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Spin 2 Particle in Coulomb Field, the Non-relativistic
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The main goal of the present paper is to derive the non-relativistic system of equations for a
spin 2 particle in presence of the external Coulomb field, then to solve it and to find the relevant
energy spectra. We started with the known radial system of 39 equations derived for the case of a
free particle and modified to take into account the presence of the Coulomb field. After eliminating
the 28 components related to vector and 3-rank tensor, we get the system of second order for 11
components referring to scalar and symmetric tensor. In accordance with the parity restriction, it is
divided in two subsystems, of 3 and 8 equations. For performing the non-relativistic approximation,
we apply the method of projective operators constructed on the base of the matrix I'° of the initial
matrix equation. Depending on parity, we derive two non-relativistic sub-systems, of 2 and 3 linked
differential equations. With the use of the linear similarity transformation they are reduced to five
separate equations with Schrédiger type non-relativistic structure, and evident energy spectra. The
case of minimal quantum number of the total angular momentum, j = 0, should be considered
separately.
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Introduction

The theory of massive and massless fields of spin-2, following the foundational work of Pauli and Fierz
[1-3], has long attracted significant attention [4]-[36]. Several key aspects and challenges of this theory
have been explored over the years. Most studies have been conducted within the framework of second-
order differential equations, with a particular focus on the additional constraints required to preserve
the five independent degrees of freedom for a spin-2 particle. This problem becomes even more intricate
when extending the theory to curved Riemannian space-times. An additional complication arises when
studying the massless spin-2 field. The well-known Pauli-Fierz solution for flat Minkowski space does not
carry over to curved space-time. Extending the Pauli-Fierz prescription to a generally covariant form
leads to unexpected constraints on space-time geometry: the Ricci tensor R,3 and the Riemann tensor
R.pp0 must vanish identically. To resolve this, a non-minimal interaction term involving the Riemann
tensor can be introduced into the basic equations [30], allowing the constraints to be reduced to R,3 = 0.

Another area of interest has been the problem of anomalous solutions in spin-2 theory. A technical
alternative for studying spin-2 fields, both massive and massless, involves formulating first-order sys-
tems. This approach, based on the Gel’fand—Yaglom formalism [6], was first explored by Fedorov [7] and
Regge [8]. Their work demonstrated that a spin-2 particle requires a 39-component set of tensors for
its description. This formalism allows for the exploration of new physical questions related to degrees
of freedom. For instance, for massless case, the 39-component matrix equation was solved in Minkowski
space-time in [39] using cylindrical coordinates ¢, 7, ¢, z and a tetrad. Six linearly independent solutions
were found. By applying the Pauli-Fierz approach, adjusted to the tetrad formalism, the gauge solutions
were constructed using exact solutions for the massless spin-1 field. This yielded four independent gauge
solutions and two gauge-free solutions for the spin-2 field, as expected from physical reasoning.

Additionally, F.I. Fedorov introduced a more general theory for the spin-2 particle based on a 50-
component set of tensors. This theory, in the presence of external electromagnetic fields, describes a spin-2
particle with an anomalous magnetic moment [36, 40]. In Riemannian space-time, the reduced theory
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automatically incorporates non-minimal interaction terms involving the Ricci and Riemann tensors. One
notable aspect of this theory is its allowance for a new massless limit for the spin-2 field [38]. This
is particularly significant because the minimal Pauli-Fierz theory does not possess gauge symmetry in
curved space-times with R,3 = 0. However, the generalized theory exhibits gauge symmetry under these
conditions, as demonstrated in [38].

In the present study, we focus on a specific problem within the 39-component theory: the non-relativistic
approximation for a massive spin-2 particle in external Coulomb field. A similar problem was previously
addressed for this particle in Cartesian coordinates [41], where a Pauli-like equation was derived in
presence of electromagnetic fields.

In Section 1, the basic definitions and notations, including the structure of the 39-component wave
function with spherical symmetry, are given. On solutions, the square and third projection of the total
angular momentum are diagoanlized. For separating the angular dependence of the wave function we
apply the Wigner D-functions.

In Section 2, we specify the known system of the radial equations, deriving previously for the case of a
free particle, and modify it in order to take into account the presence of external Coulomb field. Besides,
restrictions due to diagonalization of the spatial reflection operator are presented.

In section 3, we eliminate 28 variables related to 4-vector and 2-rank tensor, ®1, @[, so producing
eleven equations of the second order for the variables referring to scalar ® and symmetric tensor ®qy).
Allowing for the parity restrictions, we derive two subsystem of three and eight second order radial
equations.

In Section 4, we apply the general method for performing the non-relativistic approximation; it is based
on distinguishing between large and small components of the wave function; the last are found by using
three projective operators derived from the seventh-order minimal polynomial for the 39 x 39 matrix I'°
of the initial matrix equation.

In Section 5, from the system of three 2-nd order equations for states with the parity P = (—1)7+!,
we derive two liked radial equations with the non-relativistic structure; after performing a special linear
transformation it reduces to two independent equations of the Schédinger type in presence of Coulomb
field.

In Section 6, from the system of eight 2-nd order equations for states with the parity P = (—1)7 we
derive three linked radial equations with the non-relativistic structure; after performing a needed linear
transformation, it leads to three independent equations of the Schédinger type in presence of Coulomb
field.

So, we obtain five energy spectra, referring to a non-relativistic spin 2 particle in presence of the
Coulomb field. The case of minimal value of the quantum number j = 0 is a special one, and it leads to
only one Shrédinger type equation of the the known structure.

1. Initial equations

In [43], were performed calculations concerning the separation of the variables in the matrix equation
describing a spin 2 particle in spherical coordinates. Below we recall only the most basic points. The wave
function consists of scalar, 3-vector, symmetric tensor, and 3-rank tensor antisymmetric in two indices; in
total of 39 components. On solutions with spherical symmetry, the following operators are diagonalized

JPH =j(j+VH, JsH=mH; JiHy =j(j+1)H, J5VH =mHy;

. . (1)
TG Hy = j(j+ 1) Hs, JSVHy =mHy; J3Hs = j(j+1)Hs, J Hy =mHs.

When separating the variables, we applied the Wigner D-functions technique D’ mo—s5(0,0,0) = D_g;;
see in [44]; the known recurrent relations were used:

99Dy = %a D, — %a Dy, % o= f%a D, — %a Dy,

09D 41 = +%a Dy — %b Do, %ZOSQDH = —%a Dy — %b Do,
0pD_ 1 = +%b D_y— %a Do, %20891)_1 - f%b D_y— %a Do, 2)

9D = Jr%b Dy — %C D3, %?MD+2 = *%b Dy %C Dy,

OpD_o — %c D4 %b D, %QHCOSQD_Q - féc D_s— %b;D_l,
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where /j(j+1)=a, V(G—1)({+2)=0b, v/(§—2)(j+3)=c. We use the substitutions (the common

multiplier e~ is omltted
fi(r) D—2
fa(r) Do
f3(r) D2
ho(r) Do ci(r) Dy
o o hl(’l“> D,1 o CQ(’I“) D()
H= h(T)DOa H, = hz(?") DO ) Hy = Cg(?") D_, |’
hg(T’) D+1 d1 (’I‘) D_1
dg(?“) DO
d3(r) D1 (3)
fo(r) Do
Elo(T)D_l Ell(’l")D_Q Elg(T)D_l Elg(T‘)DO
Ego(’l“)Do Egl(’I“)D_l EQQ(T)DO E23(’I“)D+1
0o = E30(T)D+1 o1 = E31 (’I”)D() o = E32(T)D+1 3 = E33(T>D+2
0 Blo(T)D+1 11 Bll(’f’)Do 2 Blz(’l")D+1 13 Blg(’l")D+2
Boo(1) Dy Ba1(r)D_4 Bas (1) Dy Baz(r) D1
B30(’I“)D_1 B31(’I“)D_2 B32(T)D_1 Bg3(T>D0

We use the so called cyclic basis, in which the third projection of spin is diagonal matrix; The paper
is devoted to the study of a spin 2 particle in presence of Coulomb field; we restrict ourselves to the
non-relativistic approximation; similar approach was used for a spin 3/2 particle in [46].

