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Spin 2 Particle in Coulomb Field, the Non-relativistic
Approximation
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The main goal of the present paper is to derive the non-relativistic system of equations for a
spin 2 particle in presence of the external Coulomb field, then to solve it and to find the relevant
energy spectra. We started with the known radial system of 39 equations derived for the case of a
free particle and modified to take into account the presence of the Coulomb field. After eliminating
the 28 components related to vector and 3-rank tensor, we get the system of second order for 11
components referring to scalar and symmetric tensor. In accordance with the parity restriction, it is
divided in two subsystems, of 3 and 8 equations. For performing the non-relativistic approximation,
we apply the method of projective operators constructed on the base of the matrix Γ0 of the initial
matrix equation. Depending on parity, we derive two non-relativistic sub-systems, of 2 and 3 linked
differential equations. With the use of the linear similarity transformation they are reduced to five
separate equations with Schrödiger type non-relativistic structure, and evident energy spectra. The
case of minimal quantum number of the total angular momentum, j = 0, should be considered
separately.
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Introduction

The theory of massive and massless fields of spin-2, following the foundational work of Pauli and Fierz
[1–3], has long attracted significant attention [4]–[36]. Several key aspects and challenges of this theory
have been explored over the years. Most studies have been conducted within the framework of second-
order differential equations, with a particular focus on the additional constraints required to preserve
the five independent degrees of freedom for a spin-2 particle. This problem becomes even more intricate
when extending the theory to curved Riemannian space-times. An additional complication arises when
studying the massless spin-2 field. The well-known Pauli–Fierz solution for flat Minkowski space does not
carry over to curved space-time. Extending the Pauli–Fierz prescription to a generally covariant form
leads to unexpected constraints on space-time geometry: the Ricci tensor Rαβ and the Riemann tensor
Rαβρσ must vanish identically. To resolve this, a non-minimal interaction term involving the Riemann
tensor can be introduced into the basic equations [30], allowing the constraints to be reduced to Rαβ = 0.

Another area of interest has been the problem of anomalous solutions in spin-2 theory. A technical
alternative for studying spin-2 fields, both massive and massless, involves formulating first-order sys-
tems. This approach, based on the Gel’fand–Yaglom formalism [6], was first explored by Fedorov [7] and
Regge [8]. Their work demonstrated that a spin-2 particle requires a 39-component set of tensors for
its description. This formalism allows for the exploration of new physical questions related to degrees
of freedom. For instance, for massless case, the 39-component matrix equation was solved in Minkowski
space-time in [39] using cylindrical coordinates t, r, ϕ, z and a tetrad. Six linearly independent solutions
were found. By applying the Pauli–Fierz approach, adjusted to the tetrad formalism, the gauge solutions
were constructed using exact solutions for the massless spin-1 field. This yielded four independent gauge
solutions and two gauge-free solutions for the spin-2 field, as expected from physical reasoning.

Additionally, F.I. Fedorov introduced a more general theory for the spin-2 particle based on a 50-
component set of tensors. This theory, in the presence of external electromagnetic fields, describes a spin-2
particle with an anomalous magnetic moment [36, 40]. In Riemannian space-time, the reduced theory
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automatically incorporates non-minimal interaction terms involving the Ricci and Riemann tensors. One
notable aspect of this theory is its allowance for a new massless limit for the spin-2 field [38]. This
is particularly significant because the minimal Pauli–Fierz theory does not possess gauge symmetry in
curved space-times with Rαβ = 0. However, the generalized theory exhibits gauge symmetry under these
conditions, as demonstrated in [38].

In the present study, we focus on a specific problem within the 39-component theory: the non-relativistic
approximation for a massive spin-2 particle in external Coulomb field. A similar problem was previously
addressed for this particle in Cartesian coordinates [41], where a Pauli-like equation was derived in
presence of electromagnetic fields.

In Section 1, the basic definitions and notations, including the structure of the 39-component wave
function with spherical symmetry, are given. On solutions, the square and third projection of the total
angular momentum are diagoanlized. For separating the angular dependence of the wave function we
apply the Wigner D-functions.

In Section 2, we specify the known system of the radial equations, deriving previously for the case of a
free particle, and modify it in order to take into account the presence of external Coulomb field. Besides,
restrictions due to diagonalization of the spatial reflection operator are presented.

In section 3, we eliminate 28 variables related to 4-vector and 2-rank tensor, Φ1,Φa[bc], so producing
eleven equations of the second order for the variables referring to scalar Φ and symmetric tensor Φ(ab).
Allowing for the parity restrictions, we derive two subsystem of three and eight second order radial
equations.

In Section 4, we apply the general method for performing the non-relativistic approximation; it is based
on distinguishing between large and small components of the wave function; the last are found by using
three projective operators derived from the seventh-order minimal polynomial for the 39× 39 matrix Γ0

of the initial matrix equation.
In Section 5, from the system of three 2-nd order equations for states with the parity P = (−1)j+1,

we derive two liked radial equations with the non-relativistic structure; after performing a special linear
transformation it reduces to two independent equations of the Schödinger type in presence of Coulomb
field.

In Section 6, from the system of eight 2-nd order equations for states with the parity P = (−1)j we
derive three linked radial equations with the non-relativistic structure; after performing a needed linear
transformation, it leads to three independent equations of the Schödinger type in presence of Coulomb
field.

So, we obtain five energy spectra, referring to a non-relativistic spin 2 particle in presence of the
Coulomb field. The case of minimal value of the quantum number j = 0 is a special one, and it leads to
only one Shrödinger type equation of the the known structure.

1. Initial equations

In [43], were performed calculations concerning the separation of the variables in the matrix equation
describing a spin 2 particle in spherical coordinates. Below we recall only the most basic points. The wave
function consists of scalar, 3-vector, symmetric tensor, and 3-rank tensor antisymmetric in two indices; in
total of 39 components. On solutions with spherical symmetry, the following operators are diagonalized

J⃗ 2H = j(j + 1)H, J3H = mH; J⃗ 2
(1)H1 = j(j + 1)H1, J

(1)
3 H1 = mH1;

J⃗ 2
(2)H2 = j(j + 1)H2, J

(2)
3 H2 = mH2; J⃗ 2

(3)H3 = j(j + 1)H3, J
(3)
3 H2 = mH3.

(1)

When separating the variables, we applied the Wigner D-functions technique Dj
−m,−s3(ϕ, θ, 0) = D−s3 ;

see in [44]; the known recurrent relations were used:

∂θD0 = +
1

2
a D−1 −

1

2
a D+1,

−m

sin θ
D0 = −1

2
a D−1 −

1

2
a D+1,

∂θD+1 = +
1

2
a D0 −

1

2
b D+2,

−m− cos θ

sin θ
D+1 = −1

2
a D0 −

1

2
b D+2,

∂θD−1 = +
1

2
b D−2 −

1

2
a D0,

−m+ cos θ

sin θ
D−1 = −1

2
b D−2 −

1

2
a D0,

∂θD+2 = +
1

2
b D+1 −

1

2
c D+3,

−m− 2 cos θ

sin θ
D+2 = −1

2
b D+1 −

1

2
c D+3,

∂θD−2 = +
1

2
c D−3 −

1

2
b D−1,

−m+ 2 cos θ

sin θ
D−2 = −1

2
c D−3 −

1

2
b;D−1,

(2)
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where
√
j(j + 1) = a,

√
(j − 1)(j + 2) = b,

√
(j − 2)(j + 3) = c. We use the substitutions (the common

multiplier e−iϵt is omitted):

H = h(r)D0, H1 =

∣∣∣∣∣∣∣
h0(r) D0

h1(r) D−1

h2(r) D0

h3(r) D+1

∣∣∣∣∣∣∣ , H2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1(r) D−2

f2(r) D0

f3(r) D+2

c1(r) D+1

c2(r) D0

c3(r) D−1

d1(r) D−1

d2(r) D0

d3(r) D+1

f0(r) D0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

φ0 =

∣∣∣∣∣∣∣∣∣∣∣

E10(r)D−1

E20(r)D0

E30(r)D+1

B10(r)D+1

B20(r)D0

B30(r)D−1

∣∣∣∣∣∣∣∣∣∣∣
, φ1 =

∣∣∣∣∣∣∣∣∣∣∣

E11(r)D−2

E21(r)D−1

E31(r)D0

B11(r)D0

B21(r)D−1

B31(r)D−2

∣∣∣∣∣∣∣∣∣∣∣
, φ2 =

∣∣∣∣∣∣∣∣∣∣∣

E12(r)D−1

E22(r)D0

E32(r)D+1

B12(r)D+1

B22(r)D0

B32(r)D−1

∣∣∣∣∣∣∣∣∣∣∣
, φ3 =

∣∣∣∣∣∣∣∣∣∣∣

E13(r)D0

E23(r)D+1

E33(r)D+2

B13(r)D+2

B23(r)D+1

B33(r)D0

∣∣∣∣∣∣∣∣∣∣∣
.

(3)

We use the so called cyclic basis, in which the third projection of spin is diagonal matrix; The paper
is devoted to the study of a spin 2 particle in presence of Coulomb field; we restrict ourselves to the
non-relativistic approximation; similar approach was used for a spin 3/2 particle in [46].

2. Separation of the Variables

We start with the radial system in the cyclic basis (the presence of the external Coulomb field is reached
by the change ϵ =⇒ ϵ+ α

r ) :

H, −
√
2a

2r
(h1 + h3)− i(ϵ+

α

r
)h0 − h′

2 −
2

2
h2 −Mh = 0;

H1,
√
2a (d1 + d3) + 2r

(
d′2 + i(ϵ+

α

r
)f0 − 3Mh0

)
+ 4d2 − 3ir(ϵ+

α

r
)h = 0,

2ac2 − 3ah+ 2bf1

6
√
2r

+
1

3
(c′3 +

3c3
r

+ i(ϵ+
α

r
)d1)−Mh1 = 0,

√
2a (c1 + c3) + 4c2 + r(2i(ϵ+

α

r
)d2 + 2f ′

2 + 3h′ − 6Mh2) + 4f2 = 0,

2ac2 − 3ah+ 2bf3

6
√
2r

+
1

3
(c′1 +

3c1
r

+ i(ϵ+
α

r
)d3)−Mh3 = 0;

H2

B31

r
− i(ϵ+

α

r
)E11 −

b (B21 + 2h1)√
2r

+B′
31 −Mf1 = 0,

4B11 − 4B33 + 4 (E20 − 2h2) +
√
2a (3B12 +B21 −B23 − 3B32 + E10 + E30 − 2 (h1 + h3))

+2r
(
−i(ϵ+

α

r
) (E13 + 3E22 + E31 + 2h0)−B′

11 +B′
33 + E′

20 + 6h′
2

)
− 8Mrf2 = 0,

−2B13 +
√
2b (B23 − 2h3)− 2r

(
i(ϵ+

α

r
)E33 +Mf3 +B′

13

)
= 0,

√
2bB13 + 2B23 +

√
2a (B22 −B33 − 2h2)− 4h3 − 2r

(
2Mc1 + i(ϵ+

α

r
) (E23 + E32) +B′

12 − 2h′
3

)
= 0,

√
2a (B12 +B21 −B23 −B32 − E10 − E30 − 2 (h1 + h3))− 2 (2 (E20 + 2h2)

+r
(
4Mc2 + i(ϵ+

α

r
) (E13 + E22 + E31 − 2h0) +B′

11 −B′
33 + E′

20 − 2h′
2

))
= 0,

−4Mrc3 +
√
2 (aB11 − bB31 − a (B22 + 2h2))− 2

(
B21 + ir(ϵ+

α

r
) (E12 + E21) + 2h1 − r

(
B′

32 + 2h′
1

))
= 0,

−4Mrd1 +
√
2 (bE11 + a (−B20 + E31 − 2h0))

+2
(
B30 + E12 + 2E21 + r

(
−i(ϵ+

α

r
) (E10 + 2h1) +B′

30 + E′
21

))
= 0,

√
2a (B10 −B30 + E12 + E32) + 2

(
E13 + 2E22 + E31 + r

(
−2Md2 − i(ϵ+

α

r
) (E20 + 2h2) + E′

22 + 2h′
0

))
= 0,

−2B10 + 4E23 + 2E32 +
√
2bE33 +

√
2a (B20 + E13 − 2h0)− 2r

(
2Md3 + i(ϵ+

α

r
) (E30 + 2h3) +B′

10 − E′
23

)
= 0,
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4B11 +
√
2a (B12 −B21 +B23 −B32 + 3E10 + 3E30 + 2 (h1 + h3)) + 2 (−2B33 + 6E20 + 4h2

