L1 —3Le+y3 — 2iy7 —y12) + G31(—6L1 + Le — Sa — 4ys + 2iy7 —y12) — 2iG32(3L1 — L+ Sa+y3 — 2iy7 + y12),
12

1. . 1. X 2
—§ZDO(3L2 + 3Ls + y2 + 2iys + yo) + gZDl (2L1 — 3Le + S2 — 2iys — y10) — §D2(L1 — Le + S2 +y1 — y10)+

1. . .
+§ZD3(3L2 +2Ls5 + S1 4+ y2 + 2iys) + M (L2 + Ls + iys)+

+G33(—9L2 —4Ls+ S1 —by2 —4iys) + G11 —4L2 —9Ls + S1 — 4iys — 5ye) + iG21(4L2 + Ls + S1 4 2y2 + 2iys — yo )+

+G30(9L2 + 3Ls + Sy2 + 4iys — yo) — 2G22(La + Ls + S1 + y2 + yo) — 2iGr2(L2 + 3Ls — S1 — y2 + 2iys + yo )+

+G10(3L1 —9Ls — y1 — 4iys — Sy10) — iGas(L1 —4Le + S2 — y1 — 2iys — 2y10) + 1G20(3L1 — 3Le + y1 — 2iys — y10)+

+2iG32(3L1 — L6 — So+y1 —2iys +y10) +G31(6L1 — Le — S2+4y1 —2iys +y10) + G13(— L1+6 Le + S2+y1 +2iys +4y10),
13

1 . 1 . 1.
§D0(3L5 — ya +iys + 2y11) + §D1(L1 —3Le + Sa — tyr — 2y12) + §2D2(L1 +2Ls — Sa4 + y3 + 2y12)—

2 . .
—§D3(L5 + S3 —ya +iys) +iM(Ls + yo)+
+2iG33(Ls + Ss — ya + iys) — iGa2(5L2 — 4L5 + Ss + 5ys — 4y11) + Go21(5L2 — Ls + Sz + 4ya + iys — 2y11)+
+G30(—3iLs +iys + ys — 2iy11) + G12(5L2 + 6Ls — S3 + ya + 4iys + 2y11) +iG11(5L2 + 9Ls — Sz + Siys + 4y11)+
+G20(—6L1—3Le—5ys +iyr —4y12) +1G10(6 L1 —9Le +y3 — Siyr —4y12) —2iG13(2L1 —3Le — Sa+ys —iyr —2y12)+
+G32(3L1—4L6+Sa+ys —2iy7r —2y12) +2G23(2L1+ Le + Sa+ys —iyr+2y12) —1G313L1 4+ Lo — Sa+2y3 —iyr +2y12),
15

1 ) 1 ) 1.
§D0(3L5 —y2 +iys + 2y0) + ng(_Ll + 3L6 + S2 + iys + 2y10) — §2D2(L1 +2L6 + S2 4+ y1 + 2y10)—

2 . .
—§D3(—L5 + S1+y2 —iys) + M (Ls + y11)+

+G33(—2iLs + 2i(S1 + y2) + 2y6) + iG22(5L2 — 4Ls — S1 4 5y2 — 4yg) + G12(—5L2 — 6Ls — S1 — y2 — 4iys — 2y9 )+
+G30(_3iL5 +1y2 + Yo — 27:?!9) + G21(—5L2 + Ls + 51 — 4ys — 1ye + 2y9) — iGll(5L2 +9Ls5 + 51+ 51Y6 + 4y9)—|—
+Ga0(—6L1 —3Le —5y1 +iys —4y10) +iG10(6 L1 —9Le +y1 — 5iys —4y10) +2¢G13(2L1 —3Le + S22+ y1 — iys — 2y10) —
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—2G23(2L1+Le—S2+y1—1ys+2y10)+iG31(3L1+ L+ S242y1 —iys +2y10) + Gs2(—3L1+4Le+S2 —y1 +2iys +2y10),

14
1 . 1 . 1.
§D0(3L6 + y3 + iy7 + 2y12) + §D1(—L2 —3Ls — S3 —iys — 2y11) + 51D2(L2 —2L5 — S+ ya — 2y11)+

2 . .
+§D3(L6 — Sa 4+ ys +iyr) + M (Le + yi0)+
+2iGs3(Le — Sa + y3 + ty7) — 2G23(2L2 — Ls + S3 + ya + iys — 2y11) + Gs2(—3L2 —4Ls — S35 — ya — 2iys — 2y11)—

—2iG13(2L2+3Ls — S3+ya+iys+2y11) + Gao(—6La +3Ls — 5ys —iys +4y11) —iG10(6 L2 +9L5 +ya + 5iys +4y11 )+
+G318(Ls+S3—2ys—iys+2y11)—3iL2)+G12(5L1—6Le — Sa+yz—4iyr —2y12)+G21 (5 L1+ L+ Sa+4ys —iyr+2y12)+
+iG30(3L6 + y3 + iy7 + 2y12) + iG22(5L1 + 4L6 + Sa + 5y3 + 4y12) + G11(i(9Le + Sa + Siyr + 4y12) — 5iLy),

16
1 . 1 . 1.
=Do(3L6 + y1 + 1ys + 2y10) + §D1(L2 +3Ls — S1 +1ys + 2y9) — §ZD2(L2 —2L5+ S1 4+ y2 — 2y9)—

—%DS(LG + S2 4y +iys) +iM(Le + y12)+
+Gs3(2ys — 2i(Le + S2 + y1)) + 2G23(2L2 — Ls — S1 4+ y2 + iys — 2y9) + 1G31(3L2 — Ls + S1 + 2y2 + iys — 2yo)+
+2iG13(2L2+3L5+S1+y2+iys +2y9) + G32(3La+4Ls — S14+y2 +2iye +2y9 ) + G20(—6 L2 +3Ls — 5y2 —iys +4yg ) —
—iG10(6L2 +9L5 +y2 + 5iye +4yy) +iG11(5L1 —9Le + S2 — biys — 4y10) + G21(—5L1 — L + S2 — 4y +i1ys — 2y10)+
+iG303L6 + y1 + iys + 2y10) + G12(—5L1 + 6Ls — S2 — y1 + 4iys + 2y10) — 1G22(5L1 + 4Le — S2 + 5y1 + 4y10).
In each pair, we sum and subtract equations; besides, we separate the rest energy by formal change

Dy = (—ZM + D())

In this way, we obtain

143
2 . . 1 . .
—3 (y2 — Y4 —iys + 1ys + yo — y11) Do + ng (2L1 + 252 — 284 —iys — iy7 + Y10 + y12) +
1. 1 .
+§ZD2 (2L1 — 2L — 252 4+ 254 + y1 + Y3 — y10 — Yy12) + §D3 (2L5 +251 —253 —y2 —ya+i(ys +ys)) +

+M (z (S1+ Ss) + %Z (y2 — ya — iys +iys +yo — yn)) +
+G11(—2iLy — 2iS1 + 2453 + ys + ys + i(yo + y11))
+iGa2(2L2 + 2L5 — 251 + 2S5 + y2 + Y4 + Yo + y11)
+G33(—2iL5 — 2951 + 2iS3 + ty2 + iya + ys + ys)
+2iG1o(y1 — Y3 +1ys — iy7 — y10 + y12) + 2G20(y1 — Y3 +1ys — iy7 — y10 + y12) + 2iG30(y2 — ya — iys +iys + Yo — Y11)
+G12(—2Ls — 6L5 — 251 4+ 253 + y2 + ya — 21y — 2iys — Yo — Y11)
+Go1(—2La + 4L5 + 251 — 253 — 2y2 — 2y + iy + iys + Yo + y11)
+iG13(4L1 — 6L — 252 + 254 4+ y1 + y3 — i(ys + y7) — 2y10 — 2y12)
—iG31(6L1 —4Le — 252 4+ 254 + 2y1 + 2ys — i(ys + y7) — Y10 — Y12
+Go3(—4L1 — 2L — 252 4+ 254 — y1 — y3 + i(y5 + y7 + 2i(y10 + y12)))
+G32(6L1 — 2Le + 252 — 254 + y1 + y3 — 2iys — 2iy7 + y10 + y12) =0,
1-3
Do+ 2Dy (~28y — 254 + iys — iyr — y10 + yr2) +

2 X .
g(y2+y4*1y6*198+y9+y11) 3

1. 1 . .
+=49D3 (252 + 254 — y1 + Y3 + y10 — y12) + §D3 (—251 — 253+ y2 — ya —iys + iys) +
. 2, . .
+M (z (S1—Ss) — 3t (y2 +ya —iys — iys + yo + y11)> +
+G11(2i514 2153 —ye +ys —iye +iy11) +1G22(251 + 253 — y2 +ya — Yo +y11) + G33(ys + (251 + 253 —y2 +ya +iys))
—2iGro(y1+ys+i(ys+yr+i(yio+yi2))) —2G20 (y1+ys+i(ys +yr+i(yro+yi2))) —2iGso(y2 +ya —iye —iys+yo+yi1)
+G12(251 + 253 — y2 + ya + 2iye — 2iys + yo — y11) + G21(—251 — 2535 + 2y2 — 2ya — iys + 1ys — Yo + y11)

+iG13(2S52 + 254 — y1 + Y3 + tys — ty7 + 2y10 — 2y12) — iG31(252 + 254 — 2y + 2y3 + iys — iy7 + Y10 — Y12)
+G23(2S2 + 254 + y1 — y3 — 1ys + iy7 + 2y10 — 2y12) + G32(—252 — 254 — y1 + y3 + 2iys — 2iy7 — Y10 + y12) = 0,
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2+4

2 . . 1 . .
—3 (y1 — y3 +iys — iy7 — y10 + y12) Do + §D1 (2L2 + 251 — 253+ i (ys + ys + i (yo + y11))) —

1. 1 )
—3iD: (2L 4+ 2L5 — 251 + 2S5 + y2 + ya +yo + y11) + 3Ds (2L6 — 252+ 2Ss+y1 +ys + i (ys + y7)) +

3
—iG11(2L1 + 252 — 254 — iys — iy7 + Y10 + y12) + iG22(2L1 — 2L — 252 + 254 + y1 + y3 — Y10 — Y12)
+iG33(2Le — 252 + 254 + y1 + y3 + i(ys + y7))
+2iG10(y2 —ya —1y6 +iys + Yo —y11) + G20(2(ya —tys +y11) — 2(y2 — iy6 + Yo )) — 2iG30(y1 — y3 +iys —iy7r — Y10+ y12)

+G12(2L1 — 6L + 252 — 254 — y1 — y3 — 2iys — 2iyr — Y10 — Y12)
+G21(2L1 +4Le — 252 + 254 + 2y1 + 2ys + iys + iy7 + Y10 + y12)
—iG13(4L2 4 6Ls — 251 4 253 + y2 + ya + iye + iys + 2(yo + y11))
+1G31(6L2 + 4Ls — 251 + 2S5 + 2y2 + 2ya + iys + tys + Yo + y11)

+Gas(—4L2 4+ 2L5 — 251 + 253 — y2 — ya — i(ys + ys + 2i(yo + y11)))

+G32(6La + 2L5 + 251 — 253 + y2 + ya + 2iys + 2iys — yo — y11) = 0,

2
+M (z (S2+ Sa)+ Zi(yr —ys +iys — iyr — y1o + y12))

2 . . 1 . .
3 (y1 +ys +i(ys + y7r + i (y1o + y12))) Do + ng (=251 — 2S5 —iys + iys + yo — y11) —

1. 1 . .
—ngz (2514255 —y2 +ya — yo + y11) + gDs (252 4+ 254 — y1 + y3 — tys + iy7) +

2
+M (z (S2 — S4) — gl (y1 +ys+i(ys +yr +i(yo + ym))))

+G11(2i524+2iS4+ys —yr+i(y10 —y12)) +1G22(252 42514 —y1 +ys +y10 —y12) + G33(2iS2 + 2854 —iy1 +iys +ys —y7)
—2iG10(y2 +ya — 1ys —iys + Yo +y11) + 2G20(y2 +ya — iye — iys + Yo + y11) +2iG30(y1 + y3 +i(ys + y7 +i(y10 + y12)))
+G12(—2852 — 254 + y1 — y3 + 2iys — 2iyr + y10 — Y12) + G21(252 + 254 — 2y1 + 2y3 — iys + iy7r — Y10 + Y12)
—iG13(251 + 253 — Y2 + ya — iyYe + iys — 2yo + 2y11) + iG31(2S1 + 253 — 2y2 + 2y4 — iys + iys — Yo + Y11)
+G23(251 + 253 + y2 — ya +iys — iys — 2yo + 2y11) + G32(—2S51 — 253 — y2 + ya — 2iys + 2iys + yo — y11) = 0,
5+7

1 . . 2 . .
gDo (6L1 4 2y1 + 2y3 — iys — iy7 + Y10 + Y12) — ng (S1+ S3 —iys +iys + yo — y11) +

1. 1 X .
+§ZD2 (S1+ 53 —2y2 +2ysa +yo —y11) + gDs (=S2 — S4 + 2y1 — 2ys — iys + 1y7) +

1. . .
+§1M (y1 +ys +i(ys + yr + i (y10 + y12)))

+2iG11(S2+Ss+iys —iyr —y10+yi2) —iGaz2 (S2+Sa+4y1 —4ys+5y10 —5y12) +G33(—i(S2+Sa+4y1 —4ys) —5ys +5y7)
+G1o(—6iL2 — 2iy2 — 2iys + ys + ys + 1(yo + y11)) + G20(—6L2 + 12L5 — 4ys — 4ya + iys + iys + 5(ys + y11))—
—iG30(18L1 — 12L6 + 4y1 + 4ys — 5iys — 5iyr — y10 — y12)
+G12(S2 + Sa — 2y1 + 2y3 + 2iys — 2iyr + Y10 — y12) + 2G21(S2 + Sa + 2y1 — 2y3 + 1ys — iyr + Y10 — Y12)
+iG13(S1 + S3 — 2y2 + 2ys + iys — 1ys + 2yo — 2y11) + 2iG31(S1 + S5 + 2y2 — 2ya + iye — ys + Yo — Yy11)+
+Ga3(—S1 — S3 — 2y2 + 2ya + iye — iys + 4yo — 4y11) + G32(S1 + S3 + 2y2 — 2ya + 4iye — 4iys + yo — y11) = 0,
5—-7

1 . . 2 . .

3 (—2y1 + 2y3 + tys — ty7 — Y10 + y12) Do — §D1 (2L — S1+S3+i(ys +ys +i(yo+y11))) +
1. 1 .
+§ZD2 (4L —2L5 — S1+ Ss 4+ 2y2 + 2ys — yo — y11) + §D3 (=6L1 + 2L+ S2 — Sa —2y1 —2ys + 1 (ys +y7)) +

1. . .
—|—§zM (5y1 — Bys — 1ys + 1y7 + Y10 — Y12)
+2iG11(2L1 — S2 + Sa — tys — iy7r + y10 + y12) + iG22(8L1 + 10Le + S2 — Su + 4y1 + 4ys + 5(y10 + y12))
+iGs3(18L1 — 10Le + S2 — Sa + 4y1 + 4ys — 5i(ys + y7))
+G10(2iy2 —2iys —ys +ys —iyo +iy11) + G20 (4y2 —4ys — 1ys +1ys — 5yo +5y11) +1G30 (dy1 —4ys —5iys +5iyr —y10+ y12)
+G12(8L1—6Le—S2+Sa+2y142ys —2iys —2iyr —y10—y12) —2G21 (2L1+4Le+S2— Sa+2y1 +2ys+iys +iyr+yi10+yi12)
+iG13(2L2 — 6Ls — S1 + S3 + 2y2 + 2ya — i(ys + ys) — 2y9 — 2y11)
—2iG31(6L2 +4Ls + S1 — S3 + 2y2 + 2ya + iys + 1ys + yo + y11)
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+G23(2L2 — 10L5 + S1 — S3 + 2y2 + 2ya — i(ys + ys) — dyo — 4y11)
+G32(—12L2 —10Ls — S1 + S3 — 2y — 2yq — 4iy6 — 4iyg — Yo — yll) =0,
6+8

1 . . 2 . .
§D0 (6L + 2y2 + 2ya + i (ys + ys + @ (yo + y11))) — §D1 (S2 + Sa + iys — iyr — y10 + y12) —

1. 1 . .
—ngz (S2 4+ Sa — 2y1 + 2ys — y10 + y12) + gDs (S1+ S3 — 2y2 + 2ys4 — iy + iys) +

1. . .
+3iM (y2 + ya — iys — iys +yo + y11)

+2iG11(S1+ 53 —1ye +iys +yo —y11) —1G22(S1+ S3+4y2 — 4ys — 5yo +5y11) —iG33(S1+ S3 +4y2 —4dya +5i(ys — ys))
—iG10(6L1 + 2y1 + 2ys — iys — 1y7 + Y10 + y12) + G20(6L1 + 12L¢ + 4y1 + 4ys + tys + iy7 + 5(y10 + y12))
+iG30(18 Lo + 12L5 + 4y2 + 4ya + 5iys + 5iys + yo + y11)
+G12(—S1 — S3 4 2y2 — 2ya + 2iys — 2iys + yo — y11) — 2G21(S1 + S5 + 2y2 — 2y4 — iys + iys — Yo + y11)
—iG13(S2 + Sa — 2y1 + 2y3 — 1ys + iyr — 2y10 + 2y12) — 20G31(S2 + S4 + 2y1 — 2y3 — iys + Y7 — Y10 + Y12)
+Ga3(—S2 — S4 — 2y1 + 2y3 — iys + ty7 — 4y10 + 4dy12) + Gs2(S2 + Sa + 2y1 — 2y3 — 4diys + 4iyr — Y10 + y12) = 0,
6—8

. ) 2 . .
(—2y2 + 2ys — iys + iys + yo — y11) Do — §D1 (2L1 — S2 + S4 — tys — iy7 + Y10 + y12) —

Wl

1. 1 .
—ngz (4L1 + 2L — S2 + Sa + 2y1 + 2y3 + yi0 + y12) + §D3 (6Lo +2L5 — S1 4+ S3+2y2 + 2ya + 1 (y6 + ys)) +

—|—éz‘M (5y2 — 5ya +iye — iys — yo + y11)
+2iG11(2L2 — S1+ S3 + i(ys + ys + i(yo + y11))) + iG22(8La — 10Ls + S1 — S3 + 4y2 + 4ya — 5(yo + y11))
+iG33(18L2 + 10Ls + S1 — Sz + 4y + 4ys + 5i(ys + ys))