2. Separation of the Variables

We start with the radial system in the cyclic basis (the presence of the external Coulomb field is reached
by the change e = ¢+ ) :

, 2
H, —Q(h1+h3)—i(e+%)ho—h2—§h2—Mh:0;

Hy, \fa(d1 +d3)+27” (d2+ ( + )fo—SMho)+4d2—3ir(6+%)h:0,

2a02—3ah+26f1 1 3cs . o
—_— —)d1) — Mh1 =0
6v3r (c5+ - Hiled S)di) 1=0,

tale

V2a (c1 + c3) + dea + 7(2i(e + %)d2 125+ 3K — 6Mho) +4fs =0,
1.
3

2ace — 3ah + 2bfs

J’_
6v/2r

3 .
(ch+ == File + =)ds) — Mhs = 0;

H,

Bg]_ b(BQI + th)

V2r
4B11 — 4B33 + 4 (E20 — 2h2) + V2a (3B12 + B21 — B2g — 3Bs32 + E1o + E30 — 2 (h1 + h3))

+2r (—z’(e + %) (Er3 + 3E22 + Es1 + 2ho) — Biy + Big + Ego + 6h’2) —8Mrf> =0,

—i(e+ )En— + By — Mfi =0,

—92B13 4+ V/2b(Baz — 2h3) — 2r (Z(é + %)E33 + M fs + 313) =0,
V/2bB13 + 2Bas + V/2a (B2 — Bas — 2hs) — 4hs — 2r (2Mc1 +ile+ %) (Fa23 4 E32) + Biy — 2hg) =0,

V2a (Bi2 + Ba1 — Bas — Baa — Eig — Ez0 — 2 (h1 + h3)) — 2 (2 (Fao + 2h2)
+r (4M02 +i(e+ %) (Ers + B2z + Es1 — 2ho) + By — Biz + Esg — 2h'2)) =0,
—4Mres + \/E(aBn — bB31 — a(Ba2 + 2h2)) — 2 (321 +ir(e + %) (FEi2 + E21) +2h1 — 1 (Bég + Zh/l)) =0,

—4Mrdy + V2 (bE11 + a (—Bao + Es1 — 2ho))
2 (Bao + Brz + 201 + 7 (—ife + &) (Bao +2h) + Bio + B3y ) ) =0,

V2a (Bio — B3o + F12 + E32) + 2 (E13 + 282 + E31 + 7 (—QMdQ —i(e+ g) (E20 + 2h2) + Ejo + 2h6)) =0,

—2B1¢ 4 4E33 + 2F32 + V2bEs3 + V2a (B2o + E13 — 2hg) — 2r <2Md3 +i(e+ ) (E30 + 2h3) + Big — Ezg) =0,
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4B11 +V2a (B12 — Ba1 + B2s — B3a + 3E10 + 3E30 + 2 (h1 + hs)) + 2 (—2Bs3 + 6Ea + 4h2
+r (74Mfo Tile+ %) (E1s — Esy + E31 — 6ho) + Bjy — Bl + 3Eb + 2h’2)) -0,

6cs + V2 (ac2 + 3afo + bf1) i
r

desr +V2a (e + c3) +4fa +2r (—21(6 + %)d2 —3(MEx + f) + fg) -0,

6c1 + V2 (ac2 + 3afo + bfs)
7

2 (—21'(6 n %)d1 —3MEn + cg) -0,

+2 (—2ife + )da — 3M Eso + ¢) =0,

ads ds 7
— 4+d3 —MBig=0
\/§7~ + r + 3 10 )

a (dg — dl) — MB20 = 0, 2d1 + \/iadg + 27’d11 =+ 27”MB30 = 0,

V2r

bd i . /
et )i = MEu =0, —i(e+ S)es —di — MExn =0,

2ds + \/ia (2d1 — d3) — 2r (3ME31 +1 (6 + %) (3C2 + fo) + dlg) =0,
V2a (c1 —2¢3) —2(ca + f2) + 2r (3MBll +i(e+ %)dz — 3¢y + fé) =0,

M +c5 — 3M By =0,

. d1 adg
2 2f; +2r (MB N =0, - a @
V2bes +2f1 +2r (MBs + fi) =0, —i(e+ )es + +
4dy +V2a (d1 + ds) — 6MrEgs + 2ir(e + %) (fo —3f2) — 4rdy = 0,
ad2 d3

Jer + —— + — — MEs3 =0, 6MrBia — 6¢1 + 2ir(e + g)d3 + \/i(aCQ —3afz 4+ bfs) — drcy =0,
V2r r r
a

1—¢3)

V2r

+ilet 2)di +

— ME» =0,

. «
72(6 + ?
(C — MBQQ = O, —GMTB;;Q — 603 + 2iT(€ + %)dl + \/i(CLCQ + bf1 — 3af2) — 47’63 = 0,
—2dy + V2a (dy — 2d3) + 2r (3ME13 (et %) (3¢z + fo) + dg) =0,
bds

. (67 X «
—’L(€+ ;)C1—ME23—d£>,IO, E—MEgg—’L(e—f— ;)f;g:o,
bCl f3

“MBus+ o4 [ = 0, <8MBay il )ds +

V2a(cs —2c1) — 2 (ca + fa) + 2r (—3M333 +i(e+ %)dz — 3ch + fé) =0.

The parity restrictions are known [43]:
P = (71)J+17

V2 (bfs — 2acs) N

CIZO,
r

h=0; ho=0, ha=0, hs=—hi;
fo=0, fo=0,c2=0,d2=0, f3=—f1,c3=—c1,d3=—d;

Eso = —Fi0, FEs =0, Bso=+DBo;

- _ _ _ _ (4)
E33 = —F12, F22 =0, B3z =4DBio;
Fi3 = —F31, Fos=—F», FEs3=—Fn,
Bis = +Bs1, Boz=+Ba1, Bss=+DBi;
Bso = —Blo, Bao = 0, E3 = +E10;
. Bsy = —B Boy =0, Esp = +Es;
P=(-1), 32 12, 22 32 12 5)

313 = 7B317 B23 = 7B217 B33 = 73117
Fi3 = +FE31, FEa=+FEsn, FEs3=+FE;
There exist a special case, when the initial substitutions should become more simple. At j =0 , the
initial general substitution should be modified in accordance with the following constraints:
Hi  h1=0h3=0, Hy fi=0,f3=0, ¢ =0,e=0 d=0,d3=0,

EFio=0 Ei1=0 FEi2=0 E»3=0

e 1?30=0 ]?21=0 ?32=0 ]?33=0

Bip=0 B21=0 Bi2=0 Bi3=0

B3y =0 B31 =0 Bsz=0 DBas=0;
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3.

Second Order Equations

Let us apply the notation (e + %) = Dy, then the above equations read

H, V2a (h1 + hs) + 2r (iDoho + mh + h) + 4hs = 0;
H,
\@a (dl + ds) + 2r (iDofo =+ dlg — 3mh0) — 3i1Dorh + 4d> = 0,
2 — 3ah +2b 1
e 6355: iy 3 (iDoCh +ch+ %) — mhy =0,
\/§CL (01 =+ 63) —+7r (2iD0d2 + Qfé + 3n — 6mh2) +4co + 4f2 =0,
2 — 3ah +2b 1
ac2 6?557:'— IE + 3 (iD0d3 +cl+ %) — mhg = 0;
H>

% —iDoE1 —mfi — % + B3 =0,
4B11 — 4B33 — 8mr fo + 4 (FEa0 — 2h2) + V2a (3B12 + Ba1 — Bas — 3B32 + F1o + Eso — 2 (h1 + h3))
+2r (=iDo (F13 + 3E2 + Es1 + 2ho) — B1y + Bis + Eag 4 6hs) =0,
—2B13 + V2b (Bas — 2hs) — 2r (iDoEss + mfs + Bis) =0,
V2bB13 + 2Bas + V2a (Baz — Bss — 2ha) — 4hs — 2r (2me1 + iDo (Eas + Es2) + Bl — 2h%) =0,
V2a (Bi2 + Ba1 — B2z — B3a — E1o — E30 — 2 (h1 + h3))
—2(2(E20 + 2h2) + r (4mca +iDo (Ers + Eas + Es1 — 2ho) + Biy — Bis + Eag — 2h3)) =0,

—4mres + V2 (aBiy — bBs1 — a (Baa + 2h2)) — 2 (321 +irDo (Ei2 + E21) +2h1 — 7 (Béz + 2h/1)) =0,
—4mrdy + V2 (bE11 + a(—Bao + Es1 — 2ho)) + 2 (Bso + Er2 + 2E21 + 1 (=iDg (E1o + 2h1) + Bho + E3;)) = 0,

V2a (Bio — Bso + E12 + E32) + 2 (E13 +2FE9 + E31 + 7 (—2md2 — Do (E20 + 2h2) + E5y + 2%)) =0
—2Bi0 + 4E23 + 2E32 + V2bEs3 4+ V2a (Bao + Fis — 2ho) — 2r (2mds + iDo (Eso + 2hs) + Bio — Ea3) =0,

4B11 +V2a (B12 — B21 + B23 — Bs2 + 3E10 + 3E30 + 2 (h1 + h3))
Hs

+2 (—2333 + 6E% + 4hy + 1 (—4mf0 +iDo (F13 — Faa + Es1 — 6ho) + By — Bis +3E5 + Qhé))

=0;

6cs + V2 (ac2 + 3afo + bf1) Lo
T

—2iDody — 3mEno + ¢5) =0,
4¢s 4+ V2a (1 +c3)+4fo+2r (—ZiD0d2 -3 (mE20 + fé) + fﬁ)

:0’
6c1 + V2 (aca + 3afo + bfs) +2(

r —2iD0d3 - 3mE30 + C/l)

0,
adg d3 ’ a (d3 — dl)
—mBio+ —— + = +dy =0, —= By =0,
10 \/i?“ T 3 \/57“ 20

bd
2dy + V2ady + 2r (mBso +d;) =0, —~

ﬁ — mE11 — ’iDofl = 0, —iDng — mE21 — d/l = O,
2d> + V2a (2d1 — d3) — 2r (3mEs1 +iDg (3c2 + fo) + db) =0,
\/5(1 ((31 — 203) -2 (CQ + f2) + 27 (3771311 + 1Dodo — 30/2 + fé) =0,
3Bt + iDods 4 Y2(2ac2 —bf1) (2“0: —bf1)

+cy =0, V2bcs+2f1+2r (mBsi+ fi) =0,
d d
—iDoes + 71 T % —mE2 =0, 4ds+V2a(dy + ds) — 6mrEas + 2irDo (fo — 3f2) — drds = 0,
'S
d d
—iDoc1 + % + 73 —mE3 =0, 6mrBis— 6c1 + 2irDods + \/i(aCQ —3af2 4+ bfs) — 4rch =0,
T
a(c1 —c3)
———— —mByy =0,
\/51" 22

—6mrBss — 6¢3 + 2irDodq + ﬁ(acz +bfi —3af2) — dres =0,

—2ds + \/ill (d1 — 2d3) + 2r (3mE13 +1Dg (302 + fo) + dlg) =0,
bd b
—iDoc1 — mEys —diy =0, —— —mFEss —iDofs =0, —mBis+ i I2 + f5=0,
2r \/57' r
—3mBas — iDods + w _ c’1 =0,
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V2a (c3 —2¢1) — 2 (ca + fa) + 2r (=3mBss + iDodz — 3ch + f2) =0

From the system H;we express the variables hg,hi,ho,hs and substitute them into equa-
tions of the groups H and H,; also from equation of the group Hs we express the variables
E,o, Bio; Ei1, Bi1; Ei2, Bia; Ey3, Bis and substitute them into equation of the group Hs (allowing for that
the variables hg, hi, ho, hs are eliminated as well).