+r
(
−4Mf0 + i(ϵ+

α

r
) (E13 − E22 + E31 − 6h0) +B′

11 −B′
33 + 3E′

20 + 2h′
2

))
= 0,

H3

6c3 +
√
2 (ac2 + 3af0 + bf1)

r
+ 2

(
−2i(ϵ+

α

r
)d1 − 3ME10 + c′3

)
= 0,

4c2 +
√
2a (c1 + c3) + 4f2 + 2r

(
−2i(ϵ+

α

r
)d2 − 3

(
ME20 + f ′

0

)
+ f ′

2

)
= 0,

6c1 +
√
2 (ac2 + 3af0 + bf3)

r
+ 2

(
−2i(ϵ+

α

r
)d3 − 3ME30 + c′1

)
= 0,

ad2√
2r

+
d3
r

+ d′3 −MB10 = 0,

a (d3 − d1)√
2r

−MB20 = 0, 2d1 +
√
2ad2 + 2rd′1 + 2rMB30 = 0,

bd1√
2r

− i(ϵ+
α

r
)f1 −ME11 = 0, −i(ϵ+

α

r
)c3 − d′1 −ME21 = 0,

2d2 +
√
2a (2d1 − d3)− 2r

(
3ME31 + i (ϵ+

α

r
) (3c2 + f0) + d′2

)
= 0,

√
2a (c1 − 2c3)− 2 (c2 + f2) + 2r

(
3MB11 + i(ϵ+

α

r
)d2 − 3c′2 + f ′

2

)
= 0,

+i(ϵ+
α

r
)d1 +

√
2 (2ac2 − bf1)

r
+ c′3 − 3MB21 = 0,

√
2bc3 + 2f1 + 2r

(
MB31 + f ′

1

)
= 0, −i(ϵ+

α

r
)c3 +

d1
r

+
ad2√
2r

−ME12 = 0,

4d2 +
√
2a (d1 + d3)− 6MrE22 + 2ir(ϵ+

α

r
) (f0 − 3f2)− 4rd′2 = 0,

−i(ϵ+
α

r
)c1 +

ad2√
2r

+
d3
r

−ME32 = 0, 6MrB12 − 6c1 + 2ir(ϵ+
α

r
)d3 +

√
2 (ac2 − 3af2 + bf3)− 4rc′1 = 0,

a (c1 − c3)√
2r

−MB22 = 0, −6MrB32 − 6c3 + 2ir(ϵ+
α

r
)d1 +

√
2 (ac2 + bf1 − 3af2)− 4rc′3 = 0,

−2d2 +
√
2a (d1 − 2d3) + 2r

(
3ME13 + i(ϵ+

α

r
) (3c2 + f0) + d′2

)
= 0,

−i(ϵ+
α

r
)c1 −ME23 − d′3 = 0,

bd3√
2r

−ME33 − i(ϵ+
α

r
)f3 = 0,

−MB13 +
bc1√
2r

+
f3
r

+ f ′
3 = 0, −3MB23 − i(ϵ+

α

r
)d3 +

√
2 (bf3 − 2ac2)

r
− c′1 = 0,

√
2a (c3 − 2c1)− 2 (c2 + f2) + 2r

(
−3MB33 + i(ϵ+

α

r
)d2 − 3c′2 + f ′

2

)
= 0.

The parity restrictions are known [43]:
P = (−1)j+1,

h = 0; h0 = 0, h2 = 0, h3 = −h1;

f0 = 0, f2 = 0, c2 = 0, d2 = 0, f3 = −f1, c3 = −c1, d3 = −d1;

Ē30 = −Ē10, Ē20 = 0, B̄30 = +B̄10;

Ē32 = −Ē12, Ē22 = 0, B̄32 = +B̄12;

Ē13 = −Ē31, Ē23 = −Ē21, Ē33 = −Ē11,

B̄13 = +B̄31, B̄23 = +B̄21, B̄33 = +B̄11;

(4)

P = (−1)j ,

B̄30 = −B̄10, B̄20 = 0, Ē30 = +Ē10;

B̄32 = −B̄12, B̄22 = 0, Ē32 = +Ē12;

B̄13 = −B̄31, B̄23 = −B̄21, B̄33 = −B̄11,

Ē13 = +Ē31, Ē23 = +Ē21, Ē33 = +Ē11;

(5)

There exist a special case, when the initial substitutions should become more simple. At j = 0 , the
initial general substitution should be modified in accordance with the following constraints:

H̄1 h̄1 = 0, h̄3 = 0, H̄2 f̄1 = 0, f̄3 = 0, c̄1 = 0, c̄3 = 0, d̄1 = 0, d̄3 = 0,

H̄3

Ē10 = 0 Ē11 = 0 Ē12 = 0 Ē23 = 0

Ē30 = 0 Ē21 = 0 Ē32 = 0 Ē33 = 0

B̄10 = 0 B̄21 = 0 B̄12 = 0 B̄13 = 0

B̄30 = 0 B̄31 = 0 B̄32 = 0 B̄23 = 0;

(6)
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3. Second Order Equations

Let us apply the notation (ϵ+ α
r ) =⇒ D0, then the above equations read

H,
√
2a (h1 + h3) + 2r

(
iD0h0 +mh+ h′

2

)
+ 4h2 = 0;

H1 √
2a (d1 + d3) + 2r

(
iD0f0 + d′2 − 3mh0

)
− 3iD0rh+ 4d2 = 0,

2ac2 − 3ah+ 2bf1

6
√
2r

+
1

3

(
iD0d1 + c′3 +

3c3
r

)
−mh1 = 0,

√
2a (c1 + c3) + r

(
2iD0d2 + 2f ′

2 + 3h′ − 6mh2

)
+ 4c2 + 4f2 = 0,

2ac2 − 3ah+ 2bf3

6
√
2r

+
1

3

(
iD0d3 + c′1 +

3c1
r

)
−mh3 = 0;

H2

B31

r
− iD0E11 −mf1 −

b (B21 + 2h1)√
2r

+B′
31 = 0,

4B11 − 4B33 − 8mrf2 + 4 (E20 − 2h2) +
√
2a (3B12 +B21 −B23 − 3B32 + E10 + E30 − 2 (h1 + h3))

+2r
(
−iD0 (E13 + 3E22 + E31 + 2h0)−B′

11 +B′
33 + E′

20 + 6h′
2

)
= 0,

−2B13 +
√
2b (B23 − 2h3)− 2r

(
iD0E33 +mf3 +B′

13

)
= 0,

√
2bB13 + 2B23 +

√
2a (B22 −B33 − 2h2)− 4h3 − 2r

(
2mc1 + iD0 (E23 + E32) +B′

12 − 2h′
3

)
= 0,

√
2a (B12 +B21 −B23 −B32 − E10 − E30 − 2 (h1 + h3))

−2
(
2 (E20 + 2h2) + r

(
4mc2 + iD0 (E13 + E22 + E31 − 2h0) +B′

11 −B′
33 + E′

20 − 2h′
2

))
= 0,

−4mrc3 +
√
2 (aB11 − bB31 − a (B22 + 2h2))− 2

(
B21 + irD0 (E12 + E21) + 2h1 − r

(
B′

32 + 2h′
1

))
= 0,

−4mrd1 +
√
2 (bE11 + a (−B20 + E31 − 2h0)) + 2

(
B30 + E12 + 2E21 + r

(
−iD0 (E10 + 2h1) +B′

30 + E′
21

))
= 0,

√
2a (B10 −B30 + E12 + E32) + 2

(
E13 + 2E22 + E31 + r

(
−2md2 − iD0 (E20 + 2h2) + E′

22 + 2h′
0

))
= 0,

−2B10 + 4E23 + 2E32 +
√
2bE33 +

√
2a (B20 + E13 − 2h0)− 2r

(
2md3 + iD0 (E30 + 2h3) +B′

10 − E′
23

)
= 0,

4B11 +
√
2a (B12 −B21 +B23 −B32 + 3E10 + 3E30 + 2 (h1 + h3))

+2
(
−2B33 + 6E20 + 4h2 + r

(
−4mf0 + iD0 (E13 − E22 + E31 − 6h0) +B′

11 −B′
33 + 3E′

20 + 2h′
2

))
= 0;

H3

6c3 +
√
2 (ac2 + 3af0 + bf1)

r
+ 2

(
−2iD0d1 − 3mE10 + c′3

)
= 0,

4c2 +
√
2a (c1 + c3) + 4f2 + 2r

(
−2iD0d2 − 3

(
mE20 + f ′

0

)
+ f ′

2

)
= 0,

6c1 +
√
2 (ac2 + 3af0 + bf3)

r
+ 2

(
−2iD0d3 − 3mE30 + c′1

)
= 0,

−mB10 +
ad2√
2r

+
d3
r

+ d′3 = 0,
a (d3 − d1)√

2r
−mB20 = 0,

2d1 +
√
2ad2 + 2r

(
mB30 + d′1

)
= 0,

bd1√
2r

−mE11 − iD0f1 = 0, −iD0c3 −mE21 − d′1 = 0,

2d2 +
√
2a (2d1 − d3)− 2r

(
3mE31 + iD0 (3c2 + f0) + d′2

)
= 0,

√
2a (c1 − 2c3)− 2 (c2 + f2) + 2r

(
3mB11 + iD0d2 − 3c′2 + f ′

2

)
= 0,

−3mB21 + iD0d1 +

√
2 (2ac2 − bf1)

r
+ c′3 = 0,

√
2bc3 + 2f1 + 2r

(
mB31 + f ′

1

)
= 0,

−iD0c3 +
d1
r

+
ad2√
2r

−mE12 = 0, 4d2 +
√
2a (d1 + d3)− 6mrE22 + 2irD0 (f0 − 3f2)− 4rd′2 = 0,

−iD0c1 +
ad2√
2r

+
d3
r

−mE32 = 0, 6mrB12 − 6c1 + 2irD0d3 +
√
2 (ac2 − 3af2 + bf3)− 4rc′1 = 0,

a (c1 − c3)√
2r

−mB22 = 0, −6mrB32 − 6c3 + 2irD0d1 +
√
2 (ac2 + bf1 − 3af2)− 4rc′3 = 0,

−2d2 +
√
2a (d1 − 2d3) + 2r

(
3mE13 + iD0 (3c2 + f0) + d′2

)
= 0,

−iD0c1 −mE23 − d′3 = 0,
bd3√
2r

−mE33 − iD0f3 = 0, −mB13 +
bc1√
2r

+
f3
r

+ f ′
3 = 0,

−3mB23 − iD0d3 +

√
2 (bf3 − 2ac2)

r
− c′1 = 0,
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√
2a (c3 − 2c1)− 2 (c2 + f2) + 2r

(
−3mB33 + iD0d2 − 3c′2 + f ′

2

)
= 0.

From the system H1we express the variables h0, h1, h2, h3 and substitute them into equa-
tions of the groups H and H2; also from equation of the group H3 we express the variables
Ei0, Bi0;Ei1, Bi1;Ei2, Bi2;Ei3, Bi3 and substitute them into equation of the group H2 (allowing for that
the variables h0, h1, h2, h3 are eliminated as well).