G1o(2iy1 —2tys+ys —y7+i(yro—y12)) + G20 (—4y1 +4ys —iys +iyr —Sy10+5y12) —iGs0(dy2 —4dya+5iye —5iys +yo —y11)
+G12(—8L2—6L5+S51—S3—2y2—2ys—2iy6 —2iys —Yyo—y11)+2G21 (2L2—4 L5+ 51— S3+2y2+2y1—i (Y6 +ys) —yo—Yy11)
—iG13(2L1 4 6Le — S2 + Sa + 2y1 + 2y3 + iys + iy7r + 2(y10 + y12))
+2iGs1(6L1 — 4Le + S2 — Sa + 2y1 + 2y3 — i(ys + y7) — Y10 — Y12)
+G23(2L1 + 10Le + S2 — Sa + 2y1 + 2ys3 + tys + iy7 + 4(y10 + y12))
+G32(—12L1 + 10Le — S2 + Sa — 2y1 — 2ys + 4iys + 4diyr + yi0 + y12) =0,

9+11

1. . . 1. . .
gZDo (6L1 —6L¢ + y1 + y3 — 2iys — 2iy7 — Y10 — Y12) — gZDl (S1 4 Ss + 2iys — 2iys + yo — y11) —

2 1. . .
—gDz (S1+ Ss+y2—ya+yo—y11) + gZDs (S2 4+ Sa 4+ y1 — ys3 — 2iys + 2iy7) +

1 . .
+§M (y1 +y3 +1i(ys + y7r + ¢ (y10 + y12)))

+G11(—S2—Ss—4iys+4iy7r — Sy10+5y12) +2G22(S2+Ss+y1 —ys —y10+y12) + Gz (—Se — Sa+5y1 — bys —4iys +4iyr)
+G10(—6L2 — 18L5s + y2 + ya — 4diys — 4iys — 5(yo + y11)) + iG20(6L2 + 6Ls + y2 + ya + 2iys + 2iys + yo + y11)
+G30(18L1 — 6Le + 5y1 + bys — diys — 4iyr + y1o0 + y12)
+2iG12(S2 + Sa + y1 — y3 + 2iys — 2iy7 + Y10 — y12) + 1G21(S2 + Sa + 2y1 — 2ys — 2iys + 2iyr + yi0 — Y12)
+G13(S1 + S3 + y2 — ya — 2iys + 2iys — 4yo + 4y11) + G31(—S1 — S3 + 4dy2 — 4ya + 2iye — 2iys — yo + y11)+
+iG23(S1 + S3 — y2 + ya + 2iys — 2iys + 2yo — 2y11) + 2iG32(S1 + S3 — Y2 + ya — 2iys + 2iys + yo — y11) = 0,
9—-11

1. . . 1. . .
—gl (y1 — y3 — 2iys + 2iy7r — y10 + y12) Do + 51D1 (4L2 + 6Ls + S1 — Ss + 2iys + 2iys + yo + y11) +

2 1. .
+§D2 (2L2+2L5+S1—53+y2+y4+y9+y11)—§2D3 (6L1 —4L¢+ Sz — Sa+y1 +y3 — 2i (ys + y7)) +

1 . .
+§M (—y1 + y3 + diys — Biyr + yio — Y12)

+G11(—8L1 + 18L¢g + S2 — Sa + 4iys + 4iyr + 5(y10 + y12)) — 2G22(2L1 — 2Le + S2 — Sa + y1 + Y3 — Y10 — Y12)
+Gs3(—18L1 4+ 8Lg + S2 — Sa — by1 — bys + 4i(ys + y7))+
+G1o(—y2+yat+4iys —4iys+5y9 —5y11) —1G20 (Y2 —ya+2iys — 2tys+yo —y11) +Gs0(—5y1 +5ys +4iys —4iyr —y10+y12)
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+2iG12(2L1—6Le—S2+S4—y1—y3—2iys —2iyr—y10—Y12) —1G21 (8 L1 —2Le+S2 — S4+2y1 +2ys —2iys —2iy7+y10+y12)
+G13(2L2 + 12L5 — S1 4+ S3 — y2 — ya + 2iys + 2iys + 4(yo + y11))
+G31(—12Ly — 2L5 4+ S1 — S3 — 4y2 — 4dya — 2iys — 2iys + Yo + y11)
—iG23(2L2 + 8L5 + S1 — S5 — y2 — ya + 2(iys + tys + Yo + y11))
+2iG32(6La + 2Ls — S1 + S3 + Y2 + ya + 2iys + 2iys — yo — y11) = 0,
10+ 12

1. ) ) 1. . ,
*ngo (6L2 + 6Ls5 + y2 + ya + 2iys + 2iys + yo + y11) + §2D1 (S2 + Sa — 2iys + 2iyr — y10 + y12) —

2 1. .
*gDz (S2+ Sa+y1 —ys —yi0o + y12) + ng:s (S1+S3+y2 —ya+2i(ys —ys)) +

1 . .
+3M (—y2 —wya +i(ye +ys +i(yo +y11)))

+G11(S1+ S5 —4iys +4iys —5ye +5y11) — 2G22(S1+ S3+y2 — ya+yo —y11) + G33(S1 + S3 — bya + 5ya — 4iyes +4iys)
+G10(6L1 — 18Le — y1 — y3 — 4iys — 4iyr — 5(y10 + y12)) + 1G20(6L1 — 6Ls + y1 + y3 — 2iys — 2iyr — y10 — Y12)
+G30(18L2 + 6Ls5 + 5y2 + Hya + 4iys + 4iys — yo — y11)
+2iG12(S1 + S3 + y2 — ya — 2iys + 2iys — yo + y11) + 1G21(S1 + S3 + 2y2 — 2ya + 2iys — 2iys — Yo + y11)
+G13(S2 + Sa + y1 — ys + 2iys — 2iy7 + 4dyio0 — 4y12) + G31(—S2 — Sa + 4dy1 — 4ys — 2iys + 2iyr + y10 — y12)
—1Ga3(S2 + Sa — y1 + ys — 2iys + 2iyr — 2y10 + 2y12) — 2iG32(S2 + Sa — y1 + ys + 2iys — 2iy7 — Y10 + y12) = 0,
10 — 12

1. . . 1. . .
gl (y2 — ya + 2iye — 2iys + yo — y11) Do — gZDl (4L1 — 6Le + S2 — Sa — 2iys — 2iy7 — y10 — Y12) +

2 1. .
+§D2 (2L1 — 2L + S2 — Sa+y1 + y3 — y10 — y12) — ngs (6Lg +4Ls + S1— Ss+y2 +ya + 20 (ys + ys)) +

1 . .
+§M (y2 — ya + Siye — 5iys + yo — y11)

+G11(8L2 + 18Ls — S1 + S3 + 4iye + 4iys + 5(yo + y11)) + 2G22(2L2 + 2L5 + S1 — S3 + y2 + ya + yo + y11)
+G33(18L2 4 8L5 — S1 + S3 + 5y2 + 5ya + 4i(ys + ys))
+G10(y1—ys+4iys —4iyr +5y10 —5y12) —iG20 (Y1 —y3 — 2iy5 +2iy7 —y10+y12) + G30 (—Sy2 +5ys — diys +4iys +yo —y11)
+2iG12(2L2 + 6Ls — S1 + S3 — y2 — ya + 2iye + 2iys + yo + y11)
—1G21(8L2 + 2Ls + S1 — S3 + 2y2 + 2ya + 2iys + 2iys — yo — y11)
+G13(2L1 — 12Le — S2 + Sa — y1 — y3 — 2i(ys + y7) — 4dy10 — 4y12)
+G31(—12L1 + 2L¢ + So — Sa — 4y1 — 4ys + 2iys + 2iy7 — y10 — Y12)
+iGa3(2L1 — 8Ls + S2 — Sa — y1 — y3 — 2i(ys + y7) — 2y10 — 2y12)
—2iG32(6L1 — 2Le — S2 + Sa +y1 + y3 — 2iys — 2iyr + Y10 + y12) = 0,
13415

1 . . 1 . .
gDo (6Ls — y2 — ya + iys + iys + 2 (yo + y11)) + §D1 (S2 + Sa + iys — iyr + 2y10 — 2y12) —

1. 2 . .
*§2D2 (S2 + Sa+ y1 — ys + 2y10 — 2y12) — §D3 (S1+ S3 4+ y2 — ya —iys + iys) +

1. . .
+3iM (Y2 +ya — iys — iys +yo + y11)

—1G11(S14 S3+5iys — biys +4dyo —4y11) —iG22(S1+ S5 —5y2 +5ya +4yo —4y11) + 2iG33(S1+ S3+y2 — ya — iye +1ys)
+iG10(12L1 —18Ls +y1 +y3 — biys — biyr —4(y10 + y12)) + G20(—12L1 — 6 Le — 5y1 — bys +i(ys +y7 +4i(y10 + y12)))
+G30(—6iLs + ty2 + iys + ys + ys — 2i(yo + y11))
+G12(751 — S3 —ya + ya — diye + 4diys — 2y + 2y11) + G21(51 + S3 — 4y + dya — iye + tys + 2y9 — 2y11)
+2iG13(S2 + Sa + y1 — Y3 — tys + ty7 — 2y10 + 2y12) + iG31(S2 + Sa + 2y1 — 2y3 — Y5 + Y7 + 2y10 — 2y12)
+2G23(S2 + Sa — y1 + y3 + iys — iy7r — 2y10 + 2y12) + G32(S2 + Sa — y1 + y3 + 2iys — 2iyr + 2y10 — 2y12) = 0,

13 -15

1 . . 1 .
g (y2 — Y4 — Y6 + 1Ys — 2y9 + 2y11) Do + ng (2L1 —6L¢ — SQ + S4 —1 (y5 + y7) — 2y10 — 2y12) 4+

1. 2 .
+51D2 (2L1 + 4L + S2 — Sa+y1 +y3 + 2 (y10 + y12)) + §D3 (—2L5 4+ 51— S3+y2 +ya —i(ye +ys)) —
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—éiM (Y2 — ya — iys + 1ys — 5yo + 5y11)
+iG11(10L2 + 18L5 + S1 — S3 4 5iye + 5iys + 4(yo + y11)) — iG22(10L2 — 8L5 — S1 + Ss + 5y2 + 5ya — 4(yo +y11))
+2iG33(2L5 — S1+ S5 — y2 — ya +i(ys + vs))
—1G1o(y1 — y3 — Siys + 5iyr — 4yio + 4y12) + Gao0(byr — 5y — tys + ty7 + 4y10 — 4y12)
+G30(—iy2 + iys — yo + ys + 2i(yo — y11))
+G12(10L2 + 12L5 + S1 — S5 + y2 + ya + 2(2dys + 2iys + Yo + y11))
+G21(10Ls — 2L5 — S1 + S3 + 4y2 + 4ya +i(ys + ys + 2i(yo + y11)))
—2iG13(4L1 — 6Le + S2 — Sa 4+ y1 +ys — i(ys + y7) — 210 — 2y12)
—iG31(6L1 + 2L6 + S2 — Sa + 2y1 + 2ys — i(ys + y7 + 2i(y10 + y12)))
+2G23(4L1 4 2L6 — S2 + Sa +y1 + y3 — i(ys + y7 + 2i(y10 + v12)))
+G32(6L1 —8Le — S2 + Sa +y1 +y3 — 2i(ys + y7) — 2y10 — 2y12) =0,
14416

1 . . 1 . .
gDo (6Le + y1 + y3 + iys + iyr + 2 (y10 + y12)) + ng (=S1 — S3 + iy — iys + 2yo — 2y11) —

1. 2 .
_§ZD2 (S1+4 Sz 4+ y2 —ya — 2yo + 2y11) — §D3 (S2+Sa+y1—ys+i(ys —yr)) —

1. . .
*gZM (y1 +ys +1i(ys +yr + 7 (y10 + v12)))

+iG11(S2+S4—5iys +5iyr —4yi10+4y12) +iGa2(S2+Sa—5y1 +5ys —4yi10+4y12) —2iGs3 (S + Sa+y1 —ys +i(ys —yr))
—iG10(12L2 + 18L5 +y2 + ya + 5iys + Hiys +4(yo + y11)) + G20(—12L2 4+ 6Ls — 5y2 — 5ya —i(ys +ys +4i(yo +y11)))
+iG30(6Le + y1 + ys + tys + iy7 + 2(y10 + y12))
+G12(—82 — S4 — y1 + ys + diys — diyr + 2y10 — 2y12) + G21(S2 + Sa — 4y1 + 4ys + iys — iy7 — 2y10 + 2y12)+
+2iG13(S1+ S3 + y2 — ya + 1ys — iys + 2yo — 2y11) + 1G31(S1 + S35 + 2y2 — 2y4 + iys — tys — 2ys + 2y11)
—2G23(S1 + S35 — y2 + ya — iys + iys + 2yo — 2y11) + Gz2(—S1 — S3 + y2 — ya + 24y — 2iys + 2y0 — 2y11) = 0,
14 — 16

1 . . 1 .
3 (—y1 + y3 — tys + ty7 — 2y10 + 2y12) Do + ng (=2L2 —6Ls + S1— S3 —i(ys + ys) — 2yo — 2y11) +

1. 2 .
+§ZD2 (2L —4Ls5 + S1 —53+y2+y4—2(y9+y11))+§D3(2L6+52—S4+y1 +y3+z(ys—|—y7))+

—&—%iM (y1 — y3 + iys — iy7 + Sy10 — Dy12)
—iG11(10L1 — 18L¢ + So — S4 — 5iys — 5iyr — 4(y10 + y12)) +iG22(10L1 +8Lg — S2 + Sa + 5y1 + 5y3 + 4(y10 + y12))
+2iG33(2L6 + So — Sa+y1 +ys +i(ys + yr))
+iG10(Y2 —ya+5iys —5iys +4yo —4y11) +G20 (5y2 —5ya+iye —iys —4yo +4y11) +Gso (—iy1 +iys +ys —y7 — 2iy10+2iy12)
+G12(10L1 — 12L6 + S2 — Sa + y1 + y3 — 4iys — 4iyr — 2(y10 + y12))
+G21(10L1 4 2L6 — S2 + S1 + 4y1 + 4ys — i(ys + y7 + 2i(y10 + y12)))
—2iG13(4L2 + 6L5 + S1 — Sz + y2 + ya + iye + iys + 2(yo + y11))
—iGs1(6L2 — 2Ls + S1 — Ss + 2y2 + 2ya + i(ys + ys + 2i(yo + y11)))
—2G23(4Ls — 2L5 — St + Sz 4+ y2 + ya + i(ys + ys + 2i(yo + y11)))
+G32(=6L2 — 8Ls + S1 — S3 — y2 — ya — 2i(ys + ys) — 2y9 — 2y11) = 0.

When performing the non-relativistic approximation, we should assume the following smallness orders for the
involved quantities

L. .~1, S ~uz, Y. ~ T,

vz, D2 ~a? 22 g (33)

in fact, we will need only the orders z and z2.
We divide equations of order z in two group; the first group is

2 . . 2 .
1 ngLl — 21G11Los — 21G33Ls + §D3L5 + 2'LG22(L2 =+ L5) — 2G12(L2 + 3L5)

+Ga1(4Ls5 — 2L3) + 2iG13(2L1 — 3Lg) + Gs2(6L1 — 2Ls)

2. . . 1. . .
+§ZD2(L1 — Lg) + G31(4iLe — 6iL1) — 2G23(2L1 + Le) + gZM(Ssl +3534+2(y2 —ya — iys +iys +yo —y11)) = 0,
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2 %iM(:’)Sl — 383 — 2(y2 + ya — iy6 — iys + yo + y11)) = 0,
3 f2iG11L1+§D1L2f;:’DQ(LQ+L5)+2G32(3L2+L5)+G23(2L574L2)+2iG31(3L2+2L5)721G13(2L2+3L5)
+2G12(L1 — 3Le) + 2iGa2 (L1 — Le) 4+ 2iG33Le + §D3L6 + 2G21 (L1 + 2Ls)
+%iM(352 + 354 +2(y1 — y3 + iys — iyr — Y10 + y12)) =0,
4 %/L‘M(-?)SQ =384 —2(y1 +y3 +i(ys +y7r +i(yi0 +y12)))) =0,
5 2iM{ys +ys +ilys +yr 4 iy +912)) =0,
6 4iGiiLy— ngLQ +2Ga3(La —5L5) +2iC1s (La —3Ls) + %iDg(ZLz — Ls)— 4iGa1 (302 +2Ls) — 2Gas(6 Lo +5Ls)
+G12(8L1 — 6L¢) + 2iG33(9L1 — 5L¢) + Dg(% —2L1) — 4G21(L1 + 2L6) + 2iG22(4L1 + 5L6)
—&—%iM(Syl — 5y3 — 1ys + iyr + Y10 — y12) = 0,
7 éiM(yz +ys —iys —iys + Yo +y11) =0,
8 —%DlLl+4iGHL2+Gu(—8L2—6L5)+2¢022(4L2—5L5)+4G21(L2—2L5)+§D3(3L2+L5)+2i033(9L2+5L5)
4Gy (3L1 — 2Lg) — ;iDg(QLl + Lo) — 2iGhs(L1 + 3L6) + 2Gas(L1 + 5L )+
+G32(10Le — 12L1) + éz‘M(i’wa — 5y4 +iys — iys — yo +y11) = 0,
9 %M(yl +ys +i(ys + yr +i(yi0 + y12))) = 0,
10 %DQ(LQ + L) + 4iGas(3L + Ls) — 2Ga1 (6La + Ls) + %iDl(QLg +3Ls)
—2iGa3(La + 4Ls) + 2G13(L2 + 6Ls) + 4iG12(L1 — 3L¢)

43 L . . .
+Ds( 13 S _ 9iL1) + Ga1(2iLe — 8iL1) + Gaa(4Le — AL1) + G33(8Lg — 18L1) + G11(18Lg — 8L1)
1 . .
+§M(fy1 + ys + 5iys — 5iy7 + Y10 — y12) =0,
1 . .
11 gM(—yz —ys+1i(ys +ys +i(ye + y11))) =0,

2
12 4G22(L2 + L5) — 2’iG21(4L2 =+ L5) — giD3(3L2 =+ 2L5) + 4’iG12(L2 + 3L5) =+ G33(18L2 + 8L5)
4314