Then we arrive at eleven equations of the second order for eleven variables h, f;, ¢;, d;, fo (let the symbol
Ry designate the derivative Dy, in all 2nd order equations it should be locates in the right side and before
the all involved variables):

0
2 2 . .
2a cha—th“[ Dods + ﬁa 1\/§a Z\[aRod3
3mr mr 3m 3m 3m
b 2 2 4+/2
ta it g ab fat V20, o 22 ‘[“cl
3mr 3m 3Im 3mr
4v/2a 2
+ el TTDORofo + DoRoh + fDoD ds + fDon + D Rods + fRon
4 4 8
+o—Dyca+ —c2+ D, fo + D 2f2 + fot TD2h+ 2D+ 2mrh =0,
3m 3mr 3m 3mr m m
1
ab ab V/2b ib ib 1 V/2b 2
h——— — —— Dod1 — —— Rod ——DR ——DT ——D ——D =0,
2mr2 mr2 2T 2 @ V2omr ot V2mr ody —mfi ofofr s h rhi
2
2ha® 2 2 2 2 2i/2 2 2b 2b
e ifo + 6if2 Z\faDoch - Z\faRoCh Z\[aDods Z\faRods - ifl - if3
mr mr mr m
4+/2 4 4r
=+ faDrcl faD C3 — fDQRoh — fDoRocQ — i(32 — i D0d2 — 7R0d2
m mr m
QTDoRofo 8 TfQ . 67’DOR0f2 . % . 4Drh + 16DTC2 + 47//‘DOD,«d2
m m mr m m m
44 4
+ﬁROD d2 = —Dyfo+ D fot GTD h— 7'/32(;2 —D 24 4 " D2f2 =0,
3
b 2v/2b 2ab iV 2b b 2v/2b 4
Lh — \/> C1 — i — Z\/> Dodg — Z\/> R0d3 — 2m7"f3 — fDoRof;g — LD7AC1 — 7D f3 — 7D f3 = O
mr mr mr m
4
c1a? _ 2csa? n 2v/2ha _ 44/2¢c0a _ iv2Dod2a _ ivV2Rod2a _ 2v/2D,.ha n 22D, coa _ 2\/§D,~f2a
mr mr mr mr m m m m m
4r 2 24 2i 2
—4dmre, — fDoRocl + %Cl — %Cl — iDodg — fRodg + jD()D ds + 7R0D ds + ﬂD f3 =0,
5
2a% . 2a° 2a° 42 42 2 2 2 4 2
Lh_ if0+if2_ 7fa01 — fac — ﬂfl — ﬂfg-i-lDoRoh—Sm’f’Cz — lDOROC2 - i02 - lDOROfO
mr mr mr mr mr mr mr m m mr m
2r 4 44 4 4D, 2r
2 Do Rofa= o fom 2 Dot S Do Dyt S Dy Rodat e fo- T2 4 22 T D2yt 2 p2 g 2 p2 g, =,
6
2 2 2v/2 4+/2 iv2 iV 2 2 2v/2 2
—Lcl —+ i03 =+ \[ah— \/>a(22 — ZfaDodz — ZfaRon — \/>aD h+ faDrCQ — \[aD fg 4dmrcs
mr mr mr m m m
4r b2 6 2i 2ir 2ir 24/2b
—*DoRocs + 2y — ——cy — — Dody — *Rodl + fDoD dy + fD Rod: + LD fi=0,
mr mr m
7
a? 2 2 iv/2 iv/2 iv/?2 2
7d1 — idg + \[aDoh + Z\faRoh — Z\faDocz — Z\[CLROCQ — Z\[aDofo — ZfaRofo — faD da
mr mr m m m
i j b> 2 iv/2b iv/2b
—@Docs — @Rocs —4mrd; + fd1 + —di — iva Do f1 — Z\f Ro f1
m mr m
2 24
_ﬂDOD C3 — ﬂD R()Cg — ED d1 — 7D d1 = 0
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8
4a> i iv2 22 2v/2 2v/2 2
LdQ - ZfaDo c1 — Z\[aRo c1 — ZfaDo c3 — \[aRocs + \[adl + \[ads + faD'rdl + faD ds
mr m mr mr m
47 47 21
—iDOCQ — fRocQ — 4m7"d2 — *Dofg — 7R0f2 — ﬂDOD h
21
—ﬁD Roh + —DQD fo+ —D Rofo — —DOD fo— —D Rofs =0,
9
2 iV 2 iV 2
_idl + fds + ZfaDoh-i- f —— Roh — ZfaDo co — Z\[aROCQ — Z\[aDofo
mr m m
2
*ZfaRo () 2faD do — @D c1 — iRocl — 4dmrds + Ldg
m m mr
2 iV 2 21 21 4
+7d3 - Z\fbDofg - Z\fb]"?,of'g, — ﬂDQDTC1 — ﬂDTRoC1 — éandg — lDzdS = ()7
mr m m m m
10
2 2 2 2 2 212 2 2ivV2 2 2b
a —h+ 6if0 + ifz + 8fac1 + S\facs — Z\[GDO di — Z\faRodl ZfaDods — Z\faRods lfl
mr mr mr m m
2b 4 4+/2D,. 4 ; ;
+7af3 \fa Dyci + M — G*TDORoh + lDOROCQ + i62 - &Don - &Rodz — 8mrfo + gDoRofO
m m m mr m m m
2 8 4 16
—lDoRofz + ff2 + *Drh + *Drcz
43 43 12
—ﬂDOD dQ—ﬂD Rod2 = =D, o+t D f2+ 2rpep 4 D ¢y — 6lD 2 p 4 2 D 2fy = 0.
Now we should take into account the parity restrlctlons.
Let P = (—1)7+1,
h=0, f2=0, ca=0, d2 =0, f3=—f1, cg=—c1, d3 = —dy; (7)
then we get
0 (0=0)
Z\[aDodl ZfaDodl + Z\[aRodl 3\)[ Rody
+ ab fl - a fl + 2faDrcl - QﬂaDrcl 4\/70101 — 4fa61 =U,
3mr 3mr 3m 3m 3mr 3mr
1 (3=1)
2b ib ib 2b
+¥;261 \fmrDodl — %Roth mfi — *DoRoﬁ + LD rC1 — fD fi— *D ~fi =0,
3
2v/2b 2b b 2v/2b
_n\{; Z\f Dod1+2\f Rod1+2mrf1+ DoRofl_ \fDrl—s- Df1+ Df1—0 (3=1),
2 (0=0)
*ZZfaDO dy 2zfaROd1 lefaDOdl szfaRodl B Lbafl @fl
+4\/>aDTC1 — 4\/§aDrcl == 07
m m
4=6
a2 2
—cC1 + —c1 —4dmrca;
mr mr
b? 2i 2i 21/2b
f—DoRocl oo - %01 + 2 pody + 2 R0d1 - ﬂDOD di — ﬁROD di — LD f1=0,
6
2a? a?
———c1 — —c1 +4mra
mr mr
2
+ DoRocl — :Tcl + iCl — *Dodl — *Rod + fDoD di + %D Rodi + Lﬁ)D f=0,
5 (o:o)
44/2 4+/2 2b 2b
- \[a01+ V2a 1—Jf +Jf1—0
mr mr
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7 (9=T7)
202 b? 2 2b 20
—w4~—d+ mq+ &qimmuu—m+—m—wﬁDﬁ—”rRﬁ
mr mr r
24 24 4
+£D0Dr01 + ﬂDv'Rocl - éDrCh - lDEdl =0,
m m m m
9 2 2 . . 2
——d; — —d; — @Docl — gRocl + dmrdy — Ldl
mr mr m m mr
2 iV 2b iV 2b 24 21 4
——di + Zf Do f1 + Z\/> Rof1 — ﬂDODrcl - ﬂDrRocl + éDrdl + lDZdl =0,
mr m m m m m m
8 (0=0)
iV 2 2 2v/2 2v/2 2v/2
—Z\faDocl - Z\[GRO c1+ Z\faDo c1+ LROCI + faﬂh - \[ad1 + \faDle — \faDrdl =0,
m mr mr m
10  (0=0)
+8\/5(10178\/2161 QZ\faDOdl Zz\faR d1+2zfaD0d1+21faRod1+me1
mr mr
2ba 4fa 42D, a
*7]01 D,ci — m (1 = 0;

thus we have only three different equations 1,4,7:

\/ile V2b szl
—  — UJrCl

2 1 1
c 5 5Cl— —Dodl —QDgfl—f*Drfl—fofl—ﬁ:O,
mr m m=r mrm
2 2
Ja 7:;;2 O —der— 2 —5 Djer + ﬂiDodl - —DOD dy — —D Dody — Q—ﬂiD fi=0,
(8)
2
wd1,4d1,iiD dy — 4 D,%dl
m 7" mrm m
127 1 i2+/2b 1
+J*D001 + 7DOD C1 + D Dogc1 — ! f —Dof1 =0,
mrm m
Let P = (—1)7,
fs=+f1, c3=+c1, d3z=+dy; 9)
then we get eight 2-nd order equations:
0 2 2
2 14/ 2 2 4 44/2
S 2 Dody + ab f1 faDrcl"‘ V2a 1
3mr mr 3m 3m 3mr
44/2 81
+ faq DR+ D0h+ —ZDOd 4 2 o Drds + 2D, Dods
3mr 3m 3m 3m 3m
4 4 8
+—Dyco+ —co+ =—Dyfo + D it g —fat L Dp2h+ 2 Db+ 2mrh = 0,
3m 3mr 3m m m
1
ab V2b ab 2ib V2b 1
- S Dody — —D VB e~ 2D p—Lpzp—o,
2mr? mrz T 2 Vomr odi —mfi = o mr " T h m h
3=1
242 2 24 2r 2 4 2r
ab, 2V o 2ab 2V o, fs — —Dofl - ﬂqu - —Difi - —D 2f =0,
mnr mr mr m
2 2 Y
2a? 6 81 4b
. ffo + ifz - aDodl - Jfl
mr
+8\[a c1 — fDOh - 4lD002 - i02 - 7D0d2
m mr

+2T‘D;)nDof0 _ 8m7‘f2 6TD()D()f2 8f2 4Drh + 16DTCQ + 8Z7‘DODrd2

m mr m m m

4 4 6 4 2 6
—ZDifo+ —Drfo+ —D2h— - D2cy — D2 fo + — D2 f, =0,
m m m m m m
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4
b? — 6 — a? 2v2 42 2iv/2 22 2v2 2
6—a c1 + fah— faCQ— ZfaDodg— faDrh—‘r faDTCQ— faD fg
mr mr mr m m
2
—dmre; — —DO e — —Dodl + —DOD di + —D Dody + ﬂD f1 =0,
6=4 2 2
b*—6—a o 4 2\/§ah_ 4\/§a62 Zz\faDOdQ 2\/§aDrh+ 2\/§aDT62_ Q\faD fa
mr mr mr m m
4r 43 2
—4mr03 — 7D0 C1 — fD()dl —|— 7D0D d1 —|— 7D Dodl + ﬂD f1 = O
E 2 2 2
2 2 2 2 4b 4r
ih — if() -+ if2 — 8[0, c1 — lf + Doh 8mrce — fD002 — i62 — fDof()
mr mr mr
4 44 4ar 4 4
——Dof2 - —f2 ~ —~Dh+ ﬂDoD d2+ ~=-DDodz + —Drfo — —Defo
2r
—|— DZh — fDT2+ Dfo+ DfoO
v f V2
2 6 16v/2 81v/2 4b
iy ifo-ﬁ- 7f2 acl -2 aDodl Jf1
mr
2 4
+8‘ga . 61D0h + TDOCQ + ic2 - 8—D dy — —Ron —Smrfo+ O Dofo
2 16
—lDof2+7f2+ D h+ DrCZ
43 47 12 12
—ﬁDOD ds — ﬂD +Dodz = ~Drfo+ =Dy fo
+ " p2h4 AT DECQ gy —D3f2 =0,
m m
7
242- 2 202 2 2 12i 2iv/2
b + CL Zfa Z\[aDo Co — Z\[aDQfQ — faD dg — JDOCl — 4m7“d1 — Z\[Z)Do‘]ﬁ
mr m m
f&DoD ¢ — —D Docr — ED di — ﬁD 2d, =0,
9 =7
2
— 1
b+TZT a? 4+ 2ZfaDoh—2“[aDoz—zlfaDofo—QfaDdg—ﬁDoc1—4m7’d1 22fbD0f1
27 2ir 4
—LTDoDTCl — 7D DOCl — éD dl — lD d1 = 0
8 .
4id2 _ 41\/§aD001 " 4ﬂa 4\[aD dy — 7D002
mr
217’ 2ir
—4mrd2 — 7D f2 — 7D0D h — 7D Roh
22r
+7D0D fo+ fD Do fo — fDoD fo— —D Do fa = 0;

Therefore, for states with the parity P = (—1)7, we have eight different equations 0; 1—3,2; 4—6,5; 7—
9,8; 10:

2a° a? i4v2a 1 2ab 4v2a 1 4v2a
- h —Dod1 —— —D,c
3m2r262 m2r2 + 3rm om0 13m27"2f1+ 3mr m Lt 3m 21“201
4+/2 2 1 8 1
(V2 2 1 +— L pan+ 2 ~—Dods + 2 DoDrds + D, Dods
3m?2r2 3mr m 3m 3m 3m
4 1 4 8 1 2 21
Py r2+3 5.3 C2 %*Der-ﬁ-ngfz-f— 22f2+ Dh+7*Dh+2h 0,
1-3
ab_, V2 - ab 2ib 1
2m2r2 m2r2 1T mz2 V2mr m o
2b 1 2 1
—f1 — D0f1 EVELR S Y fi— Qfol =0,
mr m mrm
2
24> 2a? 6a” 8iv2a 1 4ba
h - — Dody —
m2r2 + m2r2 fo+ m2r2 f2 mr m Ot m2r2 h
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8 2a 1 2 4 8 167 1
V2 —Dyer — —QDgh — —Djca — —5—5ca — — —Dods
mr m m T mrm
2 6 8 41 16 1 8i
+7D§fo—8f D0f2 ——5fo———D h+ffD 02+—D0D da
m m ' mrm mrm
4 1 4 2 4 2 2 2
A D fot =D ot S DM - D2 — Do+ D2 = 0
mrm mrm m m m m
4-6
2_6-—a? 2v/2 442 2 1 2 1 2 1 2 1
b 6 a01+ fah_ \[ac2 iv2a Ddg—ﬂ—Dh—i— \[a—Drz— fa—ng
m2r2 m?2r? m2r2 mr m mr mr m
4 4i 2v/2b 1
—4c1 — —Djer — ——Dodl + —DOD dy + —D Dody + 2v2b —D,f1 =0,
m mrm mr
5
2a° 2a° 2a? 8v/2 4b
32 - ng0+ §2f2_ \2[?61_ 2a2f1
m-r m-=r m-r m-r m-r
2 4 8 2
+—D(2)h — 8¢y — —Déc2 — 5 — —Dﬁfo
m-r
2 4 1 4 1 4 1
- Djf — f———Dh+—D0Dd2+7DDOd2+7fD fo——-=Difs
m mrm mr
+jpfh - —2D3c2 + —QDEfo + —2D3f2 =0,
m m m m
7-9
b2 +2—a? 2iv2a 1 2iv2a 1 2iv2a 1 2v/2a 1
m2r2 & T\rg EDDh_ LEDOCQ - T\/;EDOJCO_ L/; o Préz
12i 1 2 1 2 1 4
——Z*Docl — 4dq, — Z\[beoflfDoD c1 — zDTDocl — i*Drdl _ ijdl =0,
mrm m m mrm
8
2
432(12 4zfalD01+4fa1 4\[alDd1
m-r mr mr
RN 4d27ﬁiDof27—DoD h— 2DTRoh+
mr m mr m
2
+72D0Drf0 + TD’I‘DOfO - TD()DT]CQ — 72D7‘D0f2 = O’
m m m m
10
2a? 6a? 2a? 16v/2a 8“[ 20 1 b
_m2r2h 22 fo+ 2y fo+ 22 c1 *D0d1 + f1
8 1 6 4 8 8 1 i 6
1 \[a—DT e — —D3h+ —Djes + —sca —Z—D ds — —ZiDOdQ — 8o+ —5 D2 fo
mr mrm mrm m
4 1 16 1
Dof2+ — 2fﬁ——D h+ ——Dycs
mr m
fﬂDoD dgfiD DodngLD fo
mrm
12 1 4 6 2
+——D, f2 D h—|——D co2 — 2szo+7sz2:0-
mr m m

4. Projective Operators, Large and Small Components

In order to perform the non-relativistic approximation, we should find large and small components in
the wave function. To this end, we are to use the matrix I'® = T' [42].
Its explicit form in cyclic basis I'° was found in [43]:

0o G o 0
_ LAO o _1K0 ¢
=2 < 3 =
T OAO 9 %.807
o o F° 0
1 0000000001
o o |0 —o 0000001000
G'=[1o000[, A=\ 1, K°=10 000000100/
0 0000000010
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10000
0000O
0
0
0

0
0
0

1

2

0
0
0

0000 —

1

2
00000O0O O
0000O0O0O O
0000O0O0O O
0000O0O0 O
100000 O
000001

O Himo 0001_,30 cCooRmOo oo OO

0
0
0
0
0
0

O OO O O O O OAmO

0
0
1
3
0
0
0
0
1
3

(=l eiien)

0
0
0
0
0
0

1
3
1
3

0
0

000010 O
0000O0O0O O
000000 —
00000O0O O
000001

010000 O
000100 O
0000O0O0O O
0000O0O0O O
0000O00O0C —
000010 O
000100 O
001000 O
0000O0O0O O
0000O0O0 O
00000O0 O

0000
0001
0000

1

2

1
2
0
10000000 O 0OOOOOOOOO O OOOOO

01000000 O 0OOOOOOOOO O OCOOOO
00100000 O 0OOOOOOOOO O OCOOOO

00000020 0 000000000 O OOOOO
00
1

00000O0O0O
00000000 O 0OOOOO1TO0O0O0 O

00000O00O0
00000000 —

00000O0O0O
0000000
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Bo

Fo

0 000
1 000
0 000
0 000
0
0
0 200
0 020
0 00 2
3 000

(10)
(11)
(12)

Py

=1-T1°

Py

0;

2 _ I)
247

5(1?

r

P, P+P+P3=1,1=1,2,3.