Then we arrive at eleven equations of the second order for eleven variables h, fi, ci, di, f0 (let the symbol
R0 designate the derivative D0, in all 2nd order equations it should be locates in the right side and before
the all involved variables):

0
2a2

3mr
c2 −

a2

mr
h+

i
√
2a

3m
D0d1 +

i
√
2a

3m
D0d3 +

i
√
2a

3m
R0d1 +

i
√
2a

3m
R0d3

+
ab

3mr
f1 +

ab

3mr
f3 +

2
√
2a

3m
Drc1 +

2
√
2a

3m
Drc3 +

4
√
2a

3mr
c1

+
4
√
2a

3mr
c3 − r

2

3m
D0R0f0 +

r

m
D0R0h+

2ri

3m
D0Drd2 +

4i

3m
D0d2 +

2ir

3m
DrR0d2 +

4i

3m
R0d2

+
4

3m
Drc2 +

4

3mr
c2 +

8

3m
Drf2 +

2r

3m
D2

rf2 +
4

3mr
f2 +

r

m
D2

rh+
2

m
Drh+ 2mrh = 0,

1

ab

2mr2
h− ab

mr2
c2 −

√
2b

mr2
c3 −

ib√
2mr

D0d1 −
ib√
2mr

R0d1 −mf1 −
1

m
D0R0f1 −

√
2b

mr
Drc3 −

2

mr
Drf1 −

1

m
D2

rf1 = 0,

2

2ha2

mr
+

2a2

mr
f0 +

6a2

mr
f2 −

2i
√
2a

m
D0d1 −

2i
√
2a

m
R0d1 −

2i
√
2a

m
D0d3 −

2i
√
2a

m
R0d3 −

2ba

mr
f1 −

2ba

mr
f3

+
4
√
2a

m
Drc1 +

4
√
2a

m
Drc3 −

2r

m
D0R0h− 4r

m
D0R0c2 −

8

mr
c2 −

8i

m
D0d2 −

8i

m
R0d2

+
2rD0R0f0

m
− 8mrf2 −

6rD0R0f2
m

− 8f2
mr

− 4Drh

m
+

16Drc2
m

+
4irD0Drd2

m

+
4ir

m
R0Drd2 −

4

m
Drf0 +

4

m
Drf2 +

6r

m
D2

rh− 4r

m
D2

rc2 −
2r

m
D2

rf0 +
6r

m
D2

rf2 = 0,

3

ab

mr
h− 2

√
2b

mr
c1 −

2ab

mr
c2 −

i
√
2b

m
D0d3 −

i
√
2b

m
R0d3 − 2mrf3 −

2r

m
D0R0f3 −

2
√
2b

m
Drc1 −

4

m
Drf3 −

2r

m
D2

rf3 = 0,

4

c1a
2

mr
− 2c3a

2

mr
+

2
√
2ha

mr
− 4

√
2c2a

mr
− i

√
2D0d2a

m
− i

√
2R0d2a

m
− 2

√
2Drha

m
+

2
√
2Drc2a

m
− 2

√
2Drf2a

m

−4mrc1 −
4r

m
D0R0c1 +

b2

mr
c1 −

6

mr
c1 −

2i

m
D0d3 −

2i

m
R0d3 +

2ir

m
D0Drd3 +

2ir

m
R0Drd3 +

2
√
2b

m
Drf3 = 0,

5

2a2

mr
h− 2a2

mr
f0+

2a2

mr
f2−

4
√
2a

mr
c1−

4
√
2a

mr
c3−

2ba

mr
f1−

2ba

mr
f3+

2r

m
D0R0h−8mrc2−

4r

m
D0R0c2−

8

mr
c2−

2r

m
D0R0f0

−2r

m
D0R0f2−

8

mr
f2−

4

m
Drh+

4ir

m
D0Drd2+

4ir

m
DrR0d2+

4

m
Drf0−

4Drf2
m

+
2r

m
D2

rh−
4r

m
D2

rc2+
2r

m
D2

rf0+
2r

m
D2

rf2 = 0,

6

−2a2

mr
c1 +

a2

mr
c3 +

2
√
2a

mr
h− 4

√
2a

mr
c2 −

i
√
2a

m
D0d2 −

i
√
2a

m
R0d2 −

2
√
2a

m
Drh+

2
√
2a

m
Drc2 −

2
√
2a

m
Drf2 − 4mrc3

−4r

m
D0R0c3 +

b2

mr
c3 −

6

mr
c3 −

2i

m
D0d1 −

2i

m
R0d1 +

2ir

m
D0Drd1 +

2ir

m
DrR0d1 +

2
√
2b

m
Drf1 = 0,

7

a2

mr
d1 −

2a2

mr
d3 +

i
√
2a

m
D0h+

i
√
2a

m
R0h− i

√
2a

m
D0c2 −

i
√
2a

m
R0c2 −

i
√
2a

m
D0f0 −

i
√
2a

m
R0f0 −

2
√
2a

m
Drd2

−6i

m
D0c3 −

6i

m
R0c3 − 4mrd1 +

b2

mr
d1 +

2

mr
d1 −

i
√
2b

m
D0f1 −

i
√
2b

m
R0f1

−2ir

m
D0Drc3 −

2ir

m
DrR0c3 −

8

m
Drd1 −

4r

m
D2

rd1 = 0,
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8

4a2

mr
d2 −

i
√
2a

m
D0c1 −

i
√
2a

m
R0c1 −

i
√
2a

m
D0c3 −

i
√
2a

m
R0c3 +

2
√
2a

mr
d1 +

2
√
2a

mr
d3 +

2
√
2a

m
Drd1 +

2
√
2a

m
Drd3

−4i

m
D0c2 −

4i

m
R0c2 − 4mrd2 −

4i

m
D0f2 −

4i

m
R0f2 −

2ir

m
D0Drh

−2ir

m
DrR0h+

2ir

m
D0Drf0 +

2ir

m
DrR0f0 −

2ir

m
D0Drf2 −

2ir

m
DrR0f2 = 0,

9

−2a2

mr
d1 +

a2

mr
d3 +

i
√
2a

m
D0h+

i
√
2a

m
R0h− i

√
2a

m
D0c2 −

i
√
2a

m
R0c2 −

i
√
2a

m
D0f0

− i
√
2a

m
R0f0 −

2
√
2a

m
Drd2 −

6i

m
D0c1 −

6i

m
R0c1 − 4mrd3 +

b2

mr
d3

+
2

mr
d3 −

i
√
2b

m
D0f3 −

i
√
2b

m
R0f3 −

2ir

m
D0Drc1 −

2ir

m
DrR0c1 −

8

m
Drd3 −

4r

m
D2

rd3 = 0,

10

−2a2

mr
h+

6a2

mr
f0 +

2a2

mr
f2 +

8
√
2a

mr
c1 +

8
√
2a

mr
c3 −

2i
√
2a

m
D0d1 −

2i
√
2a

m
R0d1 −

2i
√
2a

m
D0d3 −

2i
√
2a

m
R0d3 +

2ba

mr
f1

+
2ba

mr
f3 +

4
√
2a

m
Drc1 +

4
√
2Drc3a

m
− 6r

m
D0R0h+

4r

m
D0R0c2 +

8

mr
c2 −

8i

m
D0d2 −

8i

m
R0d2 − 8mrf0 +

6r

m
D0R0f0

−2r

m
D0R0f2 +

8

mr
f2 +

4

m
Drh+

16

m
Drc2

−4ir

m
D0Drd2 −

4ir

m
DrR0d2 −

12

m
Drf0 +

12

m
Drf2 +

2r

m
D2

rh+
4r

m
D2

rc2 −
6r

m
D2

rf0 +
2r

m
D2

rf2 = 0.

Now we should take into account the parity restrictions.
Let P = (−1)j+1,

h = 0, f2 = 0, c2 = 0, d2 = 0, f3 = −f1, c3 = −c1, d3 = −d1; (7)

then we get

0 (0=0)

+
i
√
2a

3m
D0d1 −

i
√
2a

3m
D0d1 +

i
√
2a

3m
R0d1 −

i
√
2a

3m
R0d1

+
ab

3mr
f1 −

ab

3mr
f1 +

2
√
2a

3m
Drc1 −

2
√
2a

3m
Drc1 +

4
√
2a

3mr
c1 −

4
√
2a

3mr
c1 = 0,

1 (3=1)

+

√
2b

mr2
c1 −

ib√
2mr

D0d1 −
ib√
2mr

R0d1 −mf1 −
1

m
D0R0f1 +

√
2b

mr
Drc1 −

2

mr
Drf1 −

1

m
D2

rf1 = 0,

3

−2
√
2b

mr
c1 +

i
√
2b

m
D0d1 +

i
√
2b

m
R0d1 + 2mrf1 +

2r

m
D0R0f1 −

2
√
2b

m
Drc1 +

4

m
Drf1 +

2r

m
D2

rf1 = 0, (3 = 1),

2 (0=0)

−2i
√
2a

m
D0d1 −

2i
√
2a

m
R0d1 +

2i
√
2a

m
D0d1 +

2i
√
2a

m
R0d1 −

2ba

mr
f1 +

2ba

mr
f1

+
4
√
2a

m
Drc1 −

4
√
2a

m
Drc1 = 0,

4 = 6
a2

mr
c1 +

2a2

mr
c1 − 4mrc1

−4r

m
D0R0c1 +

b2

mr
c1 −

6

mr
c1 +

2i

m
D0d1 +

2i

m
R0d1 −

2ir

m
D0Drd1 −

2ir

m
R0Drd1 −

2
√
2b

m
Drf1 = 0,

6

−2a2

mr
c1 −

a2

mr
c1 + 4mrc1

+
4r

m
D0R0c1 −

b2

mr
c1 +

6

mr
c1 −

2i

m
D0d1 −

2i

m
R0d1 +

2ir

m
D0Drd1 +

2ir

m
DrR0d1 +

2
√
2b

m
Drf1 = 0,

5 (0=0)

−4
√
2a

mr
c1 +

4
√
2a

mr
c1 −

2ba

mr
f1 +

2ba

mr
f1 = 0,
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7 (9=7)

a2

mr
d1 +

2a2

mr
d1 +

6i

m
D0c1 +

6i

m
R0c1 − 4mrd1 +

b2

mr
d1 +

2

mr
d1 −

i
√
2b

m
D0f1 −

i
√
2b

m
R0f1

+
2ir

m
D0Drc1 +

2ir

m
DrR0c1 −

8

m
Drd1 −

4r

m
D2

rd1 = 0,

9

−2a2

mr
d1 −

a2

mr
d1 −

6i

m
D0c1 −

6i

m
R0c1 + 4mrd1 −

b2

mr
d1

− 2

mr
d1 +

i
√
2b

m
D0f1 +

i
√
2b

m
R0f1 −

2ir

m
D0Drc1 −

2ir

m
DrR0c1 +

8

m
Drd1 +

4r

m
D2

rd1 = 0,

8 (0 =0 )

− i
√
2a

m
D0c1 −

i
√
2a

m
R0c1 +

i
√
2a

m
D0c1 +

i
√
2a

m
R0c1 +

2
√
2a

mr
d1 −

2
√
2a

mr
d1 +

2
√
2a

m
Drd1 −

2
√
2a

m
Drd1 = 0,

10 (0=0)

+
8
√
2a

mr
c1 −

8
√
2a

mr
c1 −

2i
√
2a

m
D0d1 −

2i
√
2a

m
R0d1 +

2i
√
2a

m
D0d1 +

2i
√
2a

m
R0d1 +

2ba

mr
f1

−2ba

mr
f1 +

4
√
2a

m
Drc1 −

4
√
2Dra

m
c1 = 0;

thus we have only three different equations 1,4,7:
√
2b

mr

1

m
Drc1 +

√
2b

m2r2
c1 −

i
√
2b
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1

m
D0d1 −

1
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2
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1
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Drf1 −

1
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1
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√
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1
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1
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+
12i

mr

1
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D0c1 +
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D0Drc1 +
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DrD0c1 −
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√
2b

rm

1

m
D0f1 = 0,

(8)

Let P = (−1)j ,

f3 = +f1, c3 = +c1, d3 = +d1; (9)

then we get eight 2-nd order equations:

0
2a2
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c2 −
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mr
h+
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√
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3m
D0d1 +

2ab
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f1 +

4
√
2a

3m
Drc1 +

4
√
2a

3mr
c1

+
4
√
2a

3mr
c1 − r

2

3m
D2

0f0 +
r

m
D2

0h+
8i

3m
D0d2 +

2ri

3m
D0Drd2 +

2ir

3m
DrD0d2

+
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3m
Drc2 +

4

3mr
c2 +

8

3m
Drf2 +

2r

3m
D2

rf2 +
4

3mr
f2 +

r

m
D2

rh+
2

m
Drh+ 2mrh = 0,

1
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h−

√
2b
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c1 −
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c2 −

2ib√
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1

m
D2

0f1 −
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2b

mr
Drc1 −

2

mr
Drf1 −

1

m
D2

rf1 = 0,

3= 1
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√
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c1 −
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c2 −
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√
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2
√
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Drc1 −