+G11(8L2 + 18L5) + 2G13(L1 — 6Lg) + 2iGas(L1 — 4Ls) + %Dz(Ll — Lo) — 4iGs2(3L1 — Le) + D1 (2iLe — ——)
+2G31(Le — 6L1) + %M(yQ — ya + Siye — Siys +yo — y11) =0,
13 %iM(yz +ya — iye — iys +yo +y11) =0,
14 —2iG22(5L2—4L5)+G21(10L2—2L5)+4iGssL5—%D3L5+2012(5L2+6L5)+2iG11(5L2+9L5)+G32(6L1_8L6)

2 . . 2.
+§D1 (L1 — 3L6) — 4ZG13(2L1 — 3L6) + 4G23(2L1 + LG) — 2’LG31(3L1 + L@) + g’LDQ(Iq =+ 2L6)

1. . .
—3 M (y2 — ya — iy + iys — 5yo + 5yu) =0,
1. . .
15 - gzM(y1 +y3 +i(ys + yr +i(y10 + 112))) =0,

2. . . 2 .
16 G32(_6L2 — 8L5) +4 g'LDQ(LQ — 2L5) +4 G31(22L5 — 61L2) — §D1(L2 + 3L5) — 4’LG13(2L2 +4 3L5)
+G23(4L5 — 8L2) — 2iG11(5L1 — 9L6)

. 4 .
+2G12(5L1 — 6Le) + 4iG33Le + §D3L6 + 2G21(5L1 + Le) + 2iG22(5L1 + 4Lg)

1. . .
+§ZM(?/1 —y3 + 4ys — iy7 + dy10 — dy12) = 0.
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Remaining 8 equations of the order z are rather complex; with their help we can express 8 small
variables through the large ones and four free small variables y1, y2, ys, Yo ):

1. . .
S = i [ZDlLl +3G11L2 — 3iGa1 (Lo — 2Ls) + 3G33Ls + iD3sLs — 3G22 (L2 + Ls)

—31G12 (Lz —+ 3L5) + G371 (9L1 — 6L6)

+3iG32 (3L1 — Lg) + D (L — L1) — 3iGas (2L1 + Le) + G13 (9Lg — 6L1) ]

1
= M [iD1L1 + 3G11L> — 331Gy (Lz — 2L5) + 3G33L5 +1D3Ls — 3Go9 (L2 =+ L5) — 3i1G12 (LQ =+ 3L5)

S3
+G31 (9L1 — 6L6) + 3i1G'32 (3L1 — Le) + Do (LG — Ll) — 3tGa3 (2L1 + Le) + Gi3 (9L6 — 6L1) :|,
1
Sp = Vi [3G11L1 +iD1Lo + G31 (=9L2 — 6Ls) + Ga3z (3iLs — 6iL2) + D2 (L2 + Ls) 4 3iG32 (3L2 + Ls)

+G13(6L2 4+ 9Ls5) + 3iG12 (L1 — 3Lg) — 3G33Le + iD3sLe + 3iG21 (L1 + 2L¢) + G22 (3Le — 3L1) ],

1 . . . .
Si = M 3G11L1 +1D1Ls +G31 (—9L2 — 6L5) + Gos (3’LL5 — 6’LL2) + Do (Lz —+ L5) + 3tG32 (3L2 —+ L5)
+Gh3 (6L2 + 9Ls) + 3iG12 (L1 — 3Le) — 3G33Le + iD3Le + 3iG21 (L1 + 2L6) + G22 (3Le — 3L1) },
1
s =17 [3G11L1 —3iG12L1 +4iD3L1 +3G13L2 +iD1 Lo 4+ D2 Lo + G31 (—=9L2 — 6L5) — 3iGa3 (L2 — 2Ls)

+3iG32 (3L2 + 2L5) + G33 (9L1 — 6L6) + 3iG21 (L1 + 2L6) + 3G22 (L1 + ZLG)] + y1,

1 . . . .
V=57 [ —3G13L1 +iD1Ly — D2L1 + 3G11Le + 3iG12 L2 — iDsLy — 3iG21 (Lz — 2Ls5) + 3G22 (L2 — 2Ls)

4G (9L + 6L5) + Ga1 (9L — 6Lg) + 3iGaa (3L1 — 2Lg) — 3iGas (L1 + 2L6)] .
1
v =9 [—3023 (L2 + Ls)+D1 (L2 + Ls)—iD2 (L2 + Ls)+3iGa1 (3L2 + Ls)+3G32 (3L2 + Ls)—3iG13 (L2 + 3Ls)

+3:G11 (Ll — 3L6)+3G12 (L1 — 3L6)+3iG22 (Ll — L6)+3i033 (3L1 — L6)+D3 (La — L1)+G21 (3L6 — 3L1) i| +ys,

1

Ys = 7f [D3 (=L2 — L5)—3G21 (L2 + L5)—3iG22 (L2 + Ls)—3iG3s3 (3L2 + Ls)—3iG11 (L2 + 3L5)+3G12 (L2 + 3Ls)

—3iG13 (L1 —3Le) +3G23 (L1 — L) —iD2 (L1 — L¢) + 3iG31 (3L1 — Le) + D1 (Le — L1) + G32 (3Le — 9L1)} ~+ s,

1

v =77 [ —iD1Ly — 3G11L2 + 3iGa1 (L2 — 2Ls) — 3GasLs — iD3Ls + 3G22 (L2 + Ls) + 3iG12 (L2 4 3Ls)

+G13 (6Ly — 9Ls) + D2 (L1 — Le) + G32 (3iLe — 91L1) + 3iGa3 (2L1 + Le) + G31 (6Le — 9L1)] — y2 + iys,
Y10 = % [3011[/1 +iD1Ls + Gs1 (—=9L2 — 6L5) + Gas (3iLs — 6iL3) + D2 (L2 + Ls) + 3iG32 (3L2 + Ls)
+Gh13 (6L2 +9L5) + 3iG12 (L1 — 3Le) — 3G33Le + iDsLe + 3iG21 (L1 + 2Lg) + G22 (3Ls — 3L1)] + y1 + 1ys,
Y11 = % [Dle — 3iG12L2 — 3iG21 (L2 + Ls) + 3G11 (L2 + 3Ls) + G22 (6Ls — 3L2) — D1 (L1 — Ls)
+G32 (6iLe — 9iL1) + G31 (3Le — 9L1)] — Y2 + iy,

1
Y12 = - [ —3iG12L1 + D2La + D1 (L2 + Ls) — 3G31 (3L2 + Ls) + 3iGs2 (3L2 + 2Ls)

—3iGa1 (L1 — Le) + 3G22 (L1 + 2L¢) + G11 (9Le — 3L1)] + Y1+ ys.
Let us write down equations of the smallness order z2:
1/
. . . . 1 . .
G33(—2i51 42153 +1iy2 +iya+ye +ys) + §D3(251 —2S3—y2—ya+i(ys+ys)) —1G22(251 —253 —y2 —ya —yo — Y11)

+G12(—251 + 253 + y2 + ya — 2iys — 2iys — yo — y11) + G21(251 — 253 — 2y2 — 2y4 + iys + iys + Yo + y11)
. . . 1. 1 . .
+G11(*2151+2133+y6+ys+l(yg+yu))752D2(25272547y1fy3+y1o+y12)+§D1 (252 —2S4—1ys —iyr+y10+yi2)

+iG31(252 — 254 — 2y1 — 2ys + tys + ty7 + Y10 + y12) + G32(252 — 254 + y1 + y3 — 2iys — 2iy7 + Y10 + y12)
+G13(—21S2 +2iS4 +1y1 +iys +ys +y7 — 2i(y10 + y12)) + Gas(—2S52 + 251 —y1 —ys +i(ys +y7 + 2i(y10 + y12))) = 0,
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2/

1 . . . . . .
gDS(_Qsl —2S53+y2 —ya—iys+iys)+G33(1(2S1+253—y2 +ya+iye) +ys) +G12(251+253 —y2 +ya+2iys — 2iys +yo —y11)

+G11(2i5142iS3—ys +ys —iyo+iyi1) +iG22(251+253—y2+ya—yo+yi1)+G21(—251 —253+2y2 — 2ys —iye +iys —yo+y11)
+iG13(252 + 254 — y1 + y3 + iys — iy7 + 2y10 — 2y12) + G23(252 + 254 + y1 — y3 — 1ys + iy7 + 2y10 — 2y12)

1. . . .
+§ZD2 (252 4+ 254 — y1 + Y3 + Y10 — y12) — iG31(2S2 + 254 — 2y1 + 2y3 + tys — Y7 + Y10 — Y12)

1 . . . .
+§D1(_252 — 254 +iys — iy7 — Y10 + y12) + Ga2(—252 — 254 — y1 + y3 + 2iys — 2iyr — y10 + y12) =0,

3/
1 . . . . 1.
§D3(—252 +2Ss4+y1+ys+i(ys+y7)) +Gss(i(2S4+y1 +ys+i(ys+yr)) —2iS2) + 51D2(251 —253—y2—Ya—Yo—y11)

+G32(251 — 253 + y2 + ya + 2iys + 2iys — yo — y11) + G31(4(253 + 2y2 + 2y4 + iye + iys + yo + y11) — 2iS1)
1 . . . .
+§D1 (251 — 2S5 +i(ys + ys + i(yo + y11))) + G23(—251 + 253 — y2 — ya — i(ys + ys + 2i(yo + y11)))
+G13(21S1 — (253 + y2 + ya + iys + iys + 2(yo + y11))) + G12(252 — 254 — y1 — y3 — 2iys — 2iy7 — Y10 — Y12)—
—1G22(252 — 254 — y1 — Y3 + Y10 + y12) — 1G11(252 — 254 — tys — iy7 + Y10 + Y12)
+G21(—2852 + 254 + 2y1 + 2y3 + iys + iy7r + yi0 + y12) =0,
4/

. . . . 1 . . 1 . .
G33(2iS2 42154 —iy1 +iys +ys —y7) + §D3(2S2 +2Ss—y1+ys—iys+iyr)+ §D1(—251 —2853 —iys +iys + Yo — y11)

. . 1.
+G32(—251 — 253 — y2 + ya — 2iye + 2iys + yo — y11) — 52D2(251 + 253 —y2 + ya — Yo + y11)

+iG31(251 + 253 — 2y2 + 2ys — iys + 1ys — Yo + y11) + G23(251 + 253 + y2 — ya + tys — iys — 2y9 + 2y11)
—1G13(251 + 253 — Y2 + ya — iys + iys — 2y + 2y11) + G11(2iS2 + 2iSs + ys — y7 + i(y10 — Y12))
+iG22(252 + 254 — y1 + Y3 + y10 — y12) + G12(—252 — 254 + y1 — y3 + 2iys — 2iyr + Y10 — Y12)
+G21(252 + 254 — 2y1 + 2y3 — iys + iy7 — Y10 + y12) =0,

. . 1 . .
2DoL1 — 61G1oLo — 6G20(L2 - 2L5) - 6ZG30(3L1 - 2L6) + ng(*SQ — Sy + 2y1 - 2y3 — Y5 + 2y7)

+Ga3(—i(S2 + S4 + 4y1 — 4ys) — Bys + 5yr) + Ga3(—S1 — Ss — 2y2 + 2y4 + iy — iys + 4yo — 4y11)

. . . 1.
+iG13(S1 + S3 — 2y2 + 2ya + iys — iys + 2yo — 2y11) + §1D2(S1 + S35 — 2y2 + 2ys + yo — y11)

. . . 2 . .
+2iG31(S1 4+ S3 + 2y2 — 2ya + iys — tys + Yo — y11) — §D1(S1 + S3 —iys + iys + Yo — y11)

+G32(S1 + S3 + 2y2 — 2ys + 4iys — 4iys + yo — y11) — iG22(S2 + Sa + 4y1 — 4ys + 5y10 — Hy12)
+2G21(S2 + Sa 4+ 2y1 — 2y3 + 1ys — iyr + y10 — y12) + G12(S2 + Sa — 2y1 + 2y3 + 2iys — 2iyr + yi0 — Y12)
+2iG11(S2 + Sa + iys — iyr — Y10 + y12) =0,
6/
1 . . . . .
ng(Sg — S4 —2y1 — 2ys +i(ys + y7)) + G33(1S2 — iS4 + 4iy1 + 4iys + 5(ys + y7))
+G23(S1 — S5+ 2y2 + 2ya — i(ys + ys) — 4yo — 4y11)

) . 1.
+G32(—S1 + S3 — 2y2 — 2ya — diye — diys — yo — Y11) — §ZD2(51 — S3— 2y2 — 2ya + yo + y11)

2 . . . . .
+§D1(Sl — S3 —iys — iys + yo + y11) — 20G31(S1 — Sz + 2y2 + 24 + iye + iys + Yo + Y11)
+G13(—i51 + 1253 + 21y2 + 2tys + ys + ys — 2i(y9 + ’yll)) + G12(—S2 + 5S4+ 2y1 + 2y3 — 21ys — 29y7 — Y10 — yl?)_
—2G21(S2 — Sa 4+ 2y1 + 2y3 + 1ys + iy7 + Y10 + y12) + 2G11(—iS2 + iS4 + Y5 + yr + i(y10 + y12))
+iG22(S2 — Sa + 4y1 + 4yz + 5(y10 + y12)) = 0,

—6iG1oL1 + 2Do L2 + 6iG30(3L2 + 2Ls5) + 6G20(L1 + 2Le) — i1Gs3(S1 + S3 + 4y2 — 4dya + 5i(ys — ys))

1 . . . . .
+§D3(S1 + S3 — 2y2 + 2ys — iys + tys) + 2iG11(S1 + S3 — iys + tys + Yo — y11)
+G12(—S81 — S3 + 2y2 — 2ya + 2iys — 2iys + yo — y11) — 2G21(S1 + S3 + 2y2 — 2ya — iys + iys — Yo + y11)
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) 1.
—iG22(S1 + S3 + 4y2 — 4ya — Sy + Hy11) — g'LDQ(SQ + S4 — 2y1 + 2y3 — y10 + Y12)

2 . . . . .
—ng (S2 + Sa + iys — ty7 — y1o + y12) — 26G31(S2 + Sa + 2y1 — 2y3 — iys + tyr — Y10 + Y12)

+G32(S2 + S4 + 2y1 — 2ys — 4iys + 4iyr — y10 + Y12) — iG13(S2 + Sa — 2y1 + 2y3 — 1ys + iy7r — 2y10 + 2y12)
+Ga3(—S2 — Sa — 2y1 + 2y3 — iys + iyr — 4y10 + 4y12) =0,
§ 1
§D3(*S1 + S3 4 2y2 + 2y4 +i(ys + ys)) + 1G33(S1 — S3 + 4y2 + 4y + 5i(ye + ys))
+G12(S1 — S3 — 2y2 — 2ys4 — 2iys — 2iys — Yo — Yi1)
+2G21(S1 — S5 4+ 2y2 + 2ya — i(ye + ys) — yo — y11) — 2iG11(S1 — S3 — iys — iys + Yo + y11)

. 1.
+iG22(S1 — S3 + 4y2 + 4ya — 5(yo + y11)) + §ZD2(S2 — 54— 2y1 — 2y3 — y10 — Y12)

+2iG31(S2 — Sa + 2y1 + 2ys — i(ys + y7) — y10 — Y12) + G32(—S2 + Sa — 2y1 — 2ys + 4iys + 4iyr + yi0 + y12)

. . 2 . .
+G23(S2 — Sa + 2y1 + 2ys + iys + iyr + 4(y10 + y12)) + §D1(S2 — Sa+i(ys + y7 + i(yi0 + y12)))

+G13(2S2 — i(Sa + 2y1 + 2y3 + tys + 1y7 + 2(y10 + y12))) = 0,
9/

1
6iG20(L2 + Ls) — 6G10(L2 + 3L5) + G30(18L1 — 6Ls) + 2iDo(L1 — Le) + giD:s(Sz + S4+y1 — yz — 2iys + 2iyr)

+G33(—S2 — Sa + 5y1 — bys — 4iys + diyr) + 1G23(S1 + S5 — y2 + ya + 2iye — 2iys + 2y9 — 2y11)
2 1. . .
—gDz(Sl +S34+y2 —ys+yo —y11) — gZDl(Sl + Sz + 2iys — 2iys + yo — y11)

+2iG32(S1 + S3 — y2 + ya — 2iy6 + 2iys + Yo — y11) + G31(—S1 — S3 + 4y2 — dya + 2iys — 2iys — yo + Y11)
+G13(S1 + S5+ y2 — ya — 2iys + 2iys — 4yo + 4y11) + 2iG12(S2 + Sa + y1 — y3 + 2iys — 2iy7 + Y10 — Y12)
+iG21(S2 + Sa + 2y1 — 2ys3 — 2iys + 2iy7 + Y10 — y12) + 2G22(S2 + Sa + y1 — y3 — y10 + y12)
+G11(—S2 — S4 — diys + 4iy7 — Sy10 + 5y12) = 0,
10

1 2
—giD3(52 —Ss+y1+ys—2i(ys +y7)) + Gss(S2 — S — 5y1 — Sys +4i(ys +y7)) + gDQ(Sl —S3+y2+ya+yo +yi1)

+G31(S1 — S3 — 4dya — 4ys — 2iys — 2iys + yo + y11) — 2iG32(S1 — S3 — Y2 — ya — 20ys — 2iys + Yo + y11)

1. . . . .
+§ZD1(S1 — S3 + 2iys + 2iys + yo + y11) + G13(—S1 + S3 — y2 — ya + 2iys + 2iys + 4(yo + y11))

—iG23(S1 — S3 — y2 — ya + 2(iys + iys + yo + y11)) — 2G22(S2 — Sa + y1 + Y3 — Y10 — Y12)
—iG21(S2 — Sa + 2y1 + 2y3 — 2iys — 2iy7 + Y10 + Y12)
—2iG12(S2 — Sa + y1 + y3 + 2iys + 2iyr + yio + y12) + G11(S2 — Sa + 4iys + 4iy7 + 5(y10 + y12)) =0,
11’

. . 1. .
—2iDo(L2 + Ls) 4+ 6G30(3L2 + Ls) + 6G10(L1 — 3Le) + 6iG20(L1 — Le) + 51D3(S1 + 53+ 12 — ya + 2i(ys — ys))
—|—G33(Sl + S5 — 5y2 + dya — 4iys + 4iy8) — 2G22(Sl + S3 + Y2 — Ya + Yo — yll)