Eis, Eas, Esp, B1a, Bag, Bsa, FEi3, Eas, E33, Bi3, Bag, B3}

column{h, ho,h1,he,hs, f1, f2, f3,c1,c2,¢3,d1,d2,d3, fo,
Evo, B2, E30, B1o, Bag, B3o, Ei1, Eo1, E31, Bi1, Bay, Bsy,

Y

The matrix I satisfies the 7th order minimal equation

We readily find explicit form of the projective constituents

which permits us to introduce three projective operators
so that

with the needed properties P?
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0 0
0 0
0 0
0 0
0 0
3 (Bu+ fi) Ly
é (2¢2 + E13 + 2E22 + E31 + 2f2) Lo
% (E33 + f3) L3
i (2¢1 + E23 + Es32) Ly
TIQ (2¢2 + E13 + 2E22 + E31 4 2f2) Ls = %Lg
i (2¢s + E12 + Eo1) Lg
0 0
0 0
0 0
0 0
0 0
0 0
Pw = 0 = 0
0 0
0 0
0 0
%(E11+f1) Ly =11
1 (2c3 + E12 + Ea1) Ls = Lg
& (2¢2 + E1s + 2E23 + E31 4 2f2) Ly = Lo
0 0
0 0
0 0
1 (2c3 + E12 + Eo1) Lio = Ls
% (2¢2 + E13 + 2E22 + E31 + 2f2) L1 = Lo
i (2¢1 + E23 + Es32) Li2 = L4
0 0
0 0
0 0
TIQ (2¢2 + E13 + 2E22 + E31 4 2f2) Lis = %LE
i (2¢1 + E23 + Es32) Liys =Ly
1 (Ess+ f3) Lis = Ls
0 0
0 0
0 0
there exist only six large variables: L1, ..., L (for what follows it will be enough to follow only eleven functions
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referring to scalar and symmetric tensor)

0 0
0 0
0 0
0 0
0 0
% (f1 — Eu) S1
é (2¢2 — E13 — 2E22 — E31 + 2f3) So
2 (fs — Es3) S5
i (2¢1 — E23 — E32) Sa4
113 (2¢2 — E13 — 2F22 — E31 + 2f2) S5 = %Sg
1 (2c3 — E12 — Eo1) Se
0 0
0 0
0 0
0 0
0 0
0 0
0 0
, PV = 0 = 0 ,
0 0
0 0
%(Ell _fl) S7=-51
i (—2¢3 + E12 + E21) Sg = —S6
ﬁ(—202+E13+2E22+E31 —2f2) 59:—%52
0 0
0 0
0 0
1 (=2cs + F12 + En) S10 = —S6
% (—202 + E13 + 2E22 + E31 — 2f2) Sll - *82
i (—=2c¢1 + Ea3 + E32) S12 = =S4
0 0
0 0
0 0
113 (—2c2 + E13 + 2E22 + E31 — 2f2) S13 = *%52
1 (—2c1 + Ea3 + E32) S1a = =5
% (E33 — f3) S15 = S3
0 0
0 0
0 0

here there exist only five small variables S1, S2,S3, S4, S6;
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h s1
ho So
h1 s3
h2 S4
h3 S5

0 S = 0

% (f2 — 2¢2) s7=0

0 S8 = 0
0 0
5 (2c2 = fo) 0
0 0
di So
da s10
ds S11
fO S12
Eio 513
E2o S14
_ E3o _ 515
Bl = Bio - 516
Bao s17
Bso 518

0 s19 =0
% (E21 — Er2) 520
é (—E13 — 2E22 + 5E31) 521
Bi1 522
Bo 823
B3 524

1 (Er2 — Eo1) 825 = —S820
% (—F13 + E22 — E31) 526
1 (Esz — Ea3) 827
Bis 528
Bao 529
B32 830
é (5F13 — 2F22 — E31) 531
% (E23 — E32) 8§32 = —S27

0 S33 = 0
Bis 534
Bos 835
333 536

From two groups referring to P, and P», we derive the following relations

fi=2L1 — E11, fi=25+ Eu,
2¢2 4+ 2f2 = 6Ly — (E13 + E31 + Fa2), 2¢2 + 2f2 = 652 + (F13 + E31 + Ea2),
fs =2L3 — E3s3, f3 =253 + Ez3, (13)
2¢1 =4L4 — (E23 + E32), 2¢1 =454 + (Ea3 + Es32),
2c3 = 4L¢ — (B2 + Ea1), 2c3 = 486 + (F12 + Eo1).
From the group Ps, if follows
]1:817 h():SQ, h1 = 83, h2:S4, h3:S5,

f2 =2c2, di =59, da=s10, d3z=s11, fo=s12.

Whence after simple combining, we arrive at expressions for eleven variables:
h=s1, fi=Li+5, fs=Ls+Ss5 fo=(L2+S2),
1
- 7<L2 + SQ)a (14)

dy = sg, dy =519, d3=s511, fo=s512.

c1=Ls+ Sy, c3=Ls+Ss 2

[\)

Let us take into account the parity restrictions:
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h=0, f3=—fi,c3=—ci,d3=—di, fa=0,c0=0,d2=0, fo=0,

so that _
pP=(-1)*
i=—fs3=L1+51, a=-cg=Li+ 5 di=—d3= s, (15)
h=0, fo=0, c2=0, da=0, fo=0.
5. The Non-relativistic Approximation, the Parity P = (—1)/*!
Consider the states with the parity P = (—1)7:
fi=(L1+51), c1=(La+8S1), di=so; (16)
the above three equations take on the form
b1 2b 1 1
L*D (La+ Sa) + V2 (L4 + S4) — L*ZDOSs) 2D(2)(L1 +51)
mr m m
21D(L+S L DALy 4+ 81) = (Li+ 1) =0
T 1 1)—W w(L1+51)— (L1 +51) =
3a* +b° — 6 4 4i 1
=2 (La + 51) = A(Ls + 81) — — - D3(La + 51) + - == Doss
m=r mrm
77D0D Sg — 7D D() S9 — 27\/>le (L1 + Sl) = O,
3a® b2 2 8 1 4 12i 1
% S9 —4s9 — 7*Dr59 — 7Dr Sg + J*Do(l@ + S4)
m=r mrm
21 i24/2b 1
+mf12DoDr(L4 + S4) + mfZQDrDo(L4 + S4) — ! rf —Do(L1 + S1) =

When performing the non-relativistic approximation, we should separate the rest energy by formal
change Dy = M + iDy, M > 0; besides, we should assume the following smallness orders for the wave
function components and derivative operators

1 1
L~1, Spg~z, sg~z, —D.~2, — ~uz
m mr
1 1 , 1 a )
—iDy = —(m +iDg) = —[m+(E+—)] ~ (1+22), (17)
m m m r
1 5 2 « 1 oL, 9 4

We will follow only the terms of orders z°,z,2? and neglect the high order terms (note that in the
order z° we should obtain identities). As the result, we derive (preserving only the orders z and 2?) z

2v2bL1 | 4D,Ls | 12L
7 \[ 1 + 4 + 4

— 489 = O7
mr m mr
132
V2bD,Ly v/2bLy /2bsy D3L, D?L, 2D,L;
- + - - =0,
m2r m2r2 mr m?2 m? m2r
3a’Ly V)L, 2v2bD,L, 4D0?°Ls 4D,sy 6Ly  4sg
2.2 2,2 2 + 2 -5t — =0
m=r m=r m=r m m m=r mr
2v/2 4D, 12
B V2bS, n Sy n Sy -0
mr m mr
or x
2v/2bL1  4D.L 12L
_2V2bL, " 1 1 g =0,
mr m mr
l’2
2bD,.L 2bL 2b 2 D2L, 2D,L
\f2 4 \fQ;—\ng—&-—(E—&—a/r)Ll— 21_ 21:0,
m=r m=r mr m m m=r
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2L 2L 2v/2bD, L 2 4D, L 4
3a’Ls | b’Ls  2V2b L4 42 (Bt afr)L, — 2P0 _ 6242 459 _ g,
m m m-r mr

m2r2 m2r2 m2r

2/2 4D, 12

_2V/2b5, n Sy n Sa _ 0
mr m mr

Expressing sg from the the first equations, and substituting result into the two remaining, we get

D?L, 2D,L; 0

(we do not need this constraint on small variables).