4

m
Drf1 −

2r

m
D2

rf1 = 0,

2
2a2

mr
h+
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mr
f0 +

6a2

mr
f2 −

8i
√
2a

m
D0d1 −

4ba

mr
f1

+
8
√
2a

m
Drc1 −

2r

m
D2

0h− 4r

m
D2

0c2 −
8

mr
c2 −

16i

m
D0d2

+
2rD0D0f0

m
− 8mrf2 −

6rD0D0f2
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− 8f2
mr

− 4Drh
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+

16Drc2
m

+
8irD0Drd2
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m
Drf0 +
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m
Drf2 +
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m
D2
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m
D2

rc2 −
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m
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rf0 +
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m
D2

rf2 = 0,
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4
b2 − 6− a2

mr
c1 +

2
√
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mr
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√
2a

mr
c2 −

2i
√
2a

m
D0d2 −
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√
2a
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2
√
2a

m
Drc2 −
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√
2a

m
Drf2

−4mrc1 −
4r
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D2

0c1 −
4i

m
D0d1 +

2ir
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D0Drd1 +

2ir

m
DrD0d1 +

2
√
2b

m
Drf1 = 0,

6=4
b2 − 6− a2
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c1 +
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√
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√
2a
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c2 −
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√
2a

m
D0d2 −
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√
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m
Drh+
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√
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m
Drc2 −

2
√
2a

m
Drf2

−4mrc3 −
4r
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D2

0c1 −
4i
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D0d1 +

2ir

m
D0Drd1 +

2ir

m
DrD0d1 +
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√
2b

m
Drf1 = 0,

5
2a2

mr
h− 2a2

mr
f0 +

2a2

mr
f2 −

8
√
2a

mr
c1 −

4ba

mr
f1 +

2r

m
D2

0h− 8mrc2 −
4r

m
D2

0c2 −
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mr
c2 −

2r

m
D2

0f0

−2r

m
D2

0f2 −
8

mr
f2 −

4

m
Drh+

4ir

m
D0Drd2 +

4ir

m
DrD0d2 +

4

m
Drf0 −
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m
Drf2

+
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m
D2

rh− 4r
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D2

rc2 +
2r

m
D2

rf0 +
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rf2 = 0,

10
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mr
h+

6a2

mr
f0 +

2a2
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f2 +
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√
2a
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c1 −
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√
2a
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D0d1 +

4ba
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f1

+
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√
2a

m
Drc1 −
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m
D2

0h+
4r

m
D2

0c2 +
8

mr
c2 −
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m
D0d2 −
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m
R0d2 − 8mrf0 +

6r

m
D2

0f0

−2r

m
D2

0f2 +
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f2 +

4

m
Drh+

16

m
Drc2

−4ir
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D0Drd2 −

4ir

m
DrD0d2 −
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m
Drf0 +
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m
Drf2

+
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m
D2
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D2
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m
D2

rf0 +
2r
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D2

rf2 = 0,

7
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d1 +
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√
2a
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√
2a

m
D0c2 −
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√
2a

m
D0f0 −

2
√
2a

m
Drd2 −

12i

m
D0c1 − 4mrd1 −

2i
√
2b

m
D0f1

−2ir

m
D0Drc1 −

2ir

m
DrD0c1 −

8

m
Drd1 −

4r

m
D2

rd1 = 0,

9 =7

b2 + 2− a2
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d1 +

2i
√
2a

m
D0h− 2i

√
2a

m
D0c2 −

2i
√
2a

m
D0f0 −

2
√
2a

m
Drd2 −

12i
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D0c1 − 4mrd1 −
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√
2b

m
D0f1

−2ir

m
D0Drc1 −

2ir

m
DrD0c1 −

8

m
Drd1 −

4r

m
D2

rd1 = 0,

8
4a2

mr
d2 −

4i
√
2a

m
D0c1 +

4
√
2a

mr
d1 +

4
√
2a

m
Drd1 −

8i

m
D0c2

−4mrd2 −
8i

m
D0f2 −

2ir

m
D0Drh− 2ir

m
DrR0h

+
2ir

m
D0Drf0 +

2ir

m
DrD0f0 −

2ir

m
D0Drf2 −

2ir

m
DrD0f2 = 0;

Therefore, for states with the parity P = (−1)j , we have eight different equations 0; 1−3, 2; 4−6, 5; 7−
9, 8; 10:

2a2

3m2r2
c2 −

a2

m2r2
h+

i4
√
2a

3rm

1

m
D0d1

2ab

3m2r2
f1 +

4
√
2a

3mr

1

m
Drc1 +

4
√
2a

3m2r2
c1

+
4
√
2a

3m2r2
c1 −

2

3mr

1

m
D2

0f0 +
1

m2
D2

0h+
8i

3mr

1

m
D0d2 +

2i

3m2
D0Drd2 +

2i

3m2
DrD0d2

+
4

3mr

1

m
Drc2 +

4

3m2r2
c2 +

8

3mr

1

m
Drf2 +

2

3m2
D2

rf2 +
4

3m2r2
f2 +

m2
D2

rh+
2

mr

1

m
Drh+ 2h = 0,

1-3
ab

2m2r2
h−

√
2b

m2r2
c1 −

ab

m2r2
c2 −

2ib√
2mr

1

m
D0d1

−f1 −
1

m2
D2

0f1 −
√
2b

mr

1

m
Drc1 −

2

mr

1

m
Drf1 −

1

m2
D2

rf1 = 0,

2
2a2

m2r2
h+

2a2

m2r2
f0 +

6a2

m2r2
f2 −

8i
√
2a

mr

1

m
D0d1 −

4ba

m2r2
f1
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+
8
√
2a

mr

1

m
Drc1 −

2

m2
D2

0h− 4

m2
D2

0c2 −
8

m2r2
c2 −

16i

mr

1

m
D0d2

+
2

m2
D2

0f0 − 8f2 −
6

m2
D2

0f2 −
8

m2r2
f2 −

4

mr

1

m
Drh+

16

mr

1

m
Drc2 +

8i

m2
D0Drd2

− 4

mr

1

m
Drf0 +

4

mr

1

m
Drf2 +

6

m2
D2

rh− 4

m2
D2

rc2 −
2

m2
D2

rf0 +
6

m2
D2

rf2 = 0,

4-6

b2 − 6− a2

m2r2
c1 +

2
√
2a

m2r2
h− 4

√
2a

m2r2
c2 −

2i
√
2a

mr

1

m
D0d2 −

2
√
2a

mr

1

m
Drh+

2
√
2a

mr

1

m
Drc2 −

2
√
2a

mr

1

m
Drf2

−4c1 −
4

m2
D2

0c1 −
4i

mr

1

m
D0d1 +

2i

m2
D0Drd1 +

2i

m2
DrD0d1 +

2
√
2b

mr

1

m
Drf1 = 0,

5
2a2

m2r2
h− 2a2

m2r2
f0 +

2a2

m2r2
f2 −

8
√
2a

m2r2
c1 −

4ba

m2r2
f1

+
2

m2
D2

0h− 8c2 −
4

m2
D2

0c2 −
8

m2r2
c2 −

2

m2
D2

0f0

− 2

m2
D2

0f2 −
8

m2r2
f2 −

4

mr

1

m
Drh+

4i

m2
D0Drd2 +

4i

m2
DrD0d2 +

4

mr

1

m
Drf0 −

4

mr

1

m
Drf2

+
2

m2
D2

rh− 4

m2
D2

rc2 +
2

m2
D2

rf0 +
2

m2
D2

rf2 = 0,

7-9
b2 + 2− a2

m2r2
d1 +

2i
√
2a

mr

1

m
D0h− 2i

√
2a

mr

1

m
D0c2 −

2i
√
2a

mr

1

m
D0f0 −

2
√
2a

mr

1

m
Drd2

−12i

mr

1

m
D0c1 − 4d1 −

2i
√
2b

mr

1

m
D0f1

2i

m2
D0Drc1 −

2i

m2
DrD0c1 −

8

mr

1

m
Drd1 −

4

m2
D2

rd1 = 0,

8
4a2

m2r2
d2 −

4i
√
2a

mr

1

m
D0c1 +

4
√
2a

m2r2
d1 +

4
√
2a

mr

1

m
Drd1

− 8i

mr

1

m
D0c2 − 4d2 −

8i

mr

1

m
D0f2 −

2i

m2
D0Drh− 2i

m2
DrR0h+

+
2i

m2
D0Drf0 +

2i

m2
DrD0f0 −

2i

m2
D0Drf2 −

2i

m2
DrD0f2 = 0,

10

− 2a2

m2r2
h+

6a2

m2r2
f0 +

2a2

m2r2
f2 +

16
√
2a

m2r2
c1 −

8i
√
2a

mr

1

m
D0d1 +

4ba

m2r2
f1

+
8
√
2a

mr

1

m
Drc1 −

6

m2
D2

0h+
4

m2
D2

0c2 +
8

m2r2
c2 −

8i

mr

1

m
D0d2 −

8i

mr

1

m
D0d2 − 8f0 +

6

m2
D2

0f0

− 2

m2
D2

0f2 +
8

m2r2
f2 +

4

mr

1

m
Drh+

16

mr

1

m
Drc2

− 4i

m2
D0Drd2 −

4i

m2
DrD0d2 −

12

mr

1

m
Drf0

+
12

mr

1

m
Drf2

2

m2
D2

rh+
4

m2
D2

rc2 −
6

m2
D2

rf0 +
2

m2
D2

rf2 = 0.

4. Projective Operators, Large and Small Components

In order to perform the non-relativistic approximation, we should find large and small components in
the wave function. To this end, we are to use the matrix Γ0 = Γ [42].

Its explicit form in cyclic basis Γ̄0 was found in [43]:

Γ̄ =

∣∣∣∣∣∣∣∣
0 Ḡ0 0 0

1
2
∆̄0 0 − 1

3
K̄0 0

0 Λ̄0 0 1
2
B̄0

0 0 F̄ 0 0

∣∣∣∣∣∣∣∣ ,

Ḡ0 =
∣∣ 1 0 0 0

∣∣ , ∆̄0 =

∣∣∣∣∣∣∣
1
0
0
0

∣∣∣∣∣∣∣ , K̄0 =

∣∣∣∣∣∣∣
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0

∣∣∣∣∣∣∣ ,
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B̄0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1

2
0 0 0 0 3

2
0 0 0 0 1

2
0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1

2
0 0 0 0 1

2
0 0 0 0 1

2
0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 − 1

2
0 0 0 0 1

2
0 0 0 0 − 1

2
0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Λ̄0 =
1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
−1 0 0 0
0 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2
3 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, F̄0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0 0 2
3

0 0 0
0 0 0 0 0 0 0 2

3
0 0

0 0 0 0 0 0 0 0 2
3

0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 1

3

0 0 0 0 0 0 0 1
3

0 0
0 0 0 0 0 0 − 1

3
0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 − 1

3
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1

3
0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 − 1

3
0 0 0

0 0 0 0 1 0 0 0 0 1
3

0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1

3
0

0 0 0 0 0 0 0 − 1
3

0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

The matrix Γ̄ satisfies the 7th order minimal equation

Γ̄5(Γ̄2 − I) = 0; (10)

which permits us to introduce three projective operators

P̄+ =
1

2
Γ̄5(Γ̄ + I) = P̄1, P̄− =

1

2
Γ̄5(Γ̄− I) = P̄2, P̄0 = I − Γ̄6 = P̄3 (11)

with the needed properties P 2
i = Pi, P1 + P2 + P3 = I, i = 1, 2, 3.