+iG21(S1 + S3 + 2y2 — 2ya + 2iys — 2iys — Yo + y11) + 26G12(S1 + S5 + y2 — ya — 2iys + 2iys — yo + y11)
+G11(S1 + S3 — diys + 4iys — Sy + 5y11) + G13(S2 + Sa + y1 — y3 + 2iys — 2iy7 + 4y10 — 4y12)

. . 2
+G31(—S2 — Sa + 4y1 — dys — 2iys + 2iyr + yi0 — y12) — §D2(52 + Sa+y1 —ys — yio + y12)

. . . 1. . .
—2iG32(S2 + Sa — y1 + y3 + 2iys — 2iy7r — y1o + y12) + 51D1(52 + S4 — 2iys + 2iyr — y10 + y12)—

—iGa3(S2 + Sa — y1 + ys — 2iys + 2iyr — 2y10 + 2y12) = 0,
12 1
_giDS(Sl — Sz +y2 +ya+ 2i(ys + ys)) + G33(—=S1 + S3 + 5y2 + 5y + 4i(ys + ys))
—2iG12(S1 — S35 + Y2 + ya — 2iys — 2iys — Yo — Y11)
—iG21(S1 — S3 + 2y2 + 2yas + 2iys + 2iys — yo — y11) + 2G22(S1 — Sz + Y2 + ya + yo + y11)
+G11(—=S1 + S3 + 4diys + 4iys + 5(yo + y11)) + G13(—S2 + Sa — y1 — y3s — 2i(ys + y7) — 4y10 — 4y12)

. . 2
+iGa3(S2 — Sa —y1 —ys — 2i(ys + y7) — 2y10 — 2y12) + §D2(52 -S4+ Y1+ ys — Y0 — Y12)

1. . . . .
—§ZD1(SQ — 84 — 2iys — 2iyr — Y10 — y12) + G31(S2 — Sa — 4y1 — 4ys + 2iys + 2iyr — Y10 — Y12)
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+2iG32(S2 — Sa — y1 — y3 + 2iys + 2iyr — yi10 — Y12) = 0,
13’

—6iG30Ls + 2DoLs + 6iG10(2L1 — 3Le) — 6G20(2L1 + Le) + 2iG33(S1 + S3 + y2 — ya — iys + iys)

2 . .
7§D3(Sl + S5+ y2 — ya — iys + iys)

—1G22(S1 + S3 — By2 + 5ya + 4yo — 4y11) — 1G11(S1 + S3 + Siys — biys + dyo — dy11)
+G21(S1 + S3 — 4y2 + dya — iys + tys + 2yo — 2y11) + G12(—S1 — Ss — y2 + ya4 — diys + 4iys — 2yo + 2y11)

1. 1 . .
*32D2(52 + Sa+y1 — ys + 2y10 — 2y12) + §D1 (S2 4 Sa + iys — iyr + 2y10 — 2y12)

+iG31(S2 + Sa + 2y1 — 2ys — 1ys + 1y7 + 2y10 — 2y12) + Gs2(S2 + Sa — y1 + y3 + 2iys — 2iy7 + 2y10 — 2y12)
+2G23(S2 + Sa — y1 + ys3 + iys — iy7r — 2y10 + 2y12) + 2iG13(S2 + Sa + y1 — Y3 — iys + iyr — 2y10 + 2y12) = 0,
14’

. 2 . )
G33(—2i(S1—Ss+y2+ya) —2ys —2ys) + §D3(51 —S3+y2+ys—i(ys+ys)) +iG22(S1 — S3—5y2 — Sya +4(yo +y11))

+iG11(S1 — S3 + 5iys + 5iys + 4(yo + y11)) + G12(S1 — Sz + y2 + ya + 2(2iys + 2iys + yo + y11))
. . 1 )
+G21(—S1 + S3 + 4y2 + 4ya +i(ys + ys + 2z(y9 + yn))) + ng(—Sz + S4 —i(ys + y7) — 2y10 — 2912)
—2iG13(S2 — Sa +y1 +ys — i(ys + y7) — 2y10 — 2y12) + Gs2(—S2 + Sa + y1 + y3 — 2i(ys + y7) — 2y10 — 2y12)

1. . .
+§1D2(52 — Sa+y1+ys +2(yi0 + y12)) + 2Ga3(—S2 + Sa + y1 + y3 — i(ys + y7 + 2i(y10 + y12)))

—iG31(S2 — Sa + 2y1 + 2ys — i(ys + yr + 2i(y10 + y12))) = 0,
15’

6Gi20(Ls — 2La) — 6iG10(2L2 + 3Ls) + 6iGsoLe + 2DoLs — 2iGas(S2 + Su + y1 — ys +i(ys — yr))
2 .
—§D3(52 + Ss+y1 —ys+i(ys — y7))

1 . . . . .
+§D1(751 — 83+ iys — tys + 2yo — 2y11) + 2iG13(S1 + Sz + y2 — ya + iys — iys + 2yo — 2y11)

—2G23(S1 4+ S3 — y2 + ya — 1ys + iys + 2y9 — 2y11) + G32(—S1 — S3 + Y2 — ya + 2iys — 2iys + 2y — 2y11)
1. . . .

—§ZD2(S1 + S3+ Y2 — ya — 2y + 2y11) + iG31(S1 + S3 + 2y2 — 2ys + iys — iys — 2yo + 2y11)
+G12(—S2 — S4 — y1 + ys + 4iys — diyr + 2y10 — 2y12) + G21(S2 + Sa — 4dy1 + 4ys + iys — iy7 — 2y10 + 2y12)
+iG22(S2 + Sa — 5y1 + Bys — 4y10 + 4y12) + iG11(S2 + Sa — 5iys + diyr — 4y10 + 4y12) = 0,

16’

. . 2 . 1 .
2iG33(S2 —Sa+y1+ys+i(ys +yr)) + §D3(S2 —Sa+yi+tys+ilys+yr))+ ng (S1— 853 —1i(ys +ys) —2yo — 2y11)

+G32(S1 — S5 — y2 — ya — 2i(ys + ys) — 2y9 — 2y11)

1. . . .
+§ZD2(S1 —S3+y2+ys —2(yo + y11)) — 2¢G13(S1 — S3 + y2 + ya + iys + iys + 2(yo + y11))

+2G23(S1 — S5 — y2 — ya — i(ys + ys + 2i(yo + y11))) — 1G31(S1 — S3 + 2y2 + 2y4 + i(ys + ys + 2i(yo + y11)))
—iG22(S2 — Sa — 5y1 — 5ys — 4(y10 + y12)) + G12(S2 — Sa + y1 + y3 — 4iys — 4iy7r — 2(y10 + Y12))
+G11(—1S2 + 1S4 — bys — Byr + 4i(y10 + y12)) + Ga1(—S2 + Sa + 4y1 + 4ys — i(ys + y7 + 2i(y10 + y12))) = 0.

Now we should substitute expressions for small variables of order z in equations of order z2; to follow
the correct locations of multipliers, we re-designate all G (which t should be located at the left) by
symbols J_; and all D_, (which should be located at the left) by symbols Q).

In this way, we derive the following equations (we preserve only equations, containing Dy; and introduce
the new numeration):

5=1)

2QoL1 — 6iJioLz — 620 (La — 2Ls ) — 6iJzo (3L1 — 2L
172 . . . . . .
7 [ng ((3G13 +3iG23 — 9G31 — 9iG32 — iD1 + D2) L1 — 3(G11 + iG12 — iG21 + G22 + 3G33) L2 +iD3 L2
+6(—iG21 + Ga2 — G33)Ls + 6(iGas + Gs1 + iG32)L6)

+2¢J11 ((3(011 —iG12 + i1G21 + Ga2 + 3G3s3) +iD3) L1 + (3G13 — 3iGas — 9G31 + 9iGs2 + iD1 + D2) L2
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+6i(G23 + iGs1 + Gs2)Ls + 6(iG21 + Gaz2 — G33)L6)+
+%Q2 (4(—3iGl3 +3G23 +9iG31 — 9G32 — D1 — iD2) L1 + 2(3i(G11 + iG12 — iGa1 + Gaz2 + 3G33) + D3) L2
+(=9iGi1 +9G12 — 21Ga1 — 21iGas + 151G — Ds)Ls + (9iG1s + 15Gag — 21iGa1 +21Gaa + Dy +iD3) Lo )
+J13 ((9(—1G13 + G23 + 5iG31 — 5G32) — 5D1 — 5iD2) L1 + (—3iG11 — 9G12 — 3G21 + 9i(Ga2 + G33) + D3) Lo
H(=27iG11 + 9G12 — 21Gay — 27iGay + 9iGas — Ds)Ls + (3(3iGrs + 3Gas — TiGs1 + 9Gss + D1) + iDz)LG)
—2iJ31 ((3G13 + 3iGa3 — 9G31 — 9iG32 — iD1 + D2) L1 + 3(3(G11 + iG12 — iG21 + Gaz + 3G33) —iD3)La

+2(9G11 + 9iG12 + 6G33 — iD3)Ls — 2(9G13 + 6iGag — iD1 + Dz)Le) + J32 ( — 4(3G13 + 3iG23 — 9G31
—9iG32—1D1+D2) L1—6(3(G11+1G12—iG21+G224+3G33) —iD3) Ly — (9(5G11+51G12—1G21+G22)+21G33—5iD3) Ls
+(45G13 4 21iGa3 — 9G31 — 9iG3g — 51Dy + 5D2)L6) + Jas ((9(3G13 +3iGaz + G31 + iG32) +4iD1 — D2)La
F(—27G1 + 33iGha + 27iGay + 33Gaz + 9G33 — iDs)La — (45G11 — 45iG1a + 9iGay + 21Gas + 9Gss + 5iDs) Ls
—(45G13 — 9iGlas — 9Gi31 + 21iCiaz + 5iDy + 5D2)L6> 120 ((9G11 4 15iGra + 9iGa1 — 15Ga2 — 9Gis3 — iD3) Ly

+(9G13 — 9i(Gas +iGs1 + Gaz) —iD1 — Do) Lo +2(9G13 — 6iGaz — iD1 + D3) Ls — 2(9G11 + 9iG12 + 6Gaz — z'Dg)LG)
+%Q3( — 3(5G11 — iG12 + 5iGa1 + Gaz + 9Gas + iDs) L1 — 3(5G13 — 5iGas — 9Gs1 + 9iGas + iDy + Da) Lo
—(9G13 + 21iGas — 21Ga1 + 15iGa2 — iDy + Da)Ls + (9G11 + 9iG1a — 21iGay — 15Ga + 21Gs — iDg)LG)
+J12 (4(6G11 + 6iGa1 + 9Gs3 + iD3) Ly + 2(9G1s — 9iGas — 9Gs1 + 9iGsz + Dy + D)Ly
+(9G13 + 27iGas — 21G31 + 9iGas — 3iD1 + Do) Ls + (—27G11 — 9iG1a + 21iGay + 9Gas — 27Gas + iDg)L6)
+Jss (3(7iG11 +11G12 — TGa1 + 11iGay + 27iGaz — 3D3) Ly + 3(—5iG1s — 5Ga3 + 9iGa1 + 9Gs2 + Dy — iDs) Lo
+(—63iG13 — 33Gas + 3iGs1 — 3Gsz + 5Dy — TiDa) Ly + (—45iG11 — 63G12 + 3Ga1 + 3i(Gaz — 11Gs3) + 7D3)L6)
+Ja2 (4(6(—iG11 4 2G12 + Ga1 + 2iGaz) + 9iGas — D3)Ly + 2(—15iGhs — 15Ga3 — 9iGa1 — 9Gs2 — Dy +iD2) Ly

4 (—63iG13 — 3Cla3 + 3iGa1 — 33Gs2 — 5Dy — TiDa) Ls + (45iG11 — 63G 12 + 3G21 + 33iGlaz — 3iGlas + 7D3)L6)] —0,

7T=2)
~6iJ10Ln + 2QoL + 6iJso (3La + 2Ls ) + 620 (L1 +2Lo)
+% [2J11 ((—3iG13 + 3Ga3 + 9iG31 — 9G32 — D1 — iD2) L1 + (3i(G11 + iG12 — iG21 + Gaz2 + 3G33)
+D3)La — 6(Ga1 + i(Gaz — Gss))Ls + 6(Gas — iGa1 + G32)L6> - %Ql ((3(G11 — iG1a + iGa1 + Gz + 3Gi3)
iD3)Ly + (3G1s — 3iGas — 9Gs1 + 9iGlaz + iD1 + D2)La + 6i(Gas + iGs1 + Gaz)Ls + 6(iGay + Gaz — Ggg)LG)
+Jss (3(5iG13 — 5Gas — 9iGs1 + 9Gss + Dy + iD2)Ly + 3(7iCG11 — 11G12 + TGan + 11iGaz + 27iGs3 + 3Ds) Lo
F(45iG11 — 63Gh12 + 3Ga1 — 3iGan + 33iGas + TD3)Ls + (—63iG1s + 33Gas + 3iGa1 + 3Gs2 — 5Dy — 7iD2)L6)
s (22‘(156‘13 +15iGlas + 9Gs1 + 9iGaz + Dy — Da)Ly + 4(—6iG11 — 6(2G1a + Ga1 — 2iGlaz) + 9iGss + Ds) Lo
- (—45iG11 — 63G12 + 3Ga1 — 33iGan + 3iGas + TD3)Ls + (—63iG1s + 323 + 3iGa1 + 33Ga2 + 5Dy — 7z‘D2)L6)
—2J01 ( - ((9((;13 4 iGlas + Ga1 +iGsa) +iDy — Dg)Ll) 4 (9G11 — 15iCz — 9iGay — 15Ga2 — 9G3 + iDs) La

+2(9G11 — 9iG12 + 6G22 + iD3) Ls + 2(9G13 + 6iGs2 + iD1 + Dz)LG) + %Qs( —3(5G13
+5iGas — 9G31 — 9iGs2 — iD1 + D2)L1 + 3(5G11 + iG12 — 5iGa21 + G22 + 9G33 — iD3)La + (9G11 — 9iG12
+21iGa1 — 15Ga2 + 21Gas + iDs) Ls + (9G13 — 21iGas — 21Gs1 — 15iGaz + Dy + DQ)L6) + Jia (2(9013
+9iGas — 9G31 — 9iGaz — iD1 + D2) Ly + 4(—6G11 + 6iGar — 9Gas +iDs)La — (27G11 — 9iG1a + 21iGar — 9Gan
127Gss + iD3)Ls — (9G13 — 27iGas — 21G31 — 9iGsa + 3iDy + Dg)Lg) + Jas ((—zmn — 33iG1y — 27iGon
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+33Ga2 +9Gs3 4 iD3) L1 4 (—27G13 + 27iGag — 9Ga1 + 9iGaz +iD1 + D2) Lo 4 (—45G 13 — 9iGas 4+ 9G31 + 21iGao
15iDy — 5D2)Ls + (45G11 + 45iG1s — 9iGay + 21Gas + 9Gias — 5iD3)L6) + J32< — 6(3(G11 — iG1a + iGan
+Gas+3G33) +iD3) L1 +4(3G13 — 3iGaz — 9G31 + 9iGlaa +iD1 + Do) Lo + (45G 13 — 21iGlas — 9Ga1 + 9iGsa + 5iD:
+5D2)Ls + (9(5G 11 — 5iG12 + iG21 + G22) + 21G33 + 5iD3)L6) + J31 (6(3i(G11 —iG12 +iGa1 + G22
+3G33) — D3)L1 + 2(—3iG13 — 3G23 + 9iG31 + 9G32 + D1 — iD2) Ly + 4(—9iG13 — 6G23 + D1 — iD2)Ls
+4(=9iG11 — 9G12 — 6iGas + Da)Ls ) + Jis ((3iG11 — 3(3G12 + G + 3i(Gaz + Giaa)) + Da) Ly + (~9iG1s — 9Gizg
+45iG31 + 45G32 + 5D1 — 5iDa) Ly + (3(—3iGh3 + 3Gas + 7iGa1 + 9Gs2 + D1) — iD2)Ls + (—27iG11 — 9G12
+21G21 = 2TiG22 + 9iGss + DS)L6) + %Q2 (2(D3 —3i(G11 — iG12 + iG21 + G2 + 3G33)) Ly
+4(=3iG13—3G234+9iG31+9G32+ D1 —iD2) Lo+ (—9iG13+15G23+21iG31 +21G32+ D1 —iD2) Ls 4+ (—9iG11 —9G12
+21Ga1 — 21iGas + 15iGlas + Dg)L6>] —0,