L1 2v2bLs @ 2
m2r2  m2r2 + E(E +a/r)ly - m2  m?r
3a’L b?L 4+/2bL 2 4D2Ls 8D, L 18L
a”Ly 4 \/;21+4—(E+a/r)L4— 24_ 24 24;:0.
m=r m m m=r m=r

m27‘2 m27.2
Let us multiply these equation by %:

2D, L 2L 24/2bL
1+b 1 \CQb 4}:07

1 2
(E—l—a/r)Ll—l—%[—DrLl - = =

1 D, L 2L 27 44/2bL 18L
4(E+a/r)L4+—[—4DfL4—8 4+3a 4+b 4 V/2b Ly 84]:0.

2m r r2 r2 r2 r2

With the use of a new variable, 4L, = L4, we get
1 ) 2D,Ly | VL1 bLs ]
(B+a/r)Li+ 50| = DIy = == = —\@2]—0,
2D,Ly | 3a’Ly | b’Ly  4v2bLy | 18Ls7

* T T T2 T ] =0.

_ 1 -
E L —[—DL -
( —I—a/T) 4+2m ri4 r 4712

This system may be rewritten differently
1 ) 2D, L, 1/, b -\ _
(B+a/r)Li+ 5| = (DL + =24) + = (8Ly — EL“)} =0,
_ 1 9=  2D,L4 1 3¢ b 18, -1
(B+a/r)La+5—| = (DiLa+ === + (= aVBLi + (5 + 7 + L) = 0.

With the shortening notation

A:rQ[d—Q—i—Qi —2M(E+ a/r)
dr? dr ’

it reads
b - 3a2 4+ b% + 18 -
ALy =b’Ly — —L4, ALy = 4L, + ———— [, =0.
1 1 NG 4 2 1 1 4

Taking in mind the identities
3a? + b2 +18 ., .
— =j"+j+4=c

a:V.j<j+1)7 b:V(j_l)(j+2)7 4

we get the matrix presentation of the system

2 _ b

AR AR

Let us find the linear transformation reducing the system to a diagonal form

F'=S8F, SAS™'F' =SAS™'F'| AF =(SAS™HF', (SAS™')=4"= ‘ Aol AO2
this leads to
S11 812 ’ b _% ’ _ ‘ At 0] s osi2
S21 S22 || —44/2b ¢ 0 Az || s21 s22
Whence it follows

LA 511+ cs12 = A1 S12, ‘ (bjb/\;\%) (C4l/§l)) ‘ :; =0,

b2s11 — 4V2b 510 = A1 s11,  —
11 12 1511 /2
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b
b? 521 — 4V2b 829 = g 821, ——= S21 + €522 = 2 S2,

V2

522

(b2 = X)) —4v/2b ‘
~b/V2 (c=N)

From vanishing the determinant
A= Ae+b*) +b*(c—4) =0,
or (let j(j +1) =2)
M-_2\(z+1)+2°-22=0 = DN-(z+1D)]P=4dr+1=4(+1/2)%

so we arrive at

M=z+1+/4G+1/22=0G+1)G+2), > =A)si1—4V2bs1a =0, s11=1,

=zx+1-— \/4(j + 1/2) = (j - 1)],/\ (b2 — /\2)821 - 4\/51)822 =0, s899=1,
In this way, we obtain two independent equations

¢ d a (G+DHE+2)
(A= X\)F1 =0, {d2+2d— M(EjL;)_Ti2
@, d an (= 1)j
[d2+2d— M(E+;))— =

}Fl =0
(19)
AP, = APy, |7 =0

their solutions and energy spectra are well-know [47].

6. Nonrelartivistic Approximatoion, Parity P = (—1)
Let P = (—1):
h=s1, fi=(L1+51), c1=(Ls+Ss), di = s9,

1
fo=(La+ S2), c2= §(L2 +52), da=s10, fo=s12;

the above 8 equation take the form

0
2a? a? i4v2a 1 2ab
WQ(L2+SQ) m81+ w5 5

4v/2a
3m2r

8 1 21
+-——Dgs10 + 7D0Dr310 + D Dos1o
3mrm 3m

401 4 1 8 1 )
D = (L o —Di(L —DTL
Eys— 3m222( 2+52)+3 peoueieny ( 2+52)+3 (L2 + S2)

+4fa1

Imr m

D, (L4 + 54)

L Vet
( 1+ S+ 3Im?r

4 2
+ 2(L2+S2)+—D2s +——D 51+ 2s1 =0,
3m?2r
1-3 Y
ab b ab 1 2tb 1
———5] — L —(L — Dgsg — (L
DINCNG, S1 Zr 2( 4+ S4) — 2y 2( 2+ 52) — o m 0s9 — (L1 + S1)

1 b1 21 1
Do(Ll +51) — L*D (La + S4) — ——Dy(L1 + S1) — TDE(LI +51) =
mrm m

2a? 2a? 6a? 8iv2a 1 4ba
m2r281 + m2T2f0+ m2r? (L2+S2) f *Do S9 — ey 2(L1 +Sl)

sfa 1 2 4 51 8 160 1
e D (La+ S1) — ﬁDgsl - WD%(LQ + S2) — WQ(LQ + S2) — %*DoSw

2 o 6 o
+mDof0 —8(L2 + S2) — jDo(LQ + S2) — W(Lz +52)

4 1 16 1 1 81
———Dr s1+ f*D — (L2 + S2) + 7D0Dr310
mrm 2

4 1 6 1 6
_%ED f0+f*D (L2+52)+fDr s1— fDQ (L2+Sz)— fD f0+fD (L2 + S2) =
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4-6
b? — 6 — a? 2v/2a 4v2a 1 2iv2a 1
————— (L4 + S4) + %51 - {2 (L2 + S2) — \f —Dosi1o
m2r m2r? 2 m

2v/2a 1 +2\/za;LD Lt 8) - 2fa1

D (L2 + SQ)

4 47 2v2b 1
—4(La + Sa) — DO(L4 + S4) — %*DOSQ + 7DOD S9 + fD Dosg + L*D (L1 +51) =

2a> 2a> 2a2 8\[a 4ba
22 S1 — 22 fo+ 22 (L2 + S2) — (L4 + S4) — 2,2 (Ll +51)

2 1 4
+WD381 —85 (L2 + S2) — DO (L2 + 52) —

8 2

ooy 2(L2 + 52) 2D§f0
2 8 4 4i

_WDO(LZ + 52) - W(LQ + 52) - %EDTsl + WDODTSM

44 4 1 4 1
+LDTD0810 + f*Drfo — f*Dr(Lz + 52)
mrm mrm

4 1
+—DT 1 — —D2 5 (L2 +52) + —D 7 fo + —D Z(Ly = S2) =0

7-9

b2 +2 —a? 21v2a 1 21v/2a 1 2iv/2a 1 2v2a 1
I S9 + T\nf —Dgs1 — n\[ *Dog(Lz-f—Sz) \C — Do fo — \[ ED'PSIO

127 1 2 b1
—mf;*Do(sz + S4) — 4s9 — iv2 *Do(Ll + S1)

0
— = DoDy(Ly + Sa) — —2DTD0(L4 +8) -2 Lpa - —QDESQ =0,
m m mr m m

4a? 4iv/2a 1 4/ 2a 4v/2a 1
mr

m2r28 0= *DO(L4 + Sa1) + 22 59
8 1 81 21
*f*DO*(Lz + S2) — 4510 — f*Do(Lz + S2) — fDoD s1 — 2D7‘R051
mrm mr
+ﬁDODTfO + ﬁDrDofo - ﬁDODT(LQ + S2) — ﬁDTDO(LZ +52) =
10 2 2 2 NG \[
2 6 2 16 81 1 b
- 32814— 32f0+ 32(L2+52) a(L4+S4) - a*Do ot 55 (L1+51)
m2r m2r m2r m2

8 1 6 4 8
V2a —Dy(Ls + 81) = —Dis1 + —3 D= (L2+SQ) Wi(h-i—&)

8 1

81 6
———Dys 10———D0510—8f0+ Dofo
mrm mrm

+

mr

2 8 4 16 1
ﬁDg(LerSz) 2 (L2+Sz)+f*Dr 1+f*D (L2+Sz)

43 4 12 12
*iDoDrslo — fDrDosm - f*Drfo f*D (L2 + S2)
m2 mrm mrm

2 1 6
+—5D; 1+—D22(L2+52)——D fo+—D (L2 +S2) =0

No we are to take into consideration the smallness orders in accordance with the known rules:

1 1
L~1, Spg~z, sg~xz, —D.~zx, — ~uzx,
m mr

1. 1 1 a )
E2D0=>a(m+zDo)—m[m+(E+r)] (1+ 27,

1 2 2 « 1 Q.92 2 4
D=1 2B+ Y (B4 Y~ 12—t
m2 0 m( +r) m2( +r) o

as the result we get 1

xg( B a’s1 a9, 2abS1 4v2aD,; Sy 8v2aS4 Dgsl

m2r2  3m2r2  3m2r2 3m?2r 3m?2r2 m?