We readily find explicit form of the projective constituents
so that

Ψ = column{h, h0, h1, h2, h3, f1, f2, f3, c1, c2, c3, d1, d2, d3, f0,

E10, E20, E30, B10, B20, B30, E11, E21, E31, B11, B21, B31,

E12, E22, E32, B12, B22, B32, E13, E23, E33, B13, B23, B33}
(12)
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P1Ψ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0
0
0
0

1
2
(E11 + f1)

1
6
(2c2 + E13 + 2E22 + E31 + 2f2)

1
2
(E33 + f3)

1
4
(2c1 + E23 + E32)

1
12

(2c2 + E13 + 2E22 + E31 + 2f2)
1
4
(2c3 + E12 + E21)

0
0
0
0

0
0
0
0
0
0

1
2
(E11 + f1)

1
4
(2c3 + E12 + E21)

1
12

(2c2 + E13 + 2E22 + E31 + 2f2)
0
0
0

1
4
(2c3 + E12 + E21)

1
6
(2c2 + E13 + 2E22 + E31 + 2f2)

1
4
(2c1 + E23 + E32)

0
0
0

1
12

(2c2 + E13 + 2E22 + E31 + 2f2)
1
4
(2c1 + E23 + E32)

1
2
(E33 + f3)

0
0
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0
0
0
0

L1

L2

L3

L4

L5 = 1
2
L2

L6

0
0
0
0

0
0
0
0
0
0

L7 = L1

L8 = L6

L9 = L2

0
0
0

L10 = L6

L11 = L2

L12 = L4

0
0
0

L13 = 1
2
L2

L14 = L4

L15 = L3

0
0
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

there exist only six large variables: L1, ..., L6 (for what follows it will be enough to follow only eleven functions
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referring to scalar and symmetric tensor)

, P2Ψ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0
0
0
0

1
2
(f1 − E11)

1
6
(2c2 − E13 − 2E22 − E31 + 2f2)

1
2
(f3 − E33)

1
4
(2c1 − E23 − E32)

1
12

(2c2 − E13 − 2E22 − E31 + 2f2)
1
4
(2c3 − E12 − E21)

0
0
0
0

0
0
0
0
0
0

1
2
(E11 − f1)

1
4
(−2c3 + E12 + E21)

1
12

(−2c2 + E13 + 2E22 + E31 − 2f2)
0
0
0

1
4
(−2c3 + E12 + E21)

1
6
(−2c2 + E13 + 2E22 + E31 − 2f2)

1
4
(−2c1 + E23 + E32)

0
0
0

1
12

(−2c2 + E13 + 2E22 + E31 − 2f2)
1
4
(−2c1 + E23 + E32)

1
2
(E33 − f3)

0
0
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0
0
0
0

S1

S2

S3

S4

S5 = 1
2
S2

S6

0
0
0
0

0
0
0
0
0
0

S7 = −S1

S8 = −S6

S9 = − 1
2
S2

0
0
0

S10 = −S6

S11 = −S2

S12 = −S4

0
0
0

S13 = − 1
2
S2

S14 = −S4

S15 = S3

0
0
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

here there exist only five small variables S1, S2, S3, S4, S6;
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P3Ψ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h

h0

h1

h2

h3

0
1
3
(f2 − 2c2)

0
0

1
3
(2c2 − f2)

0
d1
d2
d3
f0

E10

E20

E30

B10

B20

B30

0
1
2
(E21 − E12)

1
6
(−E13 − 2E22 + 5E31)

B11

B21

B31
1
2
(E12 − E21)

1
3
(−E13 + E22 − E31)

1
2
(E32 − E23)

B12

B22

B32
1
6
(5E13 − 2E22 − E31)

1
2
(E23 − E32)

0
B13

B23

B33

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s1

s2
s3
s4
s5

s6 = 0
s7 = 0
s8 = 0

0
0
0
s9
s10
s11
s12

s13
s14
s15
s16
s17
s18

s19 = 0
s20
s21
s22
s23
s24

s25 = −s20
s26
s27
s28
s29
s30
s31

s32 = −s27
s33 = 0
s34
s35
s36

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

From two groups referring to P1 and P2, we derive the following relations

f1 = 2L1 − E11,

2c2 + 2f2 = 6L2 − (E13 + E31 + E22),

f3 = 2L3 − E33,

2c1 = 4L4 − (E23 + E32),

2c3 = 4L6 − (E12 + E21),

f1 = 2S1 + E11,

2c2 + 2f2 = 6S2 + (E13 + E31 + E22),

f3 = 2S3 + E33,

2c1 = 4S4 + (E23 + E32),

2c3 = 4S6 + (E12 + E21).

(13)

From the group P3, if follows

h = s1, h0 = s2, h1 = s3, h2 = s4, h3 = s5,

f2 = 2c2, d1 = s9, d2 = s10, d3 = s11, f0 = s12.

Whence after simple combining, we arrive at expressions for eleven variables:

h = s1, f1 = L1 + S1, f3 = L3 + S3, f2 = (L2 + S2),

c1 = L4 + S4, c3 = L6 + S6, c2 =
1

2
(L2 + S2),

d1 = s9, d2 = s10, d3 = s11, f0 = s12.

(14)

Let us take into account the parity restrictions:

250



Spin 2 Particle in Coulomb Field, the Non-relativistic Approximation

P = (−1)j+1,

h = 0, f3 = −f1, c3 = −c1, d3 = −d1, f2 = 0, c2 = 0, d2 = 0, f0 = 0,

so that
P = (−1)j+1,

f1 = −f3 = L1 + S1, c1 = −c3 = L4 + S4, d1 = −d3 = s9,

h = 0, f2 = 0, c2 = 0, d2 = 0, f0 = 0.
(15)

5. The Non-relativistic Approximation, the Parity P = (−1)j+1

Consider the states with the parity P = (−1)j+1:

f1 = (L1 + S1), c1 = (L4 + S4), d1 = s9; (16)

the above three equations take on the form
√
2b

mr

1

m
Dr(L4 + S4) +

√
2b

m2r2
(L4 + S4)−

√
2b

mr

1

m
iD0s9 −

1

m2
D2

0(L1 + S1)

− 2

mr

1

m
Dr(L1 + S1)−

1

m2
D2

r(L1 + S1)− (L1 + S1) = 0,

3a2 + b2 − 6

m2r2
(L4 + S4)− 4(L4 + S4)−

4

m2
D2

0(L4 + S4) +
4i

mr

1

m
D0s9

− 2i

m2
D0Drs9 −

2i

m2
DrD0s9 −

2
√
2b

rm

1

m
Dr(L1 + S1) = 0,

3a2 + b2 + 2

m2r2
s9 − 4s9 −

8

mr

1

m
Drs9 −

4

m2
D2

rs9 +
12i

mr

1

m
D0(L4 + S4)

+
2i

m2
D0Dr(L4 + S4) +

2i

m2
DrD0(L4 + S4)−

i2
√
2b

rm

1

m
D0(L1 + S1) = 0.

When performing the non-relativistic approximation, we should separate the rest energy by formal
change D0 =⇒ M + iD0,M > 0; besides, we should assume the following smallness orders for the wave
function components and derivative operators

L ∼ 1, Sk ∼ x, sk ∼ x,
1

m
Dr ∼ x,

1

mr
∼ x,

1

m
iD0 =⇒ 1

m
(m+ iD0) =

1

m

[
m+ (E +

α

r
)
]
∼ (1 + x2),

1

m2
D2

0 =
(
− 1− 2

m
(E +

α

r
)− 1

m2
(E +

α

r
)2
)
∼

(
− 1− x2 − x4

)
.

(17)

We will follow only the terms of orders x0, x, x2 and neglect the high order terms (note that in the
order x0 we should obtain identities). As the result, we derive (preserving only the orders x and x2) x

−2
√
2bL1

mr
+

4DrL4

m
+

12L4

mr
− 4s9 = 0,

x2 √
2bDrL4

m2r
+

√
2bL4

m2r2
−

√
2bs9
mr

+
D2

0L1

m2
− D2

rL1

m2
− 2DrL1

m2r
= 0,

3a2L4

m2r2
+

b2L4

m2r2
− 2

√
2bDrL1

m2r
+

4D02L4

m2
− 4Drs9

m
− 6L4

m2r2
+

4s9
mr

= 0

−2
√
2bS1

mr
+

4DrS4

m
+

12S4

mr
= 0

or x

−2
√
2bL1

mr
+

4DrL4

m
+

12L4

mr
− 4s9 = 0,

x2 √
2bDrL4

m2r
+

√
2bL4

m2r2
−

√
2bs9
mr

+
2

m
(E + α/r)L1 −

D2
rL1

m2
− 2DrL1

m2r
= 0,
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3a2L4

m2r2
+

b2L4

m2r2
− 2

√
2bDrL1

m2r
+ 4

2

m
(E + α/r)L4 −

4Drs9
m

− 6L4

m2r2
+

4s9
mr

= 0,

−2
√
2bS1

mr
+

4DrS4

m
+

12S4

mr
= 0 (we do not need this constraint on small variables).

Expressing s9 from the the first equations, and substituting result into the two remaining, we get

b2L1

m2r2
− 2

√
2bL4

m2r2
+

2

m
(E + α/r)L1 −

D2
rL1

m2
− 2DrL1

m2r
= 0,

3a2L4

m2r2
+

b2L4

m2r2
− 4

√
2bL1

m2r2
+ 4

2

m
(E + α/r)L4 −

4D2
rL4

m2
− 8DrL4

m2r
+

18L4

m2r2
= 0.

Let us multiply these equation by m
2 :

(E + α/r)L1 +
1

2m

[
−D2

rL1 −
2DrL1

r
+

b2L1

r2
− 2

√
2bL4

r2

]
= 0,

4(E + α/r)L4 +
1

2m

[
− 4D2

rL4 −
8DrL4

r
+

3a2L4

r2
+

b2L4

r2
− 4

√
2bL1

r2
+

18L4

r2

]
= 0.

With the use of a new variable, 4L4 = L̄4, we get

(E + α/r)L1 +
1

2m

[
−D2

rL1 −
2DrL1

r
+

b2L1

r2
− bL̄4√

2r2

]
= 0,

(E + α/r)L̄4 +
1

2m

[
−D2

r L̄4 −
2DrL̄4

r
+

3a2L̄4

4r2
+

b2L̄4

4r2
− 4

√
2bL1

r2
+

18L̄4

4r2

]
= 0.

This system may be rewritten differently

(E + α/r)L1 +
1

2m

[
− (D2

rL1 +
2DrL1

r
) +

1

r2

(
b2L1 −

b√
2
L̄4

)]
= 0,

(E + α/r)L̄4 +
1

2m

[
− (D2

rL̄4 +
2DrL̄4

r
) +

1

r2

(
− 4

√
2bL1 + (

3a2

4
+

b2

4
+

18

4
)L̄4

]
= 0.

With the shortening notation

∆ = r2
[ d2

dr2
+ 2

d

dr
− 2M(E + α/r)

]
,

it reads

∆L1 = b2L1 −
b√
2
L̄4, ∆L2 = −4

√
2bL1 +

3a2 + b2 + 18

4
L̄4 = 0. (18)

Taking in mind the identities

a =
√

j(j + 1), b =
√
(j − 1)(j + 2),

3a2 + b2 + 18

4
= j2 + j + 4 = c,

we get the matrix presentation of the system

∆

∣∣∣∣ L1

L̄4

∣∣∣∣ =
∣∣∣∣∣ b2 − b√

2

−4
√
2b c

∣∣∣∣∣
∣∣∣∣ L1

L̄4

∣∣∣∣ , ∆F = AF

Let us find the linear transformation reducing the system to a diagonal form

F ′ = SF, S∆S−1F ′ = SAS−1F ′, ∆F ′ = (SAS−1)F ′, (SAS−1) = A′ =

∣∣∣∣ λ1 0
0 λ2

∣∣∣∣
this leads to ∣∣∣∣ s11 s12

s21 s22

∣∣∣∣
∣∣∣∣∣ b2 − b√

2

−4
√
2b c

∣∣∣∣∣ =
∣∣∣∣ λ1 0
0 λ2

∣∣∣∣ ∣∣∣∣ s11 s12
s21 s22

∣∣∣∣
Whence it follows

b2s11 − 4
√
2b s12 = λ1 s11, − b√

2
s11 + c s12 = λ1 s12,

∣∣∣∣ (b2 − λ)) −4
√
2b

−b/
√
2 (c− λ)

∣∣∣∣ ∣∣∣∣ s11s12

∣∣∣∣ = 0,
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b2 s21 − 4
√
2b s22 = λ2 s21, − b√

2
s21 + c s22 = λ2 s22,

∣∣∣∣ (b2 − λ)) −4
√
2b

−b/
√
2 (c− λ)

∣∣∣∣ ∣∣∣∣ s21s22

∣∣∣∣ = 0.