9=13)
6iJa0 (Lz + L5) — 6J10 (L2 + 3L5) + Jso (18L1 - 6L6) +2iQ0 (L1 - Ls)
+% [Ql (%(31'6‘13 — 3Ga3 — 9iGs1 + 9Gs2 + D1 +iD2) Ly + %(32’(6‘11 +iG12 — iGa1 + Gaa
+3G3s3) + D3) Lz + (9iG11 — 9G12 + 5G21 +i(5G22 + G33) + D3) Ls + (—9iG13 + G23 + 5iG31 — 5G32 — D1 — z‘DQ)LG)
+.Jo3 ((9(—iG13 + Glas + 5iGs1 — 5Gla2) — 5Dy — 5iDa) Ly + (—9iG11 — 3G12 — 9Ga1 + 3iGas — 9iGas — D3) Loy
+2(—18iG11 + 9G12 — 9Ga1 — 12iGas — D3)Ls + 2(9iGrs — 9iGa1 + 12Gaa + 2Dy + iDg)L6)
+§Q2 ((3G13 + 3iG23 — 9G31 — 9iG32 — iD1 + D2) L1 + (3(G11 + iG12 — iG21 + Ga2 + 3G33) — iD3) Lo
£(3(3G1 + 3iGra — iGa1 + Gz + Ga3) — iD3)Ls — (9Gh3 + 3iGas — 3Cis1 — 3iGas — iDy + Dg)Lg)
1 (4(3G1s + 8iGag — 9Ga1 = 9iGz — iDy + D2)Ly — 6(3(G1y + iGha — iGax + Gaz + 3Gas) = iDs) Ly — (9
+9i(Gha 4 3Ga1 + 3iGa2) + 33Gss — iDs) L + (9G13 + 33iGas + 27Ga1 + 27iGaz — iDy + DQ)LS)
+J1s ( - ((9(3G13 + 3iGas + Ga1 + iGaz) + Dy — DQ)LI) 4 (33G1 — 27iGha — 33iGa1 — 27Gan + 9Gss — iDs) Lo
+2(27G11 — 18iG12 + 6iGa1 + 9(Gaa + Gs3) + 2iD3) Ls + 2(18G13 — 9iGas — 6G31 + 9iGs2 + 3iD1 + 2D2)L6)
+2.J52 ((=3iG13 + 3Gas + 9iGias — 9Gaz — Dy — iD2)La +3(3i(Gu1 +iGra — iGa1 + Gz + 3Gis) + Da) L
+(9iG11 — 9(G12 + Ga1 + iG22) 4 15iGa3 + D3)Ls — (D1 +4(9G13 4 15iG23 4 9G31 + 9iGa2 + Dz))Lﬁ)
+J21 ( — 4(6Gha + 6iGaz + 9iGas — D3) Ly + 2i(9G13 — 9iGas — 9G31 4 9iGas + iD1 + Do) Lo + (45iGhs
+9Ga3 — 9iGs1 + 3Gsa — Dy + 5iD2) L + (9iG11 + 45G12 — 9Ga1 — 3iGlaz + 9iGss — 5D3)L6)
+2J12 (i(15G11 + 9iG12 + 15iG21 — 9G22 + 9G33 + iD3) L1 + (9(iG13 + Gas + iG31 + G32) + D1 —iD2) Lo
+(9iG13 — 9G23 — 3iG31 + 9G32 + 3Dy + iD2)Ls + (—27iG11 + 9G12 — 3G21 — 9i(Gaz2 + Gs3) — Ds)Le)
+J11 ( — 4(12G11 + 6iG1a + 12iGa1 — 6Gas + 9Ga3 + iD3) Ly + 2(—15G13 + 15iGas — 9Ga1 + 9iGas + iDy
+D3) Ly — 3(9G13 + 11iGas — 5Gs1 — TiGaz — 3iDy + Da)Ls + 3(27G11 + 9iGha — 5iGay + TGag + 11Gss — iD3)L6)
+222 (= ((3(G11 = iG1z + iGar + Gz + 3Gis) +iDs) L1 ) + (3G — 3iGas — 9Gia1 + 9iGia + D1 + Da) Lo
+(9G13 — 3iG23 — 3G31 + 3iG32 + iD1 + D2)Ls + (3(3G11 — 3iG12 + iG21 + Gaz + G3) + z‘Da)LG)
+J33( — 3(11G11 — TiG1a + 11iGay + TGas + 27Gss + 3iDs) L1 — 3(5Gh3 — 5iGas — 9Gs1 + 9iGsz + iDy + D) Lo
+2(9G1s — 24iGas + 15Ga1 — 12iGaa + 2iD1 + Da)Ls + 2(3(6G11 — 3iGha — 5iGa1 — 4Gy + 8Glas) + iDg)LG)
+Qs3 ((—iGu —5G12 + G21 — 5iGa2 — 9iG33 + D3) L1 + (5iG13 + 5G23 — 9iG31 — 9G32 — D1 + iD32) Lo

2
+§z’((18G13 — 3iGas — 6G31 + 3iGsa + D1 + 2D3) Ls + (3(3G11 — 6iG1a + 2iGay + Gaa + Gas) + 2iD3)L6) )] —0,
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11 = 4)
~2iQo (La + Ls ) + 6Js0(3L2 + Ls ) + 6710 (L1 — 3Ls) + 6iJao (L1 — Le )
1
+H [2J12 ((9(—iG13 + Ga23 —iG31 + G32) + D1 + iD2) L1 + (15iG11 + 9G12 + 15G21 — 9iGa2 + 9iG33 + D3) Lo

+(27iG11 + 9G12 — 3G21 + 9i(G22 + Gs3) — D3)Ls + (9iG13 + 9G23 — 3iGs1 — 9G32 — 3D1 + iDQ)La)
+J21 (2(—9iG13 +9G23 + 9iG31 — 9G32 — D1 — iD2) L1 4+ 4(6G12 — 3i(2G22 + 3G33) — D3)La + (—9iG11
+45G2 — 9Ga + 3i(Gaz — 3Gss) — 5Ds) Ls + (45iG1s — 3(3Gas + 3iGay + Gaz) + D + 5iDs) Lo )
+2J22 (3G 13 + 3iGas — 9Gs1 — 9iGsz — iDy + D2)Lu + (3(G11 +iG1z — iGa1 + Gaz + 3Gss) — iDs) Lo
1 (3(3G11 + 3iGra — iGa1 + Gas + G3) — iD3)Ls — (9G35 + 3iGas — 3Gs1 — 3iGaz — iD1 + DQ)LG)
+Js3( = 3(5Ghs + 5iGas — 9Ga1 — 9iGz — i1 + D) Ly +3(11G1 + TiG1z — 11iGa1 + TGaz + 27Gag — 3iDs) L
£2(3(6G11 + 3iGhra + 5iGa1 — 4Gay + 8G3) — iDs)Ls — 2(9G1s + 24iGas + 15Gs + 12iGas — 20Dy + DQ)L6)
I ( — 2(15G13 + 15iGas + 9Ga1 + 9iGsa + iD1 — Da) Ly + 4(12G11 — 6iG1z — 12iGa — 6Gaz + 9Ga3 — iDs) Lo
+3(27G11 — 9iG1z + 5iGa1 + TGaz + 11Gss +iDs) Ls + 3(9Ghs — 11iGas — 5Giat + TiGaz + 3iD1 + Ds) Lo )
+2J32 (3(D3 —3i(G11 — iG12 + i1G21 + Ga2 + 3G3s3)) L1 + (—3iG13 — 3Ga3 + 9iG31 + 9G32 + D1 —iD2) Lo
+(9iG13 + 15G23 + 9iG31 + 9G32 — D1 +iD2)Ls + (9(:G11 + G2 + G21 — iGa2) + 15iGs3 — D3)L6)
+Q1 (%(Ds —3i(G11 — iG12 + iG21 + G22 + 3G33)) L1 + %i(3G13 — 3iGa23 — 9G31 + 9iG32 + 1Dy
+D2)Ls + (9iG13 + G23 — 5iG31 — 5G32 — D1 +iD2) Ls + (9iG11 + 9G12 — 5G21 + i(5G22 + Gs3) — D3)L6)
+J31 ( — 6(3(G11 — iG12 + iG21 + G2z + 3G33) +iD3) L1 — 4(3G13 — 3iG23 — 9G31 + 9iG32 + iD1 + D2) Lo
+(9G13 — 33iGas + 27G31 — 2TiGsa + iD1 + D)Ly + (9(G11 — i(G1z + 3Ga1) — 3Gaz) + 33Gas + iDg)L6>
+%Q2 (2(3(G11 —1G12 +1G21 + Gaz + 3G33) +iD3) L1 — 2(3G13 — 3iGa3 — 9G31 + 9iGs2 + i Dy
+D2)La — 2(9G13 — 3iG23 — 3Gs1 + 3iG32 + D1 + D2)Ls — 2(3(3G11 — 3iG12 + iG21 + Ga2 + G33) + iDs)Le‘)
+J13 ((33G11 +27iG12 + 33iG21 — 27Ga2 + 9G33 + iD3) L1 4 (9(3G13 — 3iGaz + Gs1 — iG32) — D1 — Do) La+
+2(18G13 + 9iGas — 6Ga1 — 9iGaa — 3iDy + 2D2) Ls — 2(27G1 + 18iGz — 6iGa1 + 9(Gaz + Gag) — 2iDs) Lo )
+J2 (#(9G1 + 3iGhz + 9iGa1 — 3Gz + 9Gias +iDs) Ly + (—9iGhs — 9Gs + 451G + 45Giaa
+5D1 — 5iD2) La — 2i(9G13 — 9Gs1 + 12iGsz + 20Dy + D2)Ls + 2(~18iG11 — 9Giz + 9Ga1 — 12iGaa + Ds) L
+Qs ((=5iG1a + 5Gas +9iGa1 — 9Gsz — D1 — iD2) Ly + (=i(Ga + 5iG1z — iGar + 5Gas + 9Gss) — Da) Lo

2 . . . . . .
+3 ((—31(3G11 +6iG12 — 2iGa1 + G2z + G33) —2D3) Ls + (18iG13 — 3G23 — 6iG31 + 3Gs2 + D1 + 22D2)L6>)] =0,

13 = 5)
—6iJ30Ls + 2QoLs + 6iJ1o (2L1 - 3L6) — 60 (2L1 + LG)
1
—‘y—M [Jlg ((9G13 + 9i(G23 + 5iGl31 — 5G32) — 51D + 5D2)L1 + (21G11 + 9:G12 — 21iG21 + 9G 2o

+45Gis3 — 5iD3) Ly + 2(27G11 + 18iG1a — 6iGar + 9(Gaz + Gss) — 2iD3)Ls + 2(—18G13 — 9iGas + 6Ga1 + 9iGas

+3iD1 — 2D3)Ls ) + 11 ((3iGrs — 3Gas — 63iGay + 63Giz + TD1 + TiD2) Ly + (33iG11 + 3Gz + 33Ga1 — 3iGao

+45iG33 + 5D3) Lo + 3(27iG11 — 9G12 + 5G21 + 11iGas + TiGss + D3)Ls + 3(—9iG1s + 7TG23 + 5iGs1 — 11G32
—3D; — iDz)Lﬁ) + 2J33 (6(G23 —iG13) L1 + 6(iG11 + Gi2 + G21 — iG22) Lo + (3i(3G11 — 3iG12 + iG21

. . . 2 .
+Go2 + G33) — D3)Ls + (9iG13 + 3Ga3 — 3iG31 — 3G3a — D1 + ZD2)L6) + §Q3 (6(G13 +iGa3) L1

+6(—G11 + (G2 + Ga21) + Ga2)La — (3(3G11 — 3iG12 + iG21 + Ga2 + G33) + iD3)Ls — (9G13 — 3iGas — 3G
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+3iG32 +iDy + DQ)LG) + Jn ((—9G13 — 9iGlas + 45Gis1 + 45iGss + 5iDy — 5Da)Ly + (9G11
+21iGh2 — 9iGa1 + 21Gaz + 45Gs3 — 5iD3) Lo + (—9G11 + 9iGhz + 27iGa1 — 33Glaz + 27Gas — iDs) Ls — (9(Ghs
+3iGlas + 3Ga1) + 33iGaz + iDy + DQ)LG) 4 o ((3iG13 — 3G — 63iG31 + 63Gs2 + 7Dy + TiD2)La
£ (3iG11 + 33G12 + 3Ga1 — 33iGlas — 45iGas — 5Ds) Lo + 2(3(6iG11 + 3G12 + 5Ga1 + 8iGay — 4iGlss) — Ds)Ls
12i(9G15 + 12iGas + 15Ga1 + 24iGs + 2iD; + DQ)LG) + Ja (3(3iG11 — 3(3G12 + Ga1 + 3i(Gaz + Ga3))
£ D3)L1 + (21iG1s + 21Gas — 9iGs1 — 9Gs2 — Dy +iD2)La + (45iGrs + 3Gas — 9iGs1 + 9Gs2 + Dy + 5iD2)Ls
(—9iG11 + 45G 12 — 9Ga1 — 9iGas + 3iClas — 5D3)L6) 4 Jas (4(761'6'12 +6Gls + 9Gas +iDs) L

+4(=9G31 + 9iG32 + iD1 + D2) Lo — 2(9(G13 — iGas + G31) — 15iGs2 — iD1 + D2)Ls 4+ 2(9G11 + 9iG12 + 9iGas

1
+15G22 — 9G33 — iD3)L6) + Q1 ((7G11 + 5iG12 + 7iG21 — 5Ga2 + 3G33 + giDE})Ll
1 . . . . .
+§(21G13 —21iG23 — 9G31 + 9iGs2 + D1 + D2) L2 + (9G13 + 5iGas — 5G31 — iGs2 — iD1 + D2)Ls — (9G11

+9iG12 — 5iG21 + Ga2 + 5Ga3 — iDs)LG) + J32 (3(9011 + 3iG12 + 91G21 — 3G22 + 9G35 + iD3) Ly
+(21G13 — 21iGa3 — 9G31 + 9iGse +iD1 + D2)L2 + 2(9G13 + 12¢G23 — 9G31 — 2¢ Dy + DQ)L5 — 2(18G11

1
+9i(G12 — G21) + 12G33 — iDs)Le) + ng ((3(—5iG11 + 7G12 + 5Ga1 + TiGa2 + 3iG33) — D3) Ly
+(721Z’G13 — 21Gas + 9iG31 + 9G32 + D1 — iDQ)Lz + 2(718Z'G13 + 3Ga3 + 6iG31 — 3G32 — D1 — 2iD2)L5
+2(3i(3G11 + 6iG12 — 2iG21 + Gaz + G33) + 2D3)L6) + Jis (4(—6iG11 + 6G21 — 9iG33 + D3) L4

+23 (2(79G31 + 9iG32 + iD1 + D2)La + (9G13 — 9iGa3 — 3G31 + 9iGs2 + 3iD1 + D2)Ls

+(27G11 — 9iGhra + 3iGar + 9(Gos + Gaz) + iDg)LG))] —0,
15 = 6)

6.J20 (L5 — 2L2) — 61J10 (2L2 + 3L5) + 6iJ30Lg + 2Q0L6

171
+M [§Q2 ((21iG13 —21Ga23 — 9iG31 + 9G32 + D1 +iD2) L
+(3(=5iG11 — TG12 — 5G21 + TiGa2 + 3iG33) + D3) Lo + 2(2D3 — 3i(3G11 — 6iG12 + 2iG21 + Ga22 + G33))Ls
. . . 1 . . .
+2(—18iG13 — 3Ga3 + 6iG31 + 3G32 + D1 — 21D2)L6) + Q1 (§(21G13 + 21iG23 — 9G31 — 9iG32 — 1Dy
1
+D>)L:1 + ( — 7G11 + 5iG12 + TiG21 + 5Gaz — 3Gz + giDs)Lz — (9G11 — 9iG12 + 5iG21 + Ga22 + 5G33

+4iD3)Ls — (9G13 — 5iGas — 5Ga1 + iGas + Dy + DQ)Lﬁ) T 2J23( — 2(9G31 + 9iGa2 + iD1 — D)Ly
12(—6iCGla — 6Gas — 9Gss + iD3)La + (9G11 — 9iG1s — 9iGay + 15Gas — 9Gis3 +iDs) L + (9(Cis + iGas + Gar)
+15iGaz +iDy + DQ)LG) + ng((zm13 4 21iGas — 9Gia1 — 9iGss — iDy + Do) Ly + 3(—9G11 + 3iG1a
+9iGa1 + 3Ga — 9Gs3 + iD3)La — 2(18G11 — 9iG1a + 9iGa1 + 12Gss +iDs)Ls — 2(9G1s — 12iGas — 9Gs1
12iD; + DQ)LG) - zulg( — 2(9Gs1 + 9iCGiaz +iDy — Da)Ly + 2(6G11 — 6iGay + 9Gs3 — iD3)La + (27G1

+9iGhs — 3iGla1 + 9(Gaz + Gas) — iD3)Ls — (9G13 + 9iGas — 3Gy — 9iGlas — 3iD1 + DQ)LG)
+J31 ((—21iG13 + 21G23 + 9iG31 — 9G32 — D1 — iD2) L1 + 3(3iG11 + 9G12 4+ 3G21 — 9i(Ga2 + Gs3) — D3) Lo
+(9iG11 + 45G12 — 9Ga1 + 9iGaz — 3iGas — 5Ds) Ls +i(45G3 + 3iGag — 9Ga1 + 9iGsz + D1 + 5Dz2) o)
T ((—331‘6*11 4 3Gz + 33Ga1 + 3i(Gaz — 15G33) + 5D3) L1 + (3iGhs + 3Gas — 63iGa1 — 63Gaz — TD1 + TiDa) Lo
13i(9G5 — TiCGlas — 5Gs1 + 11iGiaz + 3iDy + D2)Ls + 3(27iCG11 + 9G12 — 5Ga1 + 11iGan + TiGss — D3)L6)
21 ((9G11 — 21iGha + 9iGa1 + 21Gs + 45Giag + 5iDs) Ly + (9(Gis — iGas — 5Gia1 + 5iGiz) + 5Dy
+5D2)La — (9(G1s — 3iGas + 3Gs1) — 33iGsa — iD1 + Do) L + (9G11 +9iG1a + 27iGay + 33Gas — 27Gla3 — iDg)LG)
+§Q3 ( —6(G11 + i(G12 + G21 + iG22)) L1 — 6(G13 — iG23) L2 — (9G13 + 3iGa3 — 3G31 — 3iG32 — D1 + D2) Ls

+(3(3G11 + 3iG12 — iG21 + G22 + G33) — iDs)L(s) + Ji2 ((21G11 — 9iG12 + 21iG21 4+ 9G22 + 45G 33
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45iD3) L1 — (9(G1s — iGos — 5G1 + 5iGaz) + 5iD1 + 5Da) Ly — 2(18G13 — 9iGas — 6G1 + 9iGaz + 3iDy
+2D2)Ls — 2(27G11 — 18iG12 + 6iG21 + 9(Ga2 + Gs3) + 2iD3)L6) + Ja2 ((—3iG11 + 33G12 + 3G21
33iGan + 45iGs3 — 5D3) L1 + (3iG1s + 3Gas — 63iGs1 — 63Gs2 — TD1 + TiDa) L — 2i(9Ghs — 12iGlas
115Gs1 — 24iGss — 2iDy + D2)Ls + 2(3i(6G11 + 3iGra + 5iGa1 + 8Gan — 4Gs3) + D3)L6)+

+2J33 (6(*Z'G11 + Gi2 + G21 +iG22) L1 + (—6iG13 — 6G23) L2 + (—9iG13 + 3G2s + 3iG31 — 3Gs2 — D1 — iD2)Ls

+(3i(3G11 + 3iG12 — iG21 + Ga2 + Gs3) + Ds)La)] =0,

Let us combine equations as follows

I=1)+4), II=1)—i-5), III=4)+i-5),

IV=2)-3), V=2)4i-6), VI=3)+i-6)

We readily verify that [I] = I —II and VI =V — IV, so exist only four independent equations; we
apply new numeration and introduce new variables

1 1 1 1
L1 — g(\Iﬁ—‘r‘\I/g,),LQ—)g(\I/2+\I/4),L5—>g(\I/4—2\I/2),L6—> 5(2\1’1—\113);

this results in

1)
DyDy  DiDy

3 3
4+3G13D1—3iG23D1+G31 D1 —5iG32D1—1G13D2—Ga3 D2+-5iG31 Do+G32 Do —G11 D3+iG12D3+3iG21 D3+-3G22 D3+3G33 D3