D2 2D2S, 2D, 10D,.S 25
+ S1 + 2 + S1 2 2)

m2 3m?2 m2r 3m?2r m2r2
_HCQ( a’®Lo 2ably 4\/§aDTL4 8\/§aL4 4\/§a39
3m2r2  3m?3r2 3m?2r 3m2r2 3mr
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2D2L 10D, L 4D 2L 8 2
+ 22 + - 2 + 510 + 222 S10 S12>
3m 3Im?r 3m mar 3mr  3mr
+334 4iﬂaD059 2D8812 8iD0$10 QiDoDrslo QiDTD()Slo
3m2r 3m?2r 3m?2r 3m?2 3m?2
2D(2,312x6 D(Z]slxs _
3m2r  m2 +aiz =0,
2
o2 (_abLe _ V2bD,La  V2bLs  V2bsy | DiLy _ DiLy 2Dl
2m?2r2 m2r m2r2 mr m? m? m2r
—|—.T3 ab31 _ abSQ _ \/ibDrS4 _ \/ib54 D(Q)Sl _ Dle _ 2DT51
2m2r2  2m?2r? m2r m2r2 m? m? m3r
ot D§L1  iv/2bDosg N D35y a5 _o,
m2 m2r m?
3

2 (6a2L2 4abLy | 8V2aD.Ls  8v2aso N 8D Lo N 4D} Ly 4 12Drly | 8Drsio  12Lo 16310)

m2r2 m2r2 m2r mr m2 m? m2r m m2r2 mr

+x3(2a251 2a%s12 6a%Ss  4abS: 8v/2aD, S + 2D(2)s1 _ 2D0%s12

m2r2 m2r2 m2r2  m2r2 m2r m2 m2
8D%Ss  6DZ%sy  2D2sis  4D2?Ss  4D,s; 4D;s12  12D,S> 125
+ 2 T 2 PR 2 2, 2 20 m2 2)
m m m m m2r m2r m?2r m2r

gt (_ 8iv/2aDoso N 8DZL,  16iDO0s1o N 87;D0Dr510>

m2r m2 m2r m2

m2

+1’5 (2D331 _ 2D(2);912 + 8D3252
m m

) =+ (251 — 2812)1} = O,
4

m2r2 m2r m2r2 mr m2r2 m2r m? m m2r2  mr

xz( @’Ls _ V2aD:Ly _ 2V2aLls _ 2v2as10  b’La , 2V2bD,Ly  4ADjLa L ADrso 6L 4ﬁ>

m2r2 m2r m2r m2r2 m2r2 m2r2 m2r m? m2r2

o (_a254 2v2aDrs1 V/2aDrS; | 2v2as1 2v2aS> | b°Si | 2V2bD.Si | 4D3Ss 654)

. 2 . . . 2 5
+x4 (7 22\/50,1)()810 + 4DOL4 4ZD089 + 2ZD()DTSQ + QZDTD()SQ) + 4DOS433 _ 0’

m2r m? m2r m? m? m2

m21"2 m27‘2 m27,2 777,27"2 777,27"2 m2 m2 m2

x3(2a281 20,2812 20,252 4ab51 8\/50,54 2D(2)81 + 2D(2)512 + 4D(2)SQ

+2D£sl+2D$sm 4D,sy  4D,si2  4D,S> 1252)

m?2 m?2 m2r m?2r m2r m2r2
o 2a°Ly  4abLi  8v2aLs  4D§L: 4DyLy  8Dysio  12Ls
m2r2 m2r2 m2r2 m?2 m2r m m2r2
2 - - 2 2 2
xs(_ a’sg  iv2aDoLz  2V2aDrsio | b°sy  2iv/2bDoLi  2iDODrLy
m2r2 m2r m2r m2r2 m2r m?2
12iDoLs  2iDoD,Ls 4D}sy 8Drsg  2sg )
m2r m? m? m2r m?2r2
L 2iv2aDos1  2iv/2aDosiz iv/2aDoSs 3 2iv/2bDg 81 _ 2D0D,Sy  12iDoSy  2iDoD;Sa
m?2r m2r m2r m2r m?2 m2r m?
( V2aLy 2v2bLi 4D.L, 12L4 )
+x | — - - . —4sg
mr mr m mr
a? 2v2as1  2vV2as12  V2aS>  2V2bS:i  4D,Si  12S:\ _ 0
mr mr mr mr m mr )

m2r2 m2r m2r m2r2 m2r m? m?

e (4a2310 4iv/2aDoLy | 4V2aDrsy | 4v2asy _ 12iDoLs _ 2iDODrLs _ 2iDTD0L2)

gt ( B 4iv/2aDoSy  12iDoS2  2iDoD.s1 N 2iDoD,s12

m2r m2r m2 m?2
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722‘D0D7‘SQ . 2iDTD081 +

QiDTD()Slz . 2iDTDQSQ )

m2 m2 m2 m?
( 4v/2aL, AD,L, 12L, )
+z (- - - —4s10
mr m mr
g (7 4v2aSy _ 4Drsi  ADrsiz  AD:Sz 1252> o,
mr m m m mr
8
xs( _ 2a’s1 | 6a’siz | 2a°S | 4abS:  8v2aD,Si  16v2aSi | 6D0%s1  6Dfsi2
m2r2 m2r2 m2r2 m2r2 m2r m2r2 m? m?
+2D£$1 . 6D3812 + 4D£SQ 4DT81 . 12Dr812 QODTSQ 1252)
m2 m2 m2 m2r m2r m2r m2r2
o (2a%Ly  4abLy = 8v2aD.Li  16V2aLs 8V2asq 4D?Ly  20D,Ly 8D,si0 12Ls 16510
+x - + + - -
m2r2 m2r2 m2r m2r2 mr m2 m2r m m2r2 mr
4 8iv2aDgsg 16iDgsi0  4iDoDysio  4iD,Dosio
+x | — - - -
m2r m2r m? m2
6D3 6D3
+175 < 0281 — %) -+ (681 — 14812)$ =0.
m m
Further we preserve only terms of orders z and z2:
X
S1 = 0, 281 — 2812 = 07 2512 — 281 = 0,
~V2aLs  2V2bLi  4D;Ls 12Ls tse — 0
mr mr m mr 9=
4v/2aL 4D, L 12L
— \[a 4 — 2 — 2 —4810:0, 681—14512:0.
mnr m mr
$2
a’Lo 2abL1  4v2aD,Ls 8vV2aLs 4V 2ase n 2D2 L, n 10D, Ls  4D,s10 N 2L  8si0 . 2512 0
3m2r?2  3m2r2 3m?2r 3m2r2 3mr 3m?2 3m2r 3m m2r2 " 3mr  3mr
_abLy  V2bD;Ls V2bLi  \/2bsg n DiLi  DILi  2D,;L. _
2m?2r2 m2r m2r2 mr m?2 m2 m2r
6a’L, 4abL:, 8vV2aD,Ls 8v2asy 8D32L, 4D?L, 12D,L, 8D,sio 12Ls  16s1o
- - + + — - =0,
m2r2 m2r2 m2r mr m? m? m2r m m2r2 mr
a’Ly  V2aD,Lo 2v2aLls 2v2asw0  b°La  2v/2bD.L, 4D3L, 4D,ss 6Ls  4s¢
- - - - + + - —— =0,
m2r2 m2r m2r2 mr m2r2 m2r m2 m m2r2  mr
2a°Ly  4abLi  8v2aLs  4D3L:  4D;Lo  8Dysio 12Ly _ 0
m2r2 m2r2 m?2r2 m2 m2r m m2r2 =
2v2as1  2V2as12  V2aS8; 2265y AD.Sa 1255 _
mr mr mr mr m mr
_4v2aSi  4D,s: L ADs1z _ 4D:Sy 1282
mr m m m mr
2¢°Ly  4abL1  8y2aD,Ls 16v2aLs 8v2as9 4D?L, 20D,Ly 8D,sio 12Ls  16s1o
2,2 2,2 2 2,2 + T 2 - 2,2 =0,
m=r m=r m=r m=r mr m m=r m m=r mr
or differently
X
S1 = 0,
281 — 2812 = 07
2512 — 281 = 0,
_V2aLs  2V2bLi  4D;Ls 12Ls tse — 0
mr mr m mr o=
4v2aLs 4D,Ly 12L.
— — — — 4510 = 0,
mnr m mr
681 — 14812 = O;
z? (make the change Do => 2 (E + /1))
a’Lo 2abL1  4v2aD,Ls 8vV2aLs 4V 2ase n 2D2L, 10D,Ls = 4D,sio = 2La  8sio = 2S12
3m2r?2  3m2r2 3m?2r 3m2r2 3mr 3m?2 3m2r 3m m2r2  3mr  3mr
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L 2bD,.L 2bL 2 2 D?L 2D, L
—ab2—\[b74—\[b4—\[b59+—(E+a/r)L1— rLi 7«1:07
2m?2r2 m2r m2r2 mr m2 m2r
6a’Ly  4abLy = 8v2aD.Ls 8 4D?L, 12D,L, 8D, 12L, 16
a222_a221+\[a2 4 \[GSQ (E+a/7")L2+ 22+ 22+ s10 222_ 510:07
m2r m2r m2r m m2r m m2r mr
2 2
_a’Ls  V2aD,Ly  2V2aLsy 2\fasm b’La | 226D, L 442 (Bt ajryLy 4 s _ 6La _ds
m2r2 m2r m2r2 mr m2r2 m2r m m2r2  mr
20°Ly  4abL,  8v2aLs4 2 4D.Ly  8Dysio 12Ls
m2r2  m2r2  m2r2 4o (E+a/T)L2 T m2r + m om2r? 0,
2v2as1  2v2as12 fasz _2V2bSy 4DnSy 128 _
mr mr mr mr m mr
_4v2aS:  4D;s: L 4Drs12_ 4D:Sy 1252 _
mr m m m mr
2a°Le  4abLi = 8v2aD.Ls 16v/2aLs 8v2asy 4D?Ly 20D,Ls 8D,sio 12Lz 16s1o
- + - - —~ =0
m2r2 m2r2 m2r m2r2 mr m2 m2r m m2r2 mr