From vanishing the determinant

λ2 − λ(c+ b2) + b2(c− 4) = 0,

or (let j(j + 1) = x)

λ2 − 2λ(x+ 1) + x2 − 2x = 0 =⇒ [λ− (x+ 1)]2 = 4x+ 1 = 4(j + 1/2)2;

so we arrive at

λ1 = x+ 1 +
√
4(j + 1/2)2 = (j + 1)(j + 2), (b2 − λ1) s11 − 4

√
2 b s12 = 0, s11 = 1,

λ2 = x+ 1−
√
4(j + 1/2)2 = (j − 1)j, λ (b2 − λ2) s21 − 4

√
2 b s22 = 0, s22 = 1,

In this way, we obtain two independent equations

(∆− λ1)F1 = 0,
[ d2

dr2
+ 2

d

dr
− 2M(E +

α

r
)− (j + 1)(j + 2)

r2

]
F1 = 0

∆F2 = λ2F2,
[ d2

dr2
+ 2

d

dr
− 2M(E +

α

r
)
)
− (j − 1)j

r2

]
F2 = 0;

(19)

their solutions and energy spectra are well-know [47].

6. Nonrelartivistic Approximatoion, Parity P = (−1)j

Let P = (−1)j :

h = s1, f1 = (L1 + S1), c1 = (L4 + S4), d1 = s9,

f2 = (L2 + S2), c2 =
1

2
(L2 + S2), d2 = s10, f0 = s12;

(20)

the above 8 equation take the form
0

2a2

3m2r2
1

2
(L2 + S2)−

a2

m2r2
s1 +

i4
√
2a

3rm

1

m
D0s9 +

2ab

3m2r2
(L1 + S1)

+
4
√
2a

3mr

1

m
Dr(L4 + S4) +

4
√
2a

3m2r2
(L4 + S4) +

4
√
2a

3m2r2
(L4 + S4)−

2

3mr

1

m
D2

0f0 +
1

m2
D2

0s1

+
8i

3mr

1

m
D0s10 +

2i

3m2
D0Drs10 +

2i

3m2
DrD0s10

+
4

3mr

1

m
Drc2 +

4

3m2r2
1

2
(L2 + S2) +

8

3mr

1

m
Dr(L2 + S2) +

2

3m2
D2

r(L2 + S2)

+
4

3m2r2
(L2 + S2) +

1

m2
D2

rs1 +
2

mr

1

m
Drs1 + 2s1 = 0,

1-3
ab

2m2r2
s1 −

√
2b

m2r2
(L4 + S4)−

ab

m2r2
1

2
(L2 + S2)−

2ib√
2mr

1

m
D0s9 − (L1 + S1)

− 1

m2
D2

0(L1 + S1)−
√
2b

mr

1

m
Dr(L4 + S4)−

2

mr

1

m
Dr(L1 + S1)−

1

m2
D2

r(L1 + S1) = 0,

2
2a2

m2r2
s1 +

2a2

m2r2
f0 +

6a2

m2r2
(L2 + S2)−

8i
√
2a

mr

1

m
D0s9 −

4ba

m2r2
(L1 + S1)

+
8
√
2a

mr

1

m
Dr(L4 + S4)−

2

m2
D2

0s1 −
4

m2
D2

0
1

2
(L2 + S2)−

8

m2r2
1

2
(L2 + S2)−

16i

mr

1

m
D0s10

+
2

m2
D2

0f0 − 8(L2 + S2)−
6

m2
D2

0(L2 + S2)−
8

m2r2
(L2 + S2)

− 4

mr

1

m
Drs1 +

16

mr

1

m
Dr

1

2
(L2 + S2) +

8i

m2
D0Drs10

− 4

mr

1

m
Drf0 +

4

mr

1

m
Dr(L2 + S2) +

6

m2
D2

rs1 −
4

m2
D2

r
1

2
(L2 + S2)−

2

m2
D2

rf0 +
6

m2
D2

r(L2 + S2) = 0,
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4-6
b2 − 6− a2

m2r2
(L4 + S4) +

2
√
2a

m2r2
s1 −

4
√
2a

m2r2
1

2
(L2 + S2)−

2i
√
2a

mr

1

m
D0s10

−2
√
2a

mr

1

m
Drs1 +

2
√
2a

mr

1

m
Dr

1

2
(L2 + S2)−

2
√
2a

mr

1

m
Dr(L2 + S2)

−4(L4 + S4)−
4

m2
D2

0(L4 + S4)−
4i

mr

1

m
D0s9 +

2i

m2
D0Drs9 +

2i

m2
DrD0s9 +

2
√
2b

mr

1

m
Dr(L1 + S1) = 0,

5
2a2

m2r2
s1 −

2a2

m2r2
f0 +

2a2

m2r2
(L2 + S2)−

8
√
2a

m2r2
(L4 + S4)−

4ba

m2r2
(L1 + S1)

+
2

m2
D2

0s1 − 8
1

2
(L2 + S2)−

4

m2
D2

0
1

2
(L2 + S2)−

8

m2r2
1

2
(L2 + S2)−

2

m2
D2

0f0

− 2

m2
D2

0(L2 + S2)−
8

m2r2
(L2 + S2)−

4

mr

1

m
Drs1 +

4i

m2
D0Drs10

+
4i

m2
DrD0s10 +

4

mr

1

m
Drf0 −

4

mr

1

m
Dr(L2 + S2)

+
2

m2
D2

rs1 −
4

m2
D2

r
1

2
(L2 + S2) +

2

m2
D2

rf0 +
2

m2
D2

r(L2 = S2) = 0,

7-9
b2 + 2− a2

m2r2
s9 +

2i
√
2a

mr

1

m
D0s1 −

2i
√
2a

mr

1

m
D0

1

2
(L2 + S2)−

2i
√
2a

mr

1

m
D0f0 −

2
√
2a

mr

1

m
Drs10

−12i

mr

1

m
D0(L4 + S4)− 4s9 −

2i
√
2b

mr

1

m
D0(L1 + S1)

− 2i

m2
D0Dr(L4 + S4)−

2i

m2
DrD0(L4 + S4)−

8

mr

1

m
Drd1 −

4

m2
D2

rs9 = 0,

8
4a2

m2r2
s10 −

4i
√
2a

mr

1

m
D0(L4 + S4) +

4
√
2a

m2r2
s9 +

4
√
2a

mr

1

m
Drs9

− 8i

mr

1

m
D0

1

2
(L2 + S2)− 4s10 −

8i

mr

1

m
D0(L2 + S2)−

2i

m2
D0Drs1 −

2i

m2
DrR0s1

+
2i

m2
D0Drf0 +

2i

m2
DrD0f0 −

2i

m2
D0Dr(L2 + S2)−

2i

m2
DrD0(L2 + S2) = 0,

10

− 2a2

m2r2
s1 +

6a2

m2r2
f0 +

2a2

m2r2
(L2 + S2) +

16
√
2a

m2r2
(L4 + S4)−

8i
√
2a

mr

1

m
D0s9 +

4ba

m2r2
(L1 + S1)

+
8
√
2a

mr

1

m
Dr(L4 + S4)−

6

m2
D2

0s1 +
4

m2
D2

0
1

2
(L2 + S2) +

8

m2r2
1

2
(L2 + S2)

− 8i

mr

1

m
D0s10 −

8i

mr

1

m
D0s10 − 8f0 +

6

m2
D2

0f0

− 2

m2
D2

0(L2 + S2) +
8

m2r2
(L2 + S2) +

4

mr

1

m
Drs1 +

16

mr

1

m
Dr

1

2
(L2 + S2)

− 4i

m2
D0Drs10 −

4i

m2
DrD0s10 −

12

mr

1

m
Drf0 +

12

mr

1

m
Dr(L2 + S2)

+
2

m2
D2

rs1 +
4

m2
D2

r
1

2
(L2 + S2)−

6

m2
D2

rf0 +
2

m2
D2

r(L2 + S2) = 0.

No we are to take into consideration the smallness orders in accordance with the known rules:

L ∼ 1, Sk ∼ x, sk ∼ x,
1

m
Dr ∼ x,

1

mr
∼ x,

1

m
iD0 =⇒ 1

m
(m+ iD0) =

1

m

[
m+ (E +

α

r
)
]
∼ (1 + x2),

1

m2
D2

0 = −1− 2

m
(E +

α

r
)− 1

m2
(E +

α

r
)2 ∼ −1− x2 − x4 ;

as the result we get 1

x3
(
− a2s1

m2r2
+

a2S2

3m2r2
+

2abS1

3m2r2
+

4
√
2aDrS4

3m2r
+

8
√
2aS4

3m2r2
− D2

0s1
m2

+
D2

rs1
m2

+
2D2

rS2

3m2
+

2Drs1
m2r

+
10DrS2

3m2r
+

2S2

m2r2

)
+x2

( a2L2

3m2r2
+

2abL1

3m2r2
+

4
√
2aDrL4

3m2r
+

8
√
2aL4

3m2r2
+

4
√
2as9

3mr

254



Spin 2 Particle in Coulomb Field, the Non-relativistic Approximation

+
2D2

rL2

3m2
+

10DrL2

3m2r
+

4Drs10
3m

+
2L2

m2r2
+

8s10
3mr

+
2s12
3mr

)
+x4

(
4i
√
2aD0s9
3m2r

+
2D2

0s12
3m2r

+
8iD0s10
3m2r

+
2iD0Drs10

3m2
+

2iDrD0s10
3m2

)
+
2D2

0s12x
6

3m2r
− D2

0s1x
5

m2
+ s1x = 0,

2

x2

(
− abL2

2m2r2
−

√
2bDrL4

m2r
−

√
2bL4

m2r2
−

√
2bs9
mr

+
D2

0L1

m2
− D2

rL1

m2
− 2DrL1

m2r

)
+x3

(
abs1
2m2r2

− abS2

2m2r2
−

√
2bDrS4

m2r
−

√
2bS4

m2r2
+

D2
0S1

m2
− D2

rS1

m2
− 2DrS1

m2r

)
+x4

(
D2

0L1

m2
− i

√
2bD0s9
m2r

)
+

D2
0S1x

5

m2
= 0,

3

x2
(6a2L2

m2r2
− 4abL1

m2r2
+

8
√
2aDrL4

m2r
− 8

√
2as9
mr

+
8D2

0L2

m2
+

4D2
rL2

m2
+

12DrL2

m2r
+

8Drs10
m

− 12L2

m2r2
− 16s10

mr

)
+x3

(2a2s1
m2r2

+
2a2s12
m2r2

+
6a2S2

m2r2
− 4abS1

m2r2
+

8
√
2aDrS4

m2r
+

2D2
0s1

m2
− 2D02s12

m2

+
8D2

0S2

m2
+

6D2
rs1

m2
− 2D2

rs12
m2

+
4D2

rS2

m2
− 4Drs1

m2r
− 4Drs12

m2r
+

12DrS2

m2r
− 12S2

m2r2

)
+

+x4

(
−8i

√
2aD0s9
m2r

+
8D2

0L2

m2
− 16iD0s10

m2r
+

8iD0Drs10
m2

)
+x5

(
2D2

0s1
m2

− 2D2
0s12
m2

+
8D2

0S2

m2

)
+ (2s1 − 2s12)x = 0,

4

x2

(
− a2L4

m2r2
−

√
2aDrL2

m2r
− 2

√
2aL2

m2r2
− 2

√
2as10
mr

+
b2L4

m2r2
+

2
√
2bDrL1

m2r
+

4D2
0L4

m2
+

4Drs9
m

− 6L4

m2r2
− 4s9

mr

)