+3D3G11+5iD3G12—3D1G13—5iD2G13—9i1D3G21— D3G22+9i1D1Ga3+D2Ga3+3D1G31+iD2G31—iD1G32+3D2G32+3D3G33
4+45iG11G11 — 39G12G11 — 9G21G11 + 45iG22G11 — 15iG33G11 4+ 21G11Gi2 + 15iG12G12 — 15iG21Gh2
—27G22G12 — 39G33G12 + 15iG13G13 — 9G23G 13 + 45iG31G1s + 21G32G 13 — 9G11G21 + 21iG12G21 + 27iG21Go1
—9G22G21 + 3G33G21 + 33iG11G22 — 3G12Ga2 + 3G21Ga2 + 81iG22Gas + 21iG33G22 — 3G13G2s + 2TiG23Gas
—9G31G23+331G32G23+91G13G31 +9G23G31+31G31G31+15G32G31 +3G13G32 — 3iG23 G52 — 15G31 G321+ 31G32 G2
—3iG11G33 — 3G12G33 — 9G21G33 + 9iG22G33 + 9iG33G33)‘I/1

( +2DoM + 6iG3oM — iD1 D1 — iD2 Dy — iD3Ds +

DsDs D3 Do
3 + 3
+3G11D1 + 5iG12D1 + 3iG21 D1 + 3G22D1 — G33D1 +iG11D2 4+ G12Do

—G21 D2 + 9iG22 D2 + 5iG33 D2 + G13 D3 + 3iGa3 D3 + 3G31 D3 + iG32 D3
+3D1G11 + 5iD2G11 — 5iD1G12 + 3D2G12 + 3D3Gi3 4+ 9iD1Ga1 + D2Ga1 — D1Ga2
+9iD2Ga2 + 9iD3G23 — 3D3Gs1 — iD3G32 + 3D1Ga3 + iD2Gss
+45iG13G11 + 9G23G11 + 15iG31G11 + 39G32G11 — 21G13G12 — 151G23Gr2 — 39G31G12 + 15iG32G12
—15iG11G13 + 21G12G13 — 9G21G13 + 45iG22G13 + 451G33G1s + 9G13G21 + 27iG23G21 + 3G31Goa1
+21iG32G21 + 33iG13G22 — 3G23Gaz — 21iG31G22 + 3G32G22 — 3G11Ga3 — 33iG12Ga3 — 27iG21Gas
+9G22G23 + 9G33G23 — 9iG11G31 + 15G12G31 + 9G21Gs1 — 9iG22G31 + 3iG33Gs1 4+ 3G11G32
—3iG12G32 + 3iG21G32 + 27G22G32 + 15G33G32 — 3iG13Gas + 9G23G33 — 9iG31Gaz + 3G32G33)‘P2

9D:Ds  2DsD
+(—12iG30M—|— ;2—$

—6G13D1 —2G31 D14+ 4iG32 D1 —4iG13D2+2G23 D2 — 4i1G31 D2 —2G32 D2 +2G11 D3 +4iG12 D3 — 6G22 D3 — 6G33 D3
—6D3G11 —4iD3G124+6D1G13+4iD2G13+2D3Ga2 —2D2Go3 —6D1Gs1 +4iD2G31 —4iD1Gs2 —6D2G32 —6D3G 33
—36iG11G11 + 42G12G11 + 18G21G11 — 36iG22G11 + 12iG33G11 — 6G11G12 — 12iG12G12 + 12iG21 G2
+54G22G12 + 42G33G12 — 12iG13G13 + 18G23Gi3 — 36iG31G13 — 6G32G13 + 18G11G21 + 12iG12Ga
+18G22G21 — 6G33G21 — 12iG11 G2z + 6G12G22 — 6G21Ga2 + 12iG53G22 + 6G13G23 + 18G31G23
—12iG32Gas + 36iG13G31 — 18G23G31 + 12iG31G31 + 6G32G31 — 42G13G32 — 12iG23G32 — 6G31Ga2
+12iGa2Gan — 12iG11Gas + 42G12Gis + 18Ga1 Gag + 36iGa2Gas + 361GiaaGias ) W

2DsDs  2D3Ds

3 3

+( 4 6iG1oM — 18GaoM — iDsDy +iDyDs —

+( —12iG1oM +
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—6G11 D1 —4iG12D1 —6G22D1 +2G33D1 +4iG11 D2 — 2G12 D2+ 2G21 Do — 4iG33 Dy — 2G13 D3 — 6G31 D3 +4iG32 D3
—6D1G11—4iD2G11+41D1G12 —6D2G12 —6D3G13 —2D2Go1 +2D1Ga2+6D3G31 —4iD3Gs2 —6D1Gs3+4iD2Gsg
—36iG13G11 — 18G23G11 — 12iG31G11 — 42G32G11 + 6G13G12 + 12iG23Gi2 + 42G31G12 — 12iG32G12
+12iG11G13 — 6G12G13 + 18G21G13 — 36iG22G13 — 36iG33G13 — 18G13G21 — 6G31G21 + 12iG32G21
—12iG13G22 + 6G23Ga2 — 12iG31Ga2 — 6G32G22 + 6G11G23 + 12iG12Gaz — 18G22Ga3 — 18G33Glas
—36iG11G31 + 6G12G31 — 18G21G31 — 36iG22G31 + 12iG33G31 — 42G11G32 — 12iG12G32 + 12iG21G32
—54G22G32 + 6G33G32 — 12iG13G33 — 18G23Ga3 — 36iG31Ga3 — 42G32G33)\I’4 =0,

(4G13D1 — 4iGa3 Dy — 4iG13Ds — 4Ga3 Doy — 4G11 D3 + 4iG12 D3 + 4i1G21 D3 + 4G22 D3
4+4D3G11 — 4iD3G12 — 4D1G13 + 4iD2G13 — 4iD3Go1 — 4D3Ga2 + 4iD1Ga3 + 4D2Gos
—36iG11G11 — 36G12G11 — 12G21G11 + 12iG22G11 — 36iG33G11 + 12G11Gi2 — 12iG12G12 — 36iG21 G2
—36G22G12 — 36G33G12 — 12iG13G13 — 12G23G1s + 12iG31G1s + 12G32G13 — 36G11G21 + 36iG12G21
+12iG21G21 + 12G22G21 — 36G33G21 — 12iG11G22 — 12G12G22 — 36G21Gaz + 36iGa2Gaz + 36iG33Ga2
—12G13G23 + 12iG23G23 + 12G31G23 — 12iG32G23 + 12iG13G31 + 12G23G31 + 12G13G32 — 12iG23G32—
—12iG11G33 — 12G12G33 — 12G21Gs3 + 12iG22033)‘1’1+

+(( = 12iG1oM — 12G20 M ~ giDng + 2’D31D3 + 2D§D3 - 2D§D2
—6G11D1 + 6iG12D1 + 2iG21 D1 4 2G22D1 — 6G33D1 — 2iG11D2 — 2G12D2 — 6G21 D2
+6iG22 D2 4 6iG33 D2 — 2G13D3 + 2iG23 D3 + 2G31 D3 — 2iG32 D3
—6D1G11 + 6iD2G11 — 6iD1G12 — 6D2G12 — 6D3G 13 4+ 6iD1G21 + 6D2G21 — 6D1Ga2
+6iD2G22 + 61D3G23 — 2D3G31 + 2iD3G32 + 2D1G33 — 2iD2Gs3
+42iG13G11 + 42G23G11 + 18iG31G11 + 18G32G11 + 6G13G12 — 6iG23G12 — 18G31G12 4 18iG32G 12
—6iG11G13 — 6G12G13 — 42G21G13 + 42iG22G13 + 54iG33G13 — 6G13G21 + 6iG23Gar + 18G31G21
—18iG32G21 + 42iG13G22 4+ 42G23G22 + 18iG31Ga2 + 18G32Ga2 + 42G11Gag — 42iG12G23 — 6iG21Gas
—6G22Gas + 54G33Ga3 + 18iG11G31 + 18G12G31 + 6G21G31 — 6iGa2Gs1 + 18iG33G31 — 6G11G32

+6iG12G32 + 18iG21G32 + 18G22G32 + 18G33G32 + 6iG13G33 + 6G23G33 — 61G31G33 — 6G32033)\I/2

+(+ 2DoM — 18iGsoM — iD1 D1 — iD2D2 — iD3Ds + D1 D2 — D2 D1 —
—5G13D1+5iG23 D1 —3G31D1+3iG32D1—1G13 D2 —Go3 D2 —3iGi31 D2 —3G32 D2 — G 11 D3+iG12 D3 —5iG21 D3 —5G22 D3 —9G 33 D3
—5D3G11+5iD3G12+5D1G13—51D2G13—iD3G21 —D3Ga2+i1D1Gas+D2aGa3—9D1G31+91D2G31—9i1 D1 G2 —9D2G32—9D3Gs3
+45i1G11G11 + 45G12G11 + 15G21G 11 — 15iG22G11 + 45iG33Gi1 — 15G11Gr2 + 15iG12Gi2 + 45iG21G12
+45G22G12 + 45G33G 12 + 151G 13G13 + 15G23G13 — 15iG31G13 — 15G32G13 — 9G11G21 + 9iG12G21
+3iG21G21 + 3G22G21 — 9G33G21 — 3iG11G22 — 3G12G22 — 9G21G22 + 9iG22G22 + 9iG33G22 — 3G13G23
+3iG23G23 + 3G31G23 — 3iG32G23 + 21iG13G31 + 21G23G31 + 27iG31G31 + 27G32G31 — 33G13G 32
+33iG23G32 — 27G31G32 + 27iG32G32 + 33iG11G33 + 33G12G33 — 21G21G33 + 21iG22Gaz + 81i033G33) U3

iDsDy  iD\Dy  DyDs  DyD
+(+ 6iG10M + 6G2o M + T e

+3G11D1 — 3iG12D1 — iG21D1 — G22D1 + 3G33 D1 + i1G11 D2 + G12 D2
+3G21 D2 — 3iG22D2 — 3iG33 D2 + G13 D3 — iGa3 D3 — G31 D3 + iG32D3
+3D1G11 — 3iD2G11 + 3iD1G12 + 3D2G12 + 3D3G13 — 3iD1G21—
—3D2G21 4+ 3D1Gaz — 3iD2Gao — 3iD3Gas + D3Gs1 — iD3sGsa — D1G3s3 + 1D2Gaz—
—39iG13G11 — 39G23G11 — 9iG31G11 — 9G32G 11 — 21G13G12 + 21iG23Gh2 + 9G31G12 — 9iG32G12
4+21i1G11G13 4+ 21G12G13 + 39G21G13 — 39iG22Gi3 — 27iG33G 13 — 15G13G21 + 15iG23Ga1 — 9G31 G
+9iG32G21 — 3iG13G22 — 3G23G22 — 91G31G22 — 9G32G22 — 3G11G23 + 3iG12G23 — 15iG21Gas
—15G22G23 — 27G33G23 — 91G11G31 — 9G12G31 — 3G21G31 + 3iG22Ga1 — 9iG33Gs1 + 3G 111G
—3iG12G32 — 91G21G32 — 9G22G32 — 9G33G32 — 3iG13G33 — 3G23G33 + 3iG31Gs3 + 3G32G33)‘I/4 =0,
3)

DyD3  D3Do

(6¢G10M +18Ga0M +iDaDy —iD1 Dy — =22 + =

+3G11 D1 — 51G12 D1 — 3iG21 D1 + 3Go2 D1 — G33 Dy — iG11 D2
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+G12D2 — G21D2 — 9iG22D2 — 5iG33D2 + G13D3 — 3iG23 D3 + 3G31D3 — iG32D3
+3D1G11 — 5iD2G11 + 5iD1G12 + 3D2Gh2 4 3D3G13 — 9iD1Go1
+D2G21 — D1Ga2 — 9i1D2Gao — 9iD3Gag — 3D3G31 + iD3Gs2 + 3D1G3ss — iD2G33
—45iG13G11 + 9G23G11 — 15iG31G11 + 39G32G11 — 21G13G12 + 15iG23G12 — 39G31G12 — 15iG32G12
+15iG11G13 4+ 21G12G13 — 9G21G13 — 45iG22G13 — 451G33G13 + 9G13G21 — 27iG23Go1 + 3G31Ga1
—21iG32G21 — 33iG13G22 — 3G23Ga2 + 21iG31G22 + 3G32G22 — 3G11Gas + 33iG12Ga3 + 27iG21Gas
+9G22G23 + 9G33G23 + 9iG11G31 + 15G12G31 + 9G21G31 + 9iG22G31 — 3iG33G31 + 3G11G32
+3iG12G32 — 3iG21G32 + 27G22G 32 + 15G33G32 + 3iG13G33 + 9G23G33 + 9iG31Ga3 + 3G32Ga3 + ) Uy
D1Do> D2Dy _

+( +2D0M — 6iGaoM — iDy Dy — iD2 Dz = iDsDs + =4 .
—3G13D1—3iG23 D1—G31D1—5iG32D1—1iG13D2+G23 D2+5iG31 Do —G32Da+G11 D3+iG12D3+-3iG21 D3 —3G22 D3 —3G33 D3
—3D3G11+5iD3G1243D1G13—5iD2G13—91D3G214+D3G22+9i D1 Gas — D2Ga3—3D1G31+iD2G31—i1D1G32—3D2G32—3D3G33
+45iG11G11 + 39G12G11 + 9G21G11 + 45iG22G11 — 15iG33G11 — 21G11 G2 + 15iG12Gi2 — 15iG21G12
+27G22G12 4 39G33G12 + 15iG13G13 + 9G23G13 + 45iG31G13 — 21G32G13 + 9G11G21 + 21iG12Ga1 + 27iG21Gay
+9G22G21 — 3G33G21 + 33iG11G22 + 3G12G22 — 3G21Ga2 + 81iG22G22 + 21iG33G22 + 3G13Gas
+27iG23G23 + 9G31G23 + 331G32G23 + 9iG13G31 — 9G23G31 + 3iG31G31 — 15G32G31 — 3G13G32 — 3i1G23Ga2
+15G31G32 + 3iG32G32 — 3iG11G33 + 3G12G33 + 9G21G33 + 91G22G33 + 9iG33G33)‘1’2
2D2 D3 @

+( —12iG1oM + : :

—6G11 D1 +4iG12D1 —6G22 D1 +2G33 D1 —4iG11 D2 —2G12 D2 +2G21 D2 +4iG33 D2 —2G13 D3 — 6G31 D3 — 4iGs2 D3
—6D1G11+4iD2G11 —4iD1G12 —6D2G12 —6D3G13 —2D2G21 +2D1G22 +6D3G31 +4iD3G32 —6D1Gs3 —4iD2G33
+36iG13G11 — 18G23G11 + 12iG31G11 — 42G32G11 + 6G13G12 — 12iG23G12 + 42G31G12 + 12iG32G12
—12iG11G13 — 6G12G13 + 18G21G13 4 36iG22G13 + 36iG33G13 — 18G13Ga1 — 6G31G21 — 12iG32G21
+12iG13G22 + 6G23Ga2 + 12iG31 G2z — 6G32G22 + 6G11Ga3 — 12iG12G23 — 18G20Gas — 18G33Gas
+36iG11G31 + 6G12G31 — 18G21G31 + 36iG22G31 — 12iG33G31 — 42G11 G2 + 12iG12Ga2 — 12iG21Ga2
—54G22G32 4 6G33G32 + 12iG'13G33 — 18G23Gia3 + 36iG31Gaz — 42G32G33)\I’3

. 9D.Ds  2DyD
+((+ 12iGaoM — 2y

+6G13D14+2G31 D1 +4iG32D1 — 4iG13 D2 —2G23 Dy — 4iG31 D2 +2G32 D2 —2G11 D3 +4iG12 D3 +6G22 D3 +6G33 D3
4+6D3G11 —4iD3G12 —6D1G13+4iD2G13 —2D3G22+2D2Ga3 +6D1G31 +4iD2G31 —4iD1G32+6D2G32 +6D3G3ss
—36iG11G11 — 42G12G11 — 18G21G11 — 36iG2a2G11 + 12iG33G11 + 6G11G12 — 12iG12Gh2 + 12iG21G1a
—54G22G12 — 42G33G12 — 12iG13G13 — 18G23G13 — 36iG31G13 + 6G32G13 — 18G11G21 + 12iG12G21 — 18G22G21
+6G33G21 — 12iG11G22 — 6G12G22 + 6G21G22 + 12iG33G22 — 6G13G23 — 18G31G23 — 12i1G32Gas
+36i1G13G31 + 18G23Ga1 + 12iG31G31 — 6G32G31 + 42G13G32 — 12iG23Gs2 + 6G31Gaz + 12iG32G32 — 12iG11Gas
—42G12G33 — 18G21G33 4 36iG22Gaz + 36iG33G33)‘1’4 =0,

4)
2iDyDy _ 2iD\Ds  2D:Ds _ 2DsD

(= 12iG10M +12G20M + . ; : :
—6G11D1 — 6iG12D1 — 2iG21 D1 + 2G22D1 — 6G33D1 + 20G11 D2 — 2G12D2
—6G21 D2 — 6iG22 D2 — 6iG33 D2 — 2G13D3 — 2iG23 D3 + 2G31 D3 4 2iG2 D3
—6D1G11 — 6iD2G11 + 61D1G12 — 6D2G 12 — 6D3G13 — 6iD1G21 + 6D2Ga1
—6D1Ga2 — 6iD2G22 — 6iD3Gag — 2D3G31 — 20 D3Gs2 + 2D1Gss + 2iD2Gss
—42iG13G11 + 42G23G11 — 18iG31G11 + 18G32G11 + 6G13G12 4 6iG23Gi2 — 18G31G12 — 18iG32Gh2
+6iG11G13 — 6G12G13 — 42G21G13 — 42iG22G13 — 54iG33G13 — 6G13G21 — 6iG23G21 + 18G31Gar
+18iG32G21 — 42iG'13G22 + 42G23G22 — 18iG31 G2z + 18G32G22 + 42G'11G23 + 42iG12G23 + 6iG21G2s
—6G22G23 4+ 54G33Ga3 — 18iG11G31 + 18G12G31 + 6G21G31 + 6iG22G31 — 18iG33Gs1 — 6G11G32 — 6iG12G32
—18iG21G32 + 18G22Gs2 + 18G53Gs52 — 6iG13G 33 + 6G23Gs3 + 6i1G31G33 — 6G32G33) Uy