Expressing the small components from equations of order x through large ones, and substituting result
in equations of order z2, we obtain

1
_@’Ly _ 2abLy  4v2aD,Ls 4v2aly 2D7Lp 10D:Lp  6L» _
3m2r2  3m23r2 3m?2r m2r?2 3m?2 3m?2r m2r2
2
b2L1 2\/51)[44 Dle 2DTL1 2CYL1 2L1E
2,2 2.2 2 Cynlie + =0,
m?2r m2r m m?2r mr m
3
10a*Ly  4abLi  8V2aD.Ls 40v2al, 4D*Ly 4D.Ly 36Ly 16aLs 16L.E
_ + =0,
m2r2 m2r2 m2r m2r2 m2 m2r m2r2 mr m
4
8a’Ly  5V2aly | b°La  2V2bLy 4DiLs _8D,Ls | 6Ls  8als  8LiE _
m2r2 m2r2 m2r2 m2r2 m2 m2r m2r2 mr m
5
20°Ly  4abLi  8v2aD,Ls 8V2aLs 8D?Ls 28D,Ls 12Ls 8aLs S8LoE
— — — — — + =0,
m2r2 m2r2 m2r m2r2 m? m2r m2r2 mr m
ﬂaSQ 2\/51)51 4DTS4 1254
- — — - =0, not needed
mr mr m mr
74\/§aS4 — 4D, 5, — 125, =0, not needed
mr m mr
6

6a’Ls  12abL1  24v/2aD,Ls 56v/2aLs 12D?L,  60D,Ls  60Ls

=0.
m2r2 m2r2 m2r m2r? m?2 m2r m2r2
So we arrive at equations for L1, Lo, La:
o2
1 gD2L2+ D, Lo +4faDL4+4faL +2ibL 2 8L2:0,
3 3r 3r2 3r2
2 24 12
6 12D2Ls+ 6T?DTL2 4 8 T‘; Or, + ‘[“D Li+ 56\[“ + r;lbLl =0.
10 36 8 40v/2 4abL
3 (E+=)La + “T+ Lo+ f“DTLH ;Q[C‘LH =0,

2a% — 12 4bL
5 8D3L2+78DTL278m(E+%)L27 “TQ L2+8\[DL4+8\[GL+ WLy,

2 b2 2v/2b
2 [DL1+ DLy —2m(E + 2 )Ll]——L1 \fL4:O

2
2
4 D2L4+§DTL4—8m(E+g)L4—3a —|—s +6 Lu— 5{a Lo \Cb
r r r r r
let 4L4 = 1_147 then we get

2
4 [D L+ DL4—2m(E+ )L4}—3a +o +6E4—5\/§a Loy — 2\[1) 1 =0.
47.2 2 7.2
Equations 2 and 4 have the needed nonrelativistic structure

P 2 _ _
{Df + 5D, —2m(B+ %)}Ll — AL, [Df + 2D, —2m(E+ %)} Ly = AL,
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From equation 3, let us express, and substitute the result into equation 5 — this leads to

2 «a a’L 6L 4v/2aL
D?+ 2D, —2m(E+ —) LQ——Q——Q—#:O
r r r
Let us turn to equation 1 and express from this the variable %DTL4, and then substitute the result into
equation 6; in this way we arrive ay the identity 0 = 0. Therefore, we have derived three equations with
the needed structture (remembering that 4L, = Ly)

2 b2 2,
[Df + D, —2m(E+ 9)}L1 - L - V2hr .
r r 2r ok
2 6
[Df + 2D, —2m(E+ 9)} Ly -2 : Ly — QL4 —0, (21)

2 = 3624+ 0> +6- 5v2a 24/2b
[Df+—DT—2m(E+—)}L4 L \C Ly— ‘C _
r T 4r r T
In the matrix form it reads
2 « Ly
A:T2|:D£+7Dr—2m(E+f)i|, L: L2 9
T r I
4
V2b
b2 0 N _ . '
AL=AL, A=| 0 a®+6 2 |,a=+j(G+1), b=+({-1)(+2),
2V/2b 5v/2a 307446
F $11 S12 S13 A0 0
F=SL=|F|, AF:SAS_lF, S =1 821 S22 So3 |, SAS™I=A"=]0 Ao 0
s 531 S32 533 0 0 X3
So we get SA = A’S, that is
511 (b2 - /\1) +2v/2bs13 s12 (a2 -1+ 6) + 5\/§CL813 (3a + 0% — 4\ + 6) +V2as12 + b\b/l—l
S21 (b2 — )\2) +2v/2bs23 522 ((12 — A2+ 6) + 5ﬂa523 (Sa +b% —4h + 6) +v2as22 + \“7’—1 =0.
$31 (52 — >\3) +2v/2bs33 s32 (a2 — A3+ 6) + 5ﬂa533 (Sa +b% —4X3 + 6) +v2as32 + bs‘“

Here we have the linear system of the same structure (i = 1,2, 3):

Si1 (b2 — )\1) + 2\/5()81'3 = 0, Si2 ((12 — )\Z + 6) + 5\/5(182'3 = 0,

bsﬂ 1 2 2
+V2as;0 + =83 (3a® + b2 +6 — 4);) = 0.
V2 2 g )

From vanishing the determinant of the last system, we derive

A — (357 + 35 +5) A + (35 +65° + 5% — 2j —4) A~

(=20 -DE+2DG+3) (77 +7+1) =0, Adds > 0.
Let us study the roots numerically, for fixed values of j = 1,2,...,10:

jg=1 0 0.376525 10.6235
7=2 0 5.15571 17.8443
Jj=3 254917 11.2483 27.2025
j=4 710818 19.283  38.6088
j=25 13.6632 29.3 52.0368
j =6 222141 41.3096 67.4763
j=7 327618 55.3156 84.9226
j =28 453072 71.3196 104.373
j=9 59.8508 89.3223 125.827
j =10 76.3931 109.324 149.283
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The first line of the table is meaningless. However, we should recall that the case j = 0 is special,
because the initial general substitution should be modified. Evidently, the case of j = 0 should be
examined additionally and as a separate one.

Instead of the parameter A, let us introduce more helpful parameter, A = L(L + 1). Then the main
algebraic equation takes on the form

G-2)G-1G+2)(G+3)(2+5+1)+
+ (4 -7 (3(j + 2)j2 +j— 2)) L+ (9 —j(j + 1)(3j(j + 1) — 5))L2+

+(65( +1) +9)L* + (3j(j + 1) +2)L" = 3L° — L° =0,
then the numerical study gives

j=0 —3. —1.24037 — 0.897 —1.24037 + 0.89: 0.240369 — 0.897 0.240369 + 0.89% 2.

j=1 =3.7975 —1.29153 —1. 0. 0.291533 2.7975
j=2 —4.75374 —2.82502 —1. 0. 1.82502 3.75374
j=3 —5.73952 —3.89092 —2.17307 1.17307 2.89092 4.73952
j=4 —6.73368 —4.91962 —3.2126 2.2126 3.91962 5.73368
j=5 =7.73096 —5.93599 —4.23004 3.23004 4.93599 6.73096
j=6 —8.7296 —6.94668 —5.23963 4.23963 5.94668 7.7296
j=7 -9.7289 —17.95423 —6.24559 5.24559 6.95423 8.7289
j=8 —10.7286 —8.95988 —7.2496 6.2496 7.95988 9.72855
j=9 —11.7284 —9.96427 —8.25247 7.25247 8.96427 10.7284
j =10 —12.7284 —10.9678 —9.2546 8.2546 9.96778 11.7284

Tree last columns give positive values for L1, Lo, L3; therefore, after performing the linear transformation,
for states with the parity P = (—1)? we obtain three separate equations

d? 2d o

{W+;% —2m(E+;)*L1(L1 +1)]F1 :Oa
d? 2d o

25+ -0 —2m(E+2) — Lol + 1] By = 0, (22)
d? 2d «

G+ 2B+ D)~ La(La+ D] R =

solutions for these equations are well-known [47].

7. States with j =0

For the case j = 0, we present only the final result. Solutions with states with the parity P = (—1)7+
do not exist. For states with the parity P = (—1)7, the 5 independent components are divided into large
(L) and small (S) parts as follows

Ly + S
h =251, fo=La+ 5, 022%, dz = 510, fo =512 (23)
After performing the needed calculation (similar to described in the above), we arrive at a second order
equation for the function Lo(r) = f(r):

d? 4 i 2mE  2ma 1

e = Lo=0, B, = -t~
dr2+rd7‘+ 3 + 3 r] 2=0,

n=0,1,2,... (24)

8. Conclusions

In this study, we have studied the non-relativistic approc=ximation for a spin-2 particle in external
Coulomb field. The use of parity constraints led to a natural separation of the system into subsystems of
3 and 8 equations for states with parities P = (—1)*1 and P = (—1)7, respectively. For the subsystem
corresponding to P = (—1)7*! we have reduced the problem to two independent Schrodinger-type
equations in the presence of a Coulomb field. For the subsystem corresponding to P = (—1)7, have
reduced the problem to three independent Schrodinger-type equations in the presence of a Coulomb field.
Consequently, we have obtained five distinct energy spectra corresponding to the non-relativistic spin-2
particle in the presence of a Coulomb field. For the special case j = 0, we have reduce the problem to a
single Schrodinger equation with a hydrogen-like spectrum.
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