+x3

(
− a2S4

m2r2
− 2

√
2aDrs1
m2r

−
√
2aDrS2

m2r
+

2
√
2as1

m2r2
− 2

√
2aS2

m2r2
+

b2S4

m2r2
+

2
√
2bDrS1

m2r
+

4D2
0S4

m2
− 6S4

m2r2

)
+x4

(
−2i

√
2aD0s10
m2r

+
4D2

0L4

m2
− 4iD0s9

m2r
+

2iD0Drs9
m2

+
2iDrD0s9

m2

)
+

4D2
0S4x

5

m2
= 0,

5

x3
(2a2s1
m2r2

− 2a2s12
m2r2

+
2a2S2

m2r2
− 4abS1

m2r2
− 8

√
2aS4

m2r2
− 2D2

0s1
m2

+
2D2

0s12
m2

+
4D2

0S2

m2

+
2D2

rs1
m2

+
2D2

rs12
m2

− 4Drs1
m2r

+
4Drs12
m2r

− 4DrS2

m2r
− 12S2

m2r2

)
+x2

(
2a2L2

m2r2
− 4abL1

m2r2
− 8

√
2aL4

m2r2
+

4D2
0L2

m2
− 4DrL2

m2r
+

8Drs10
m

− 12L2

m2r2

)
+x4

(
4D2

0L2

m2
+

4iD0Drs10
m2

+
4iDrD0s10

m2

)
+ x5

(
−2D2

0s1
m2

+
2D2

0s12
m2

+
4D2

0S2

m2

)
(2s12 − 2s1)x = 0,

6

x3
(
− a2s9

m2r2
− i

√
2aD0L2

m2r
− 2

√
2aDrs10
m2r

+
b2s9
m2r2

− 2i
√
2bD0L1

m2r
− 2iD0DrL4

m2

−12iD0L4

m2r
− 2iD0DrL4

m2
− 4D2

rs9
m2

− 8Drs9
m2r

+
2s9
m2r2

)
+x4

(
2i
√
2aD0s1
m2r

− 2i
√
2aD0s12
m2r

− i
√
2aD0S2

m2r
− 2i

√
2bD0S1

m2r
− 2iD0DrS4

m2
− 12iD0S4

m2r
− 2iD0DrS4

m2

)
+x

(
−
√
2aL2

mr
− 2

√
2bL1

mr
− 4DrL4

m
− 12L4

mr
− 4s9

)
+x2

(
2
√
2as1
mr

− 2
√
2as12
mr

−
√
2aS2

mr
− 2

√
2bS1

mr
− 4DrS4

m
− 12S4

mr

)
= 0,

7

x3

(
4a2s10
m2r2

− 4i
√
2aD0L4

m2r
+

4
√
2aDrs9
m2r

+
4
√
2as9

m2r2
− 12iD0L2

m2r
− 2iD0DrL2

m2
− 2iDrD0L2

m2

)
+x4

(
− 4i

√
2aD0S4

m2r
− 12iD0S2

m2r
− 2iD0Drs1

m2
+

2iD0Drs12
m2
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−2iD0DrS2

m2
− 2iDrD0s1

m2
+

2iDrD0s12
m2

− 2iDrD0S2

m2

)
+x

(
−4

√
2aL4

mr
− 4DrL2

m
− 12L2

mr
− 4s10

)
+x2

(
−4

√
2aS4

mr
− 4Drs1

m
+

4Drs12
m

− 4DrS2

m
− 12S2

mr

)
= 0,

8

x3
(
− 2a2s1

m2r2
+

6a2s12
m2r2

+
2a2S2

m2r2
+

4abS1

m2r2
+

8
√
2aDrS4

m2r
+

16
√
2aS4

m2r2
+

6D02s1
m2

− 6D2
0s12
m2

+
2D2

rs1
m2

− 6D2
rs12
m2

+
4D2

rS2

m2
+

4Drs1
m2r

− 12Drs12
m2r

+
20DrS2

m2r
+

12S2

m2r2

)
+x2

(
2a2L2

m2r2
+

4abL1

m2r2
+

8
√
2aDrL4

m2r
+

16
√
2aL4

m2r2
− 8

√
2as9
mr

+
4D2

rL2

m2
+

20DrL2

m2r
− 8Drs10

m
+

12L2

m2r2
− 16s10

mr

)
+x4

(
−8i

√
2aD0s9
m2r

− 16iD0s10
m2r

− 4iD0Drs10
m2

− 4iDrD0s10
m2

)
+x5

(
6D2

0s1
m2

− 6D2
0s12
m2

)
+ (6s1 − 14s12)x = 0.

Further we preserve only terms of orders x and x2:
x

s1 = 0, 2s1 − 2s12 = 0, 2s12 − 2s1 = 0,

−
√
2aL2

mr
− 2

√
2bL1

mr
− 4DrL4

m
− 12L4

mr
− 4s9 = 0,

−4
√
2aL4

mr
− 4DrL2

m
− 12L2

mr
− 4s10 = 0, 6s1 − 14s12 = 0.

x2

a2L2

3m2r2
+

2abL1

3m2r2
+

4
√
2aDrL4

3m2r
+

8
√
2aL4

3m2r2
+

4
√
2as9

3mr
+

2D2
rL2

3m2
+

10DrL2

3m2r
+

4Drs10
3m

+
2L2

m2r2
+

8s10
3mr

+
2s12
3mr

= 0,

− abL2

2m2r2
−

√
2bDrL4

m2r
−

√
2bL4

m2r2
−

√
2bs9
mr

+
D2

0L1

m2
− D2

rL1

m2
− 2DrL1

m2r
= 0,

6a2L2

m2r2
− 4abL1

m2r2
+

8
√
2aDrL4

m2r
− 8

√
2as9
mr

+
8D2

0L2

m2
+

4D2
rL2

m2
+

12DrL2

m2r
+

8Drs10
m

− 12L2

m2r2
− 16s10

mr
= 0,

− a2L4

m2r2
−

√
2aDrL2

m2r
− 2

√
2aL2

m2r2
− 2

√
2as10
mr

+
b2L4

m2r2
+

2
√
2bDrL1

m2r
+

4D2
0L4

m2
+

4Drs9
m

− 6L4

m2r2
− 4s9

mr
= 0,

2a2L2

m2r2
− 4abL1

m2r2
− 8

√
2aL4

m2r2
+

4D2
0L2

m2
− 4DrL2

m2r
+

8Drs10
m

− 12L2

m2r2
= 0,

2
√
2as1
mr

− 2
√
2as12
mr

−
√
2aS2

mr
− 2

√
2bS1

mr
− 4DrS4

m
− 12S4

mr
= 0,

−4
√
2aS4

mr
− 4Drs1

m
+

4Drs12
m

− 4DrS2

m
− 12S2

mr
= 0,

2a2L2

m2r2
+

4abL1

m2r2
+

8
√
2aDrL4

m2r
+

16
√
2aL4

m2r2
− 8

√
2as9
mr

+
4D2

rL2

m2
+

20DrL2

m2r
− 8Drs10

m
+

12L2

m2r2
− 16s10

mr
= 0,

or differently
x

s1 = 0,

2s1 − 2s12 = 0,

2s12 − 2s1 = 0,

−
√
2aL2

mr
− 2

√
2bL1

mr
− 4DrL4

m
− 12L4

mr
− 4s9 = 0,

−4
√
2aL4

mr
− 4DrL2

m
− 12L2

mr
− 4s10 = 0,

6s1 − 14s12 = 0;

x2 (make the change D0 =⇒ 2
m
(E + α/r))

a2L2

3m2r2
+

2abL1

3m2r2
+

4
√
2aDrL4

3m2r
+

8
√
2aL4

3m2r2
+

4
√
2as9

3mr
+

2D2
rL2

3m2
+

10DrL2

3m2r
+

4Drs10
3m

+
2L2

m2r2
+

8s10
3mr

+
2s12
3mr

= 0,

256



Spin 2 Particle in Coulomb Field, the Non-relativistic Approximation

− abL2

2m2r2
−

√
2bDrL4

m2r
−

√
2bL4

m2r2
−

√
2bs9
mr

+
2

m
(E + α/r)L1 −

D2
rL1

m2
− 2DrL1

m2r
= 0,

6a2L2

m2r2
− 4abL1

m2r2
+

8
√
2aDrL4

m2r
− 8

√
2as9
mr

+8
2

m
(E +α/r)L2 +

4D2
rL2

m2
+

12DrL2

m2r
+

8Drs10
m

− 12L2

m2r2
− 16s10

mr
= 0,

− a2L4

m2r2
−

√
2aDrL2

m2r
− 2

√
2aL2

m2r2
− 2

√
2as10
mr

+
b2L4

m2r2
+

2
√
2bDrL1

m2r
+4

2

m
(E+α/r)L4 +

4Drs9
m

− 6L4

m2r2
− 4s9

mr
= 0

2a2L2

m2r2
− 4abL1

m2r2
− 8

√
2aL4

m2r2
+ 4

2

m
(E + α/r)L2 −

4DrL2

m2r
+

8Drs10
m

− 12L2

m2r2
= 0,

2
√
2as1
mr

− 2
√
2as12
mr

−
√
2aS2

mr
− 2

√
2bS1

mr
− 4DrS4

m
− 12S4

mr
= 0,

−4
√
2aS4

mr
− 4Drs1

m
+

4Drs12
m

− 4DrS2

m
− 12S2

mr
= 0,

2a2L2

m2r2
+

4abL1

m2r2
+

8
√
2aDrL4

m2r
+

16
√
2aL4

m2r2
− 8

√
2as9
mr

+
4D2

rL2

m2
+

20DrL2

m2r
− 8Drs10

m
+

12L2

m2r2
− 16s10

mr
= 0

Expressing the small components from equations of order x through large ones, and substituting result
in equations of order x2, we obtain

1

− a2L2

3m2r2
− 2abL1

3m2r2
− 4

√
2aDrL4

3m2r
− 4

√
2aL4

m2r2
− 2D2

rL2

3m2
− 10DrL2

3m2r
− 6L2

m2r2
= 0,

2
b2L1

m2r2
+

2
√
2bL4

m2r2
− D2

rL1

m2
− 2DrL1

m2r
+

2αL1

mr
+

2L1E

m
= 0,

3

10a2L2

m2r2
+

4abL1

m2r2
+

8
√
2aDrL4

m2r
+

40
√
2aL4

m2r2
− 4D2

rL2

m2
+

4DrL2

m2r
+

36L2

m2r2
+

16αL2

mr
+

16L2E

m
= 0,

4
3a2L4

m2r2
+

5
√
2aL2

m2r2
+

b2L4

m2r2
+

2
√
2bL1

m2r2
− 4D2

rL4

m2
− 8DrL4

m2r
+

6L4

m2r2
+

8αL4

mr
+

8L4E

m
= 0,

5
2a2L2

m2r2
− 4abL1

m2r2
− 8

√
2aDrL4

m2r
− 8

√
2aL4

m2r2
− 8D2

rL2

m2
− 28DrL2

m2r
− 12L2

m2r2
+

8αL2

mr
+

8L2E

m
= 0,

−
√
2aS2

mr
− 2

√
2bS1

mr
− 4DrS4

m
− 12S4

mr
= 0, not needed

−4
√
2aS4

mr
− 4DrS2

m
− 12S2

mr
= 0, not needed

6
6a2L2

m2r2
+

12abL1

m2r2
+

24
√
2aDrL4

m2r
+

56
√
2aL4

m2r2
+

12D2
rL2

m2
+

60DrL2

m2r
+

60L2

m2r2
= 0.

So we arrive at equations for L1, L2, L4:

1
2

3
D2

rL2 +
10

3r
DrL2 +

4
√
2a

3r
DrL4 +

4
√
2a

r2
L4 +

2ab

3r2
L1 +

a2 + 18

3r2
L2 = 0,

6 12D2
rL2 +

60

r
DrL2 +

6a2 + 60

r2
L2 +

24
√
2a

r
DrL4 +

56
√
2a

r2
L4 +

12ab

r2
L1 = 0.

3 − 4D2
rL2 +

4Dr

r
L2 + 16m(E +

α

r
)L2 +

10a2 + 36

r2
L2 +

8
√
2a

r
DrL4 +

40
√
2a

r2
L4 +

4abL1

r2
= 0,

5 8D2
rL2 +

28

r
DrL2 − 8m(E +

α

r
)L2 −

2a2 − 12

r2
L2 +

8
√
2a

r
DrL4 +

8
√
2a

r2
L4 +

4abL1

r2
− = 0,

2
[
D2

rL1 +
2

r
DrL1 − 2m(E +

α

r
)L1

]
− b2

r2
L1 −

2
√
2b

r2
L4 = 0,

4 D2
rL4 +

8

r
DrL4 − 8m(E +

α

r
)L4 −

3a2 + b2 + 6

r2
L4 −

5
√
2a

r2
L2 −

2
√
2b

r2
L1 = 0,

let 4L4 = L̄4, then we get

4̄
[
D2

r L̄4 +
2

r
DrL̄4 − 2m(E +

α

r
)L̄4

]
− 3a2 + b2 + 6

4r2
L̄4 −

5
√
2a

r2
L2 −

2
√
2b

r2
L1 = 0.