+( — 4G13D1 — 4iG2a3 D1 — 4iG13 D2 + 4G23 D2 + 4G11 D3 4 4iG12 D3 + 4iG21 D3 — 4Ga2 D3

—4D3G11 — 4iD3G12 + 4D1G13 + 4iD2G13 — 4iD3Ga1 + 4D3Gaa + 4iD1Gaz — 4D2Gas
—361G11G11 + 36G12G11 + 12G21G11 + 12iG22G11 — 360G 33G 11 — 12G11G12 — 12iG12G 12 — 361G21G 12
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+36G22G12 + 36G33G12 — 12iG13G13 + 12G23G13 + 12iG31Gi3 — 12G32G13 + 36G11G21 + 36iG12G21

+12iG21G21 — 12G22G21 + 36G33G21 — 12iG11G22 + 12G12Ga2 + 36G21Gaz + 36iG22Ga + 36iG33G22

+12G13G23 + 12iG23Go3 — 12G31Go3 — 12iG'32Ga3 + 12i1G13G31 — 12G23G 31 — 12G13G32 — 12iG23G 32
—12iG11G33 + 12G12G33 + 12G21Gs3 + 12iG22G33)‘1/2

1 D1 D D>D D3 D
+(+6iG10M—6G20M—§iD3D1+Z ; 3 233-1- 332

+3G11D1 + 3iG12D1 +iG21 D1 — Ga2 D1 + 3G33 D1 — iG11D2 + G12D2 4 3G21 D2
+3iG22D2 + 3iG33 D2 + G13 D3 + iGaz D3 — G31D3 — iG32 D3+
+3D1G11 + 3iD2G11 — 3iD1G12 + 3D2Gh2 + 3D3G13 + 3iD1G21 — 3D2Gax
+3D1G22 + 3iD2Gaz + 3iD3Gas + D3Gs1 + iD3Gs2 — D1Gs3 — iD2G3ss
+39iG13G11 — 39G23G11 + 9iG31G11 — 9G32G11 — 21G13Gh2 — 21iG2a3Gh2 4 9G31G12 + 91G32G 12
—211G11G13 + 21G12G13 + 39G21G13 + 391G22G1s + 27iG33G13 — 156G 13G21 — 15iG23Ga1 — 9G31Go1
—91G32G21 + 3iG13G22 — 3G23Ga2 + 9iG31 G2 — 9G32G22 — 3G11G23 — 3iG12G23 + 15iG21Gas
—15G22G23 — 27G33G23 + 91G11G31 — 9G12G31 — 3G21G31 — 3iG22G31 + 9iG33G1 + 3G11Gs2 + 3iG12G32
+91G21G32 — 9G22G32 — 9G33G32 + 3iG13G33 — 3G23Gas — 3iG31G33 + 3G32033)‘1’3

—|—( +2DoM + 18iG3oM — iD1D1 — iD2Dy — iD3D3 — D1 D2 + D2 Dy

+5G13D145iG23D1+3G31 D14-3iG32 D1 —iG13 D2+ G23 D2 —3iG31 Da+3G32 Da+G11 D3+iG12 D3 —5iGa1 D3+5G22 D3 +9G33 D3
+5D3G11+5i1D3G12—5D1G13—5iD2G13—1D3G21+D3G22+iD1G23—DaGa3+9D1G31+91D2G31— 91 D1 G32+9D2G32+9D3G33
4+45iG11G11 — 45G12G11 — 15G21G11 — 15iGa2Gh1 4 45iG33G 11 + 15G11 G2 + 15iG12Gr2 + 45iG21 G2
—45G22G12 — 45G33G 12 + 15iG13G13 — 15G23G13 — 15iG31G13 + 15G32G13 + 9G11G21 + 9iG12G21 + 3iG21Ga1
—3G22G21 + 9G33G21 — 3iG11G22 + 3G12G22 + 9G21Ga2 + 9iG22G22 + 9iG33Gaz + 3G13G23 + 3iG23Gas
—3G31Gas — 3iG32Gas + 21iG13G31 — 21G23G3s1 + 27iG31G31 — 27G32G31 4+ 33G13G32 + 33iGasGaz
+27G31G32 + 27iG32G32 + 33iG11G33 — 33G12G33 + 21G21Gss + 21iG22G33 + 81iG33G33)‘I’4 =0,

Re-grouping the terms, and introducing the new notations
D}+ D3+ D5=A, DiDy—DyDy =Dy, DyD3— D3Dy= Dy, D3Dy— DiDs=Dsy,
we obtain
1
D12

{2M(DO +8iGa0) — i — =

+D1(—3G13 + 9iG23 + 3Gs1 — iG32) + D2(—5iG13 + Gas +iGs1 + 3G32) + D3(3G11 + 5iG12 — 9iG21 — G2z + 3G33)
+(3G13 — 3iGaz + G31 — 5iG32) D1 + (—iG13 — G2 + 5iG31 + G32) D2 + (—G11 + iG12 4 3iG21 + 3G22 + 3G33) D3

+(24G13G32 + 30iGa3Ga2 — 42G12G33 — 6G21G3s + 30iGaaGas + 45iG2, — 18G12G11 — 18G21Gia
+78iG22G11 — 18iG33G11 + 15iGTo + 15iG T3 + 27iG5, + 81iG35 + 27iG55 + 3iG31 + 3iG3,
+92G§3 + 6iG12G21 — 30G12G22 — 6G21G2a — 12G13Gas + 54iG13G31) }\111

+{ + (GiGlo — 18G20)M — % —1D31

+D1(3G11 —5iG12+9iG21 — G22+3G33) + D2 (5iG11 +3G12+ G21+9iGa2 +iG33) + D3(3G13 4+ 9iG2s — 3Gs1 —iG32)
+(3G11 +5iG12 + 3iG21 4+ 3G22 — G33) D1+ (iG11 + G12 — Ga1 + 9iGa2 + 5iG33) D2 4 (G134 3iGa3 + 3G31 +iG32) D3

+(30iG11013 + 78iG13G22 + 6G11G23 — 481G 12G23 + 6G22Gas + 6iG11G31 — 24G12G31
+12G21G31—30iG22G31+42G11G32+12iG12G32+24iG21 G32+30G 22 G32+42iG13G33+18G23 G 33 —6iGl31 G33+18G32G33) }‘1/2

2D
+{ —12iGso M + TH

+D1(6G13 — 6Ga1 — 4iG32) + D2(4iG13 — 2G23 + 4iG31 — 6G32) + D3(—6G11 — 4iG12 + 2Ga2 — 6G33)
+(—=6G13 — 2G31 + 4iG32) D1 + (—4iG13 + 2G23 — 4iG31 — 2G32) D2 + (2G11 + 4iG12 — 6G22 — 6G33) D3

+( — 36iG3, + 36G12G11 + 36G21G 11 — 48iG22Gh1 — 12iG3, — 12iG25 + 12iG3, + 12iGae + 36iG 3,

+24iG12G21+60G12G22+12G21 G22+24G13G23—48G13G32 — 241G 23G32+84G12G33+12G 21 G33+48iGa2 Gss) }‘1/3
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2D33

+{ —12iG1oM +

+D1(—6G11 + 4iG12 + 2G22 — 6G33) + D2(—4iG11 — 6G12 — 2G21 + 4iG33) + D3(—6G13 4+ 6G31 — 4iG32)
+(=6G11 — 4iG12 — 6G22 + 2G33) D1 + (4iG11 — 2G12 + 2G21 — 4iG33) D2 + (—2G13 — 6G31 + 4iG32) D3

+ (_247»G11 G13 _487:G13G22 - 12G11 GQS +24iG12G23 - 12G22 GQS _487:G11G31 +48G12 G31 _24021 G31 _487»G22 G31 _84011 G32

—241G12G32 + 24iG21G32 — 60G22G35 — 481G13G 33 — 36G23G 33 — 241G31 Gz — 36G32G33) }\1/4 =0,

. D .
{ + (6iG10 + 18G20) M — % + D3

+D1(3G1145iG12—9iG21 — G224+ 3G33) + D2 (—5iG11+3G12+ G21 —9iGa2 —iG33) + D3(3G13 —9iG23 — 3G31 +1G32)
+(3G11 —5iG12 —3iG214+3G22 — G33) D1+ (—iG11+ G12 — G21 — 9iGa2 — 5iG33) D2 + (G153 — 3iG23 + 3G31 —iG32) D3

+(—30iG11G13—78iG13022+6G11G23+48iG12G23+6G22G23—GiG11G31—24G12G31+12G21G31+30iG22G31+42G11G32
—12iG12G32 — 24iGo1 Gz + 30G22Gaz — 42iG13Gss + 18Ga3Gas + 6iGa1Gas + 18G32G33) }\1/1

+{2M(Do — 3iGla0) — iA + %

+D1(3G13 + 9iG23 — 3G31 — iG32) + D2(—5iG13 — G23 +iG31 — 3G32) + D3(—3G11 + 5iG12 — 9iG21 + G2 — 3G33)
+(—3G13 — 3iG23 — G31 — 5iG32) D1 + (—iG13 + G23 + 5iG31 — G32) D2 + (G11 + iG12 + 3iG21 — 3G22 — 3G33) D3

+(45iG%1+18G12G11+18021G11+78@'G22G11—181'(;33011+15¢G%2+15iG%3+27iG§1+81iG§2+27iG§3+3iG§1+3iG§2
+9iG33 + 6iG12G21 + 30G12Gaz + 6Go1Gaz + 12G13Goa3
+54iG13Gia1 — 24G13Gas + 30iGasGas + 42G12Gas + 6Ga1Glas + 30iG22G33) }%

2D
+{ —12iGioM + 323

+D1(—6G11 — 4iG12 + 2G22 — 6G33) + D2(4iG11 — 6G12 — 2G21 — 4iG33) + D3(—6G13 + 6Ga1 + 4iG32)
+(—6G11 + 4iG12 — 6G22 4+ 2G33) D1 + (—4iG11 — 2G12 + 2G21 + 4iG33) D2 + (—2G13 — 6G31 — 4iG32) D3

+ (24iG11013+48iG13G22—12G11st—24iG12G23—12G22st+48iG11G31+48G12G31—24G21G31+48iG22G31—84G11G32

24iG oGy — 24iGa1 Gas — 60GasGan + 48iG13Gas — 36GlasGlas + 24iGa1 Gy — 36G32G33) }xpg

2D
+{ +12iGaoM — 312

+D1(—6G13 + 6G31 — 4iG32) + D2(4iG13 + 2G23 + 4iGs31 + 6G32) + D3(6G11 — 4iG12 — 2G22 + 6G33)
+(6G13 + 2G31 + 4iG32) D1 + (—4iG13 — 2G23 — 4iG31 + 2G32) D2 + (—2G11 + 4iG12 + 6G22 + 6G33) D3
+ (—36iG%1—36G12G11—36G21G11—48iG22G11—121'6%2—12iG§3+12iG§1+12iG§2+36iG§3+24iG12G21—60G12G22—12G21G’22

—24G13G23 + 48G13G32 — 24iG23G32 — 84G12G 33 — 12G21G33 + 48iG22G33) }‘114 =0,

{ + D1(4iG23 — 4G13) + D2(4iG13 + 4G23) + D3(4G11 — 4iG12 — 4iG21 — 4G22)
+(4G13 — 4iGa3) D1 + (—4iG13 — 4G23) D2 + (—4G11 + 4iGr2 + 4iG21 + 4G22) D3
+(—36iG§1—24GuGu—48(;21011—481‘033(;11—12iG%2—12iG§3+12iG§1+36iG§2+12z‘G§3—48(;12022—24G21022—24G13G23

+24iG13G31 + 24G23G31 + 24G13G32 — 241G23Gs32 — 48G12G33 — 48G21G33 + 48iGzzG33) }‘1’1

2Do3 . 21 D31

+{(—12¢G10 —12G20)M + =5 5

+D1(—6G11—6iG12+6iG21—6G22+2G33)+D2(6iG11—6G12+6G21+61G22—2iG33)+ D3 (—6G13+6iG23—2G31+2iG32)
+(—6G11+6iG12+2iG214+2G22—6G33) D1+ (—2iG11—2G12—6G21+6iG22+6iG33) D2+ (—2G13+2iG23+2G31 —2iG32) D3

+ (36iGll G13—48G13G21+84iG13G224+84G11G23—48iG12G23+36G22G23+36i1G11G31+24G 21 G31+12iG22G31+12G11G32

124iGh2Gas + 36GasGaz + 60iG13Gas + 60Ga3Gas + 12iGa1 Gas + 12G32G33> }\1;2

+{2M(D0 — 9iG30)M — A + D1o
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+D1(5G13 +iG23 — 9G31 — 9iG32) + D2(—5iG13 + Ga3 + 9iGs1 — 9G32) + D3 (—5G11 + 5iG12 — iG21 — G22 — 9Gs3)
+(—5G13+5iG23 — 3G31 + 3iG32) D1 + (—iG13 — G23 — 3iG31 — 3G32) D2 + (—G11 +iG12 — 5iG21 — 5G22 — 9G33) D3

+(452'G§1+30G12G11+6G21011—18i022G11+78¢G33011+15¢G§2+15¢G%3+3ic:§1+9¢G§2+31G§3+27iG§1+27iG§2
+81iG§3 + 54iG12G21 + 42G12G22 — 6G21G22 + 12G13G23 + 6iG13G31
124G23G31 — 48G 153G + 30iGa3Gas + T8CG12Cls3 — 30G21Gas + 301‘(;22033) }\1/3

) Dys  iD
+{ + (6iG10 + 6G20) M — % +° 331

+D1(3G1143iG12—3iG21+3G22—G33) + D2 (—3iG11+3G12 —3G21 — 3iG22+iGs3) + D3 (3G13 — 3iGa3 + G31 —iG32)
+(3G11 — 3iG12 — iG21 — G22 + 3G33) D1 + (1G11 + G12 + 3G21 — 3iGa2 — 3iGs3) D2 + (G13 — iG23 — G31 + iG32) D3

+ (_187'G11 G13 +24G13G21 _427'G13 G22 _42G11G23 +247:G12G23 - 18G22G23 _187'G11 G31 - 12G21G31 _67:G22 G31 _6G11 G32

—12iG12Glaa — 18G22Gas — 30iGh3Glas — 30Ga3Gas — 6iGa1 Glas — 6G32G33) }\114 —0,

2D53 21D31
3 + 3
+D1(—6G114+6iG12—6i1G21—6G22+2G33)+ D2 (—6iG11 —6G12+6G21 —6iG22+2iGs3)+D3(—6G13—6iG23—2G31—2iG32)

—|—(—6G11 —61G12—21G21+2G 22 —6G33)D1 +(2iG11 —2G12—6G 21 —61Ga2 —6iG33)D2—|—(—2G13 —2iG23+2G3, +2iG32)D3

{ + (12Ga0 — 12iG10) M +

+ (*362'6'11 G13—48G13G21—84iG13G22+84G11G23+48iG12G23+36G22G23—36i1G11G31+24G21G31—12iG22G31+12G11G32

—24iG12G32 + 36G22G32 — 60iG13G33 + 60G23G33 — 12iG31Gss + 12G32G33) }‘1/1

—|—{ + D1(4G13 + 4iGa3) 4+ D2(4iG13 — 4G23) + D3(—4G11 — 4iG12 — 4iG21 + 4Ga2)
+(—4G13 — 4iG23) D1 + (4G23 — 4iG13) D2 + (4G11 + 4iG12 + 4iGa1 — 4Ga2) D3
+(—36z‘G§1+24G12G11 +48G21G11—48iG33G 11— 12iG5—12iG 34+ 12iGa1 +36iGae+12iGas+48G12G22+24Ga1 G22+24G13Gas

124iG13Ga1 — 24Cla3 a1 — 24G13Gas — 24iGozGas + 48G12Glas + 48Gia1 Gas + 48iG22G33) }xp?

D D,
+{ + (6iG1o — 6G20) M — -t

+D1(3G11—3iG12+3i1G21+3G22 — G33) + D2 (3iG11 +3G12 —3G21 + 3iG22 —iGs3) + D3 (3G 13+ 3iGas + G31 +1G32)
+(8G11 +3iG12 +iG21 — G22 +3G33) D1 + (—iG11 + G12 + 3G21 + 3iGa2 + 3iGs3) D2 + (G13 +1G23 — G31 —iG32) D3

+ (18iG11G13+24013G21+42iG13G22—42011G23—24iG12G23—18G22023+18iG11G31—12021031+6iG22031—6G11G32

+12iG12G32 — 18G22G32 + 30iG13G33 — 30G23G33 + 6iG31G33 — 6G32G33) }‘1’3

+{2M(D0 +9iGs0) — iA — Dy
+D1(—=5G13 4+ iG23 +9G31 — 9iGs2) + D2 (—5iG13 — Gas + 9iG31 + 9G3s2) + D3(5G11 + 5iG12 — iG21 + Gz + 9G33)
+(5G13 + 5iG23 + 3Gs1 + 3iG32) D1 + (—iG1s + Gaz — 3iGs1 + 3Gs2) D2 + (G11 + iG12 — 5iG21 + 5G22 + 9G33) D3
+ (451@'%1—30G12G11—6G21G11—18iG22G11+78¢G33G11+15iG%2+15iG§3+3iG§1+9iG§2+3¢G§3+27¢G§1+27¢G§2
+81iG3; + 54iG12G21 — 42G12Ga2 + 6G21Gaz — 12G13Ga3 + 6iG13G31 — 24G23Gsy
+48G13G32 + 30iG23G32 — T8G12G33 + 30G21Gs3 + 30iG22G33) }‘1’4 =0,

We can present this system in the matrix form

QM(DO + AO)\II — 1AV -+ (a1D23 -+ CL2D31 —+ a3D12)\If

+D1 A1V + B1D1V + Dy AsVU + Bo DoW + D3 AsVU + B3 D3WU + XU = 0, (34)
where
U, 3iGis 3i(Gio + 3iGag)  —6iGag —6iG1o
U — U, Ay = 3i(G10 — 3iG20) —3iG3g —6iG1o 6iG30
w0 0T 0 —6i(G1o — iGao) —9iG'30 3i(G1o — iGao)
Uy G(GQO — iGlo) 0 —3(G20 — iGlo) 9iG'ag
and so on.
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For 4 x 4 matrices a1, as, as, the commutators are valid

a1ag — a2a1 = 1-a3z, ...;

3
by changing normalization

3 3 3
S1 = 5015 Sy = 5925 S3 = 508

we obtain three spin matrices with the needed commutation relations
5195 — 5251 = iS5, ...

Explicitly, they read

0 -2 0 1 0 -3 0 0 -3 01 0
-0 1 o0 320 00 0 20 -1
— 2 — 2 — 2
Si=l g0 1 o -3 2510 0 40 S3=1 ¢ 02 0 (35)
1 0 -1 o0 i 0 —%0 0 00 -3
We can readily find transformation
0 0 01
- -2 0 10
T=S5V, S=| " 5ol (36)
0 010

0 -2 0 0 0 -2 0 0 -3/2 0 0 0
s |-2 0 -1 0| & ¥ 0 - 0| & 0 -1/2 0 0
— 2 S . =
=0 o0 =2 T 0 0 0 —E )BT 0 0 12 0 (37)
0 0 —3 0 0 0 £ 0 0 0 0 3/2
This basis is called as cyclic one; sometimes it is more convenient basis than the Cartesian one.
The Pauli like equation for spin 3/2 particle in curved space has the structure
1 i
(Do + A \I/:——A\I/——( D D D)\Il—
i(Do + Ao) Wi i S1Da3 + S2 D31 + S3D12
i
57 D1 Ay + DyAs + D3As + B1 Dy + BaDs + B3 D3 + +2] v, (38)
this equation evidently include the tetrad components of the Ricci tensor R, and scalar R? = R.
Transformation to cyclic basis is reached as follows
. = 1 - i /= - . -
’L(Do + Ao)\If = _WA\II — m (Slng + So D3 + Sngg)\I/ —
—ﬁ [Du‘_h + DyAy + D3 A3 + B1Dy + BaDo + B3 D3 + i] 0, (39)

where

=8V, =810 A;=854,5"",6 S =8585"

A;=8SA;57', B;=5B;S™', L=5%5""

5. Detailed structure of the resulting equation

The matrix Ay contains the Ricci rotation coefficients G o, which differ from zero only in non-static
metrics. The matrices A1, Ay, A3 and By, By, B3 are determined by 9 Ricci coefficients

Gi1, Gi2, Giz, G2, Ga, Gaz, Ga1, Gaa, Gos. (40)
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So, we can search for linear expansions of all these matrices in terms of 9 basic elements:

S1=1t1, So=tg, S3=t3,
S =ty, Si3=ts, S3="ts,
8253 =t7, S351 =tg, S152 =tg,

We readily find the needed expansions:

Ag = x1t1 + xots + x3t3 + ... + Toto,
r1 = —6iG1g, 9= —6iGoy, 3= —6iG3g,
4 =0, 25=0, 26 =0, 27 =0, zg =0, 9 =0,
2iM (Do + Ap)¥ = 2iM | Dy + 6(G10S1 + G2052 + G3053) | ¥;

Ay = yity + yata + yats + ... + yolg,
y1 = —6G11 — 4G22, y2 = —6G21, y3 =4G13 — 6G31,
ys =0, ys =4iGas, ys = —4iGao,
y7 = —4i(Gaa — G33), ys = —4iG12, Yo = 4iG13;
Ay = 21ty + 2oty + 2z3ts + ... + 2oto,
21 = 4G91 — 6G12, 23 = —06Gap —4G33, 23 = —6G52,
z4 = —4iG13, 25 =0, 2z =4iG3q,
z7 = 4iGo1, 25 = 4i(G11 — G33), 29 = —4iGag;
Az = hit1 + hato + hsts + ... + hoty,
h1 = —6G13, hy =4G33 —6Ga3, hz = —4G1; — 6G33,
hy = 4iG1a, hs = —4iGs1, hg =0,
h7 = —4iGs1, hg =4iGsa, hg = —4i(G11 — Ga2);
By = y1t1 + yata + ysts + ... + yolo,

y1 = —6G11 —4Gs3, Y2 = —2G21, y3 = —2(2G13+ G31),
8. 4. 4.
Ys = gZ(G23 —G32), ys= —52(3@'23 +2G32), Yy = 51(2G23 + 3G32),

yr = 4i(Ga2 — G33), ys =4iG12, Yo = —4iG13;
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B2 = thl —+ ZQtQ + thg + ...+ thg,

21 = —2(G12 +2G21), 22 = —4G11 —6Ga2, 23 = —2G3g,

4
—gi(QGlg + 3G’31)7

2= £i(3G15 +2G), 25 = —2i(Chs — Go), 70 =
27 = —4iGa1, 28 = —4i(G11 — Gs3), 29 = 4iGa3;
B = huty + hato + hats + ... + hoto,
h1 = —2G13, ho = —2(Ga3 + 2G33), hy = —4Gas — 6G33,
hy = *%i(?)Glz +2Ga1), hs= %i(QGu +3Ga1), hg= gi(Glz — Ga1),
h7 = 4iG31, hg = —4iG32, hg = 4i(G11 — G22);
A1+ By = yit1 + yat2 + ysts + ... + yol,
Y1 = —4(3G11 + Gaz2 + G33), y2 = —8Ga1, y3 = —8Gs,

Ya = %i(GQB —G32), Y5 = gi(G% —G32), Ys= gi(GQC’) — G3),
yr =0, ys=0, yg=0;
Ao + By = z1t1 + 29t9 + 23t3 + ... + 299,
21 = —8G12, 2= —4(3Gaa + G11 + G33), 23 = —8G3a,
8. 8. 8.
24 = —51(6'13 —G31), 2= —52(6'13 —G31), 2= —gl(Gm — G31),
z7 =0, 28=0, 29=0;
As + Bs = hyty + hoto + hats + .. + hoto,

hy = —8G13, hy = —8Ga23, hy = —4(3G33 + G11 + Ga2),

8. 8. 8.
hy = gl(Gu —Ga1), hs= gl(Gm —G21), he= gZ(Gw —Ga),

Y =zt + xote + x3t3 + ... + x9ty,
T = 12(5G11G23 —3G13G21 + 3G33Ga3 + 2G22Ga3 — G11G32 + G31G12 + G31Gay + G22G32>,
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Ty = 12<5G22G31 —3G21G52 + 3G11G31 + 2G33G31 — G22Gh3 + G12Ga3 + G12Gs2 + G33013>7
T3 = 12<5G33G12 — 3G13G52 + 3G22G12 + 2G11G12 — G33Ga1 + G23Ghs + GasGar + G11G21>7

xy = 12i (3Gf1 +2G11G22 + 2G33G11 — 2G22G33 + 2G23Gsa + Gio + G%),

x5 =120 (3G§2 + 2G11Gas — 2G33G11 + 2G20G33 + 2G13G31 + G5, + G§3>,

76 = 12i(3G%; + 261G + 2G53Gaz — 262Gy + 26126 + G, + Gy,
@7 = 240 (2G11G23 +2G11Gs2 + 2G22G32 + 2G33Ga3 — G12Gs1 — G13Ga1 + Ga1Ga1 + G32Gs3 + G22G23>7
xg =240 (2G11G31 +2G22G13 +2G22G31 +2G33G13 + G11G13 — G12Ga3 + G12G32 — Ga1 Gz + G33G31),
Tg = 24i (2G11G21 + 2G33G12 + 2G22G12 + 2G33G21 + Gi3Gas — G13Gs2 + Ga1Gaz — G23Gs1 + G11G12)-

6. Examples: magnetic and electric uniform fields

Cylindrical coordinates x® = (t,r, ¢, z), the relevant tetrad, Ricci rotation coefficients, and the uniform
electric field are determined by relations

10 0 O 1000
2 _ 32 2 24,2 2 ~10-1 0 O « 10100
dS® =dt° —dr® —r°d¢® — dz", gap = 00 -2 0" =1]0o0 1ol
00 0 -1 0001
1

0=t 1=r 2=¢, 3=2, 7J22==GCs2= +;, (43)

1
Do = 80 + ier, D1 = ar + ieAT, D2 = ;(8¢ + i€A¢), D3 = 8,2 + i@Az,

Y230 = G10 =0, 7310 = G20 =0, 7120 = G30 =0,
Y231 = G11 =0, 7311 =G21 =0, 7121 = G531 =0,

1 (44)
Yozo = G12 =0, 7312 =Ga2 =0, 71220 = G320 =

;a
Yo33 = G13 =0, 7313 =Ga3 =0, 7123 = G33 =0.

To simplify the problem, let us consider the situation of presence of uniform magnetic and electric
fields along the exes z; then we have

1

Dy =0;+ieEz, Dy=09,, Dy= *(8(15 +i€7)7 D3 =0,
T

0? 1 jeB \2  0?

A=0, A=t (20,4 571) 45

1 jeB 1 jeB 1 Br?
D23 = 0, D31 = 0, D12 = 8T(;8¢ + KT‘) — (;8(15 + gr)ar = —— (8¢ — Z'€7T>,
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1040 1000
ilo104 6i[0 100 6i
(BTAl):ﬁ 009 0] A1+B1:_* 0010 :—7Ia
00009 0001
10 -20 1040
410 -1 0 2 30104
At Bo=T1g g 3| ATB=0 Y=515090
00 03 00009
So the main equation takes the form
. . 1 19?2 1 ieB \2 02 1 1 . Br?
(0 +ieB)W =~ [ 5+ (00 + ) + g |V g5 (9 ey ) ssw -
) 1 . Br?
557 | (0rAD) + (A1 + BL), + (Ao + Bg);((% + 267) + (As + B3)d, + E]\IJ —0. (45

B curyamum ¢ mumkiamaeckoil cummerpueil  ymoOHee UCIOJb30BATH IHMKIMIECKHANR 0a3uc; OCHOBHOE
ypaBHEHHE [IPeodpa3yercs TaK:

2 - 2
i(0y +ieE2)T = L [8 +(1 ieB

2 92 4.
oo (GOt 5 7) +m

i

_ _ _ _ _ 1 Br? _ _
— [(arAl) + (A, + B1), + (As + By) (a¢ + zeT’") + (A5 + B3)d, + 2} T =0, (46)

r
IIPAaBHUJIO IIPEOOPA30OBAHUSI TAKOE!

=950, U=81'0 A;=54,5"", S5 =855"

0 0 01
A o1 Do o—1 SR 1 -2 0 10/
A; =SAS™, B;=SB;S™, X=8%XS"" S= 0 —20 1
0 0 10
SBHBIN Bu peoOpa30BAHHBIX MATPUIL CJIEILY FOIITII:
9000 -3/2 0 0 0
S 10100 _ _ 6i 0 -1/2 0 0
(aTAl)_TQ 0010 7A1+Bl__7l7 A2+BQ__ 0 0 1/2 0 9
0009 0 0 0 3/2
9000 -3/2 0 0 0
o 3i|0100] & 0 —-1/2 0 0
A+ B =0, =715 0100 3= 0 0 12 0 (47)
0009 0 0 0 3/2

Tosyyennas CTpYyKTypa HEPEJATHBUCTCKOrO ypasHeHusi (46) osmadaer, d9ro ypasHenue s 4-x
KOMITOHEHTHOH BOJTHOBOI (byHKITMU pa3dbmBaeTcs Ha 4 HECBA3AHHBIX YPABHEHUS C TMOXOXKeH CTPYKTYPOIL.

7. Example: spherical coordinates

Let us consider the case of spherical coordinates x® = (¢, 7,0, ¢):

1 0 0 0
2 342 2392 2 . 2 2 52 _ 0 —r? 0 0
dS* = dt* — r*df” — r*sin” 0d¢” — dr, gapg = 0 0 —r2sin20 0 |’ (48)
0 O 0 -1
and the diagonal tetrad is taken as
6(0) = (1,0,0,0), 6(3) = (071,0,0) 5 6(1) = (0,0, ;,O) 5 6(2) = (17070, m) (49)
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To this tetrad there correspond the following Ricci rotation coefficients

000 0 0 0 0 0
00 0-1 0 0 +«¢ 9
Yabo = Ov’YabS =0, Yabl = 00 0 0 s Yab2 = 0 cot 6 0 _%
0+ 0 0 0 0 +f o0

Therefore we have

0=t 1=0, 2=¢, 3=r, z’(Do+ieA0):>(E+%),

1 1
Ds=08, A==+ —5—5-0;+0;
3 r2 0+rzsin29 o+ O

1
D = -0, Dy, =
1= 5% 27 rsing ®

the Ricci rotation coefficients
Y230 = G10 =0, 7310 =G20 =0, 7120 = G30 = 0,

Y231 = G11 =0, Y311 = Go21 = Jr%, 721 = G31 =0,
Y232 = G12 = —%, Y312 = G22 =0, 7122 =G32 = ¥7

Vo33 =G13 =0, Y313 =G23 =0, Y123 =G33=0

The blocks matrices take the form

—cotd 14 —4cotd —4 3cotd -2  —6cotd 4
A _ 4| —14 —cotd 4 —4cotd A, — 1| -2 —3cotd 4 6 cot 6
TR0 12 —9cotd —6 |° 2T 0 12 —9cotd —6
—12 0 6 —9cot 0 12 0 —6  9cotf
—14  —cotf 4 —4 cot 6
A _ %] cotf —14  4cotf 4
3T 0 2cotf —6 —cot 8
—2cot 0 0 cot 0 —6
cot® —14 4cotf 4
) 14 cotd —4 4coth
Ds=0s (0:A)= 51 o 12 9cotd 6 |
12 0 —6  9coth
—5cot —2 4cot 4 cot —2 —2cotd
B _t 2 —5cotd —4 4dcoth B _ 1| =2 —cotd 4 2cot 6
T 0 —4  3cotf 2 |7 2T L]0 —4  —3cotf
4 0 —2  3cotd —4 0 2 3cotd
2 cot 0 —4 4cot
B _ & | —cotd 2 —4cotd —4
3T 0 —2cot 0 —6 cot 0
2cot 0 0 —cot 0 —6
—3cotd 6 0 0 cotd —1 —2cotf
21 —6 —3cot 0 0 4] —1 —coth
At Bi="1 4 —3cots -2 |0 2FB=T1 0 9 30010
—4 0 2 —3cotf 2 0
1217
As + B3 = —TZI
3i (cot® 0 + 12) 12icot 0 12i (cot® 6 — 3) 48i cot 0
o 1| —12icotd  3i (cot>0+12)  —48icot®  12i(cot® 6 — 3)
T2 0 —24icotf  9i(3cot?H — 4) 12icot @
24i cot 0 0 —12icotd  9i(3cot®f —4)

IIpeobpasyem 3Tu MaTPUIBl K MUKJIXIECKOMY Oa3ucy

—9cot 0 6 0 0 9cotd —6 0 0
A, = i —6  —cotf 8 0 A, — 1| —6 3cotf -8 0
1= 0 -8 —cotd 6 TN 0 -8 —3cotf —6
0 0 —6  —9cotf 0 0 —6 —9cot 0
—6 cot 6 0 0

i | 9cotf —14 —2cotf 0
r 0 2cotf —14 —9cotl
0 0 —cot 0 —6

234
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ficgté 8 0 0 9cotd —6 0 0
67 icot 6 81 .
B 5 lcté 5 0 i 6 cotd —8 0
@A) =17 Byl & 1720 8 cotf —6 |’
0 0 5 bicgtd 0 0 6 9cotd
Bicotd  _2 0 0 3cotf 2 0 0
Bo_| % -EE 0 0 |_i| —6 —5cotd 0O 0
L= 0 0 - 0 0 —5cotf 6 '
0 0 2 sicotd 0 0 2 3cotd
Jeoth 2 0 0 3cotd 2 0 0
B—| —5 =t 0 0 |_1| =6 cotf 0 0
Tl o 0 -t 6 4T Ll 0 0 —cot 6 |
0 0 2 7W 0 0 2 —3cot 6
—& _iewtd g 0 -6 —cotf 0 0
g | e 2 medt 0 i —9cotf 2 2cotf 0
3= 0 —2icotf 2 ficoth | T, 0 —2cotd 2 9cotd
0 0 icc;tQ _% 0 0 cot @ —6
—3cot 0 2 0 0 3cotfd —1 0 0
21 —6 —3cot 0 4 0 -3 cotf —2 0
AtBi="010 4 -3coto 6 |» AztBa= 0 -2 —cot6 -3 |’
0 0 -2 —3cotd 0 0 -1 —3cotf
-2 0 0 0
0o -2 0 0 12i
As + Bs = 0 0 -1z g =—-——I
0 0 0 2
27i igvﬁ 6 % _ 12irc20t0 0 0
_ 108icotd 3icot? 0 4 360 241 cot 0 24icot?0 _ o (121‘ cot?29 @) 72
5 2 2 2 2 2 2 2 2 _
24z‘:c2>t26 _9 (121‘ :otze _ %> _ ? _24ircot9 3ic:2t26 + % 1087;"cot9
0 0 121‘:0@0 27iigt20 _ #
3i (3cot’0 —4)  —dicotd 0 0
_ 3| —36icotd  i(cot®’0+12)  Bicoth 0
T2 0 —8icot® i (cot®f+12) 36i cot, 0
0 0 dicot®  3i(3cot’d —4)
The Pauli-like equation reads
a 1 1 0?
€+ — qf:——[aufauf]m_
( r) QML T 270 7 922

b
2M

1 1
[5(0041) + 0+ (s 49) + ~(A1 + B1)Oy +——

(As + B2)dy + (A3 + B3)d, + 2} v,

8. Conclusions

The goal of the present paper is investigation of the non-relativistic approximation in the first order 39-
component theory for a spin 2 particle, in curved space-time, and in presence of external electromagnetic
fields.

For distinguishing the large and small constituents in the complete wave function, we use three pro-
jective operators constructed on the base of the minimal polynomial of the 4-th order for the matrix
"%y 16- The relevant large and small components are found in explicit form. Among them we have found
independent variables; in particular, among the large components there exist only four independent ones.

Acting in accordance with the known general procedure, we have derived the non-relativistic system of
equations for a 4-component wave function; the relevant Hamiltonian depends on electromagnetic field
and additional geometrical terms are determined by the Ricci rotation coefficients (these terms should be
determined by Ricci scalar R and Ricci tensor R, in tetrad form. The terms describing interaction of the
magnetic moment of the spin 3/2 particle with the external magnetic field is separated; this additional
term is constructed with the use of the spin matrices S; and the components of the magnetic field B.
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