Equations 2 and 4̄ have the needed nonrelativistic structure[
D2

r +
2

r
Dr − 2m(E +

α

r
)
]
L1 = ∆L1,

[
D2

r +
2

r
Dr − 2m(E +

α

r
)
]
L̄4 = ∆L̄4.
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From equation 3, let us express, and substitute the result into equation 5 – this leads to[
D2

r +
2

r
Dr − 2m(E +

α

r
)
]
L2 −

a2L2

r2
− 6L2

r2
− 4

√
2aL4

r2
= 0

Let us turn to equation 1 and express from this the variable 1
rDrL4, and then substitute the result into

equation 6; in this way we arrive ay the identity 0 ≡ 0. Therefore, we have derived three equations with
the needed structture (remembering that 4L4 = L̄4)[

D2
r +

2

r
Dr − 2m(E +

α

r
)
]
L1 −

b2

r2
L1 −

√
2b

2r2
L̄4 = 0,[

D2
r +

2

r
Dr − 2m(E +

α

r
)
]
L2 −

a2 + 6

r2
L2 −

√
2a

r2
L̄4 = 0,[

D2
r +

2

r
Dr − 2m(E +

α

r
)
]
L̄4 −

3a2 + b2 + 6

4r2
L̄4 −

5
√
2a

r2
L2 −

2
√
2b

r2
L1 = 0.

(21)

In the matrix form it reads

∆ = r2
[
D2

r +
2

r
Dr − 2m(E +

α

r
)
]
, L =

∣∣∣∣∣∣
L1

L2

L̄4

∣∣∣∣∣∣ ,

∆L = AL, A =

∣∣∣∣∣∣∣
b2 0

√
2b
2

0 a2 + 6
√
2a

2
√
2b 5

√
2a 3a2+b2+6

4

∣∣∣∣∣∣∣ , a =
√
j(j + 1), b =

√
(j − 1)(j + 2),

F = SL =

∣∣∣∣∣∣
F1

F2

F3

∣∣∣∣∣∣ , ∆F = SAS−1F, S =

∣∣∣∣∣∣
s11 s12 s13
s21 s22 s23
s31 s32 s33

∣∣∣∣∣∣ , SAS−1 = A′ =

∣∣∣∣∣∣
λ1 0 0
0 λ2 0
0 0 λ3

∣∣∣∣∣∣ .
So we get SA = A′S, that is∣∣∣∣∣∣∣

s11
(
b2 − λ1

)
+ 2

√
2bs13 s12

(
a2 − λ1 + 6

)
+ 5

√
2as13

1
4
s13

(
3a2 + b2 − 4λ1 + 6

)
+

√
2as12 +

bs11√
2

s21
(
b2 − λ2

)
+ 2

√
2bs23 s22

(
a2 − λ2 + 6

)
+ 5

√
2as23

1
4
s23

(
3a2 + b2 − 4λ2 + 6

)
+

√
2as22 +

bs21√
2

s31
(
b2 − λ3

)
+ 2

√
2bs33 s32

(
a2 − λ3 + 6

)
+ 5

√
2as33

1
4
s33

(
3a2 + b2 − 4λ3 + 6

)
+

√
2as32 +

bs31√
2

∣∣∣∣∣∣∣ = 0.

Here we have the linear system of the same structure (i = 1, 2, 3):

si1
(
b2 − λi

)
+ 2

√
2bsi3 = 0, si2

(
a2 − λi + 6

)
+ 5

√
2asi3 = 0,

bsi1√
2
+

√
2asi2 +

1

4
si3

(
3a2 + b2 + 6− 4λi

)
= 0.

From vanishing the determinant of the last system, we derive

λ3 −
(
3j2 + 3j + 5

)
λ2 +

(
3j4 + 6j3 + j2 − 2j − 4

)
λ−

−(j − 2)(j − 1)(j + 2)(j + 3)
(
j2 + j + 1

)
= 0, λ1λ2λ3 > 0.

Let us study the roots numerically, for fixed values of j = 1, 2, ..., 10:

j = 1 0 0.376525 10.6235
j = 2 0 5.15571 17.8443
j = 3 2.54917 11.2483 27.2025
j = 4 7.10818 19.283 38.6088
j = 5 13.6632 29.3 52.0368
j = 6 22.2141 41.3096 67.4763
j = 7 32.7618 55.3156 84.9226
j = 8 45.3072 71.3196 104.373
j = 9 59.8508 89.3223 125.827
j = 10 76.3931 109.324 149.283
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The first line of the table is meaningless. However, we should recall that the case j = 0 is special,
because the initial general substitution should be modified. Evidently, the case of j = 0 should be
examined additionally and as a separate one.

Instead of the parameter λ, let us introduce more helpful parameter, λ = L(L + 1). Then the main
algebraic equation takes on the form

(j − 2)(j − 1)(j + 2)(j + 3)
(
j2 + j + 1

)
+

+
(
4− j

(
3(j + 2)j2 + j − 2

))
L+ (9− j(j + 1)(3j(j + 1)− 5))L2+

+(6j(j + 1) + 9)L3 + (3j(j + 1) + 2)L4 − 3L5 − L6 = 0,

then the numerical study gives

j = 0 −3. −1.24037− 0.89i −1.24037 + 0.89i 0.240369 − 0.89i 0.240369 + 0.89i 2.
j = 1 −3.7975 −1.29153 −1. 0. 0.291533 2.7975

j = 2 −4.75374 −2.82502 −1. 0. 1.82502 3.75374
j = 3 −5.73952 −3.89092 −2.17307 1.17307 2.89092 4.73952
j = 4 −6.73368 −4.91962 −3.2126 2.2126 3.91962 5.73368
j = 5 −7.73096 −5.93599 −4.23004 3.23004 4.93599 6.73096
j = 6 −8.7296 −6.94668 −5.23963 4.23963 5.94668 7.7296
j = 7 −9.7289 −7.95423 −6.24559 5.24559 6.95423 8.7289
j = 8 −10.7286 −8.95988 −7.2496 6.2496 7.95988 9.72855
j = 9 −11.7284 −9.96427 −8.25247 7.25247 8.96427 10.7284
j = 10 −12.7284 −10.9678 −9.2546 8.2546 9.96778 11.7284

Tree last columns give positive values for L1, L2, L3; therefore, after performing the linear transformation,
for states with the parity P = (−1)j we obtain three separate equations[ d2

dr2
+

2

r

d

dr
− 2m(E +

α

r
)− L1(L1 + 1)

]
F1 = 0,[ d2

dr2
+

2

r

d

dr
− 2m(E +

α

r
)− L2(L2 + 1)

]
F2 = 0,[ d2

dr2
+

2

r

d

dr
− 2m(E +

α

r
)− L3(L3 + 1)

]
F3 = 0;

(22)

solutions for these equations are well-known [47].

7. States with j = 0

For the case j = 0, we present only the final result. Solutions with states with the parity P = (−1)j+

do not exist. For states with the parity P = (−1)j , the 5 independent components are divided into large
(L) and small (S) parts as follows

h = S1, f2 = L2 + S2, c2 =
L2 + S2

2
, d2 = S10, f0 = S12. (23)

After performing the needed calculation (similar to described in the above), we arrive at a second order
equation for the function L2(r) = f(r):[ d2

dr2
+

4

r

d

dr
+

2mE

3
+

2mα

3

1

r

]
L2 = 0, En = −mα2

6

1

(2 + n)2
, n = 0, 1, 2, ... . (24)

8. Conclusions

In this study, we have studied the non-relativistic approc=ximation for a spin-2 particle in external
Coulomb field. The use of parity constraints led to a natural separation of the system into subsystems of
3 and 8 equations for states with parities P = (−1)j+1 and P = (−1)j , respectively. For the subsystem
corresponding to P = (−1)j+1, we have reduced the problem to two independent Schrodinger-type
equations in the presence of a Coulomb field. For the subsystem corresponding to P = (−1)j , have
reduced the problem to three independent Schrodinger-type equations in the presence of a Coulomb field.
Consequently, we have obtained five distinct energy spectra corresponding to the non-relativistic spin-2
particle in the presence of a Coulomb field. For the special case j = 0, we have reduce the problem to a
single Schrodinger equation with a hydrogen-like spectrum.
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Sci. Paris. 1941. 212. 657-659.

[5] E. Wild. On first order wave equations for elementary particles without subsidiary conditions. Proc. Roy.
Soc. London. 1947. bf A191. 253-268.

[6] I.M. Gelfand, A.M. Yaglom. General relativistically invariant equations and infinitedimensional representa-
tions of the Lorentz group. J. Experimental and Theoretical Physics. 1948. 18. 703-733 (in Russian).

[7] F.I. Fedorov. On the theory of the spin 2 particle. Proceedings of Belorussian State University. Ser. phys.-
math. 1951. no. 12. 156-173.

[8] T. Regge. On properties of the particle with spin 2. Nuovo Cimento. 1957. 5, no 2. 325-326.
[9] H.A. Buchdahl. On the compatibility of relativistic wave equations for particles of higher spin in the presence

of a gravitational field. Nuovo Cim. 1958. 10. 96-103.
[10] H.A. Buchdahl. On the compatibility of relativistic wave equations in Riemann spaces. Nuovo Cim. 1962.

25. 486-496.
[11] L.A. Shelepin. Covariant theory of relativictic wave equations. Nucl. Phys. 1962. 33, no 4. 580-593.
[12] G. Velo, D. Zwanziger. Noncausality and other defects of interaction Lagrangians for particles with spin one

and higher. Phys. Rev. 1969. 188, no 5. 2218-2222.
[13] C. Aragone, S. Deser. Constraints on gravitationally coupled tensor fields. Nuovo Cim. 1971. A3. 709-720.
[14] G. Velo. Anomalous behavior of a massive spin two charged particle in an external electromagnetic field.

Nucl. Phys. 1972. B43. 389-401.
[15] C.R. Hagen. Minimal electromagnetic coupling of spin-two fields. Phys. Rev. 1972. D6, no 4. 984-987.
[16] J.F. Reilly. Minimal coupling in spin-2 field. Nucl. Phys. 1974. B1, no 70. 356-364.
[17] P.M. Mathews, M. Seetharaman, J. Prabhakaran. Inconsistencies in the symmetric tensor field description

of spin-2 particles in an external homogeneous magnetic field. Phys. Rev. 1976. D14. 1021-1031.
[18] M. Kobayashi, A. Shamaly. Minimal electromagnetic coupling for massive spin-2 fields. Phys. Rev. 1978. D

17, no 8. 2179.
[19] C. Aragone, S. Deser. Consistency problems of spin-2 gravity coupling. Nuovo Cim. 1980. B57. 33-49.
[20] P.M. Mathews, T.R. Govindarajan, M. Seetharaman, J. Prabhakaran. Relativistic wave equations coupled

to external fields: an algebraic study of the problem of constraints. J. Math.Phys. 1980. 21. 1495-1505.
[21] W. Cox. First-order formulation of massive spin-2 field theories. J. Phys. A. 1982. 15. 253-268.
[22] R.M. Wald. Spin-two fields and general covariance. Phys. Rev. 1986. D33, no 12. 3613-3625.
[23] R.K. Loide. On conformally covariant spin-3/2 and spin-2 equations. J. Phys. A. 1986. 19, no 5. 827-829.
[24] A. Higuchi. Forbidden mass range for spin-2 field theory in de Sitter space-time. Nucl. Phys. 1987. B282.

397.
[25] A.A. Bogush, V.V. Kisel. On description of anomalous magnetic moment of a massive particle with spin 2

in the theory of relativistic wave equations. Izvestia Vuzov. SSSR. Fizika. 1988. 31, no 3. 11-16 (in Russian).
[26] M.A. Vasiliev. More on equations of motion for interacting massless fields of all spins in (3+1)-dimensions.

Phys. Lett. 1992. B285. 225-234.
[27] I.L. Buchbinder, V.A. Krykhtin, V.D. Pershin. On consistent equations for massive spin-2 field coupled to

gravity in string theory. Phys. Lett. 1999. B466.216-226.
[28] I.L. Buchbinder, D.M. Gitman, V.A. Krykhtin, V.D. Pershin. Equations of motion for massive spin 2 field

coupled to gravity. Nucl. Phys. 2000. B584. 615-640.
[29] H. Casini, R. Montemayor, L.F. Urrutia. Duality for symmetric second rank tensors. The linearized gravita-

tional field. Phys. Rev. 2003. D68. 065011.
[30] V.M. Red’kov, N.G. Tokarevskaya, V.V. Kisel. Graviton in a curved space-time background and gauge

symmetry. Nonlinear Phenomena in Complex Systems. 2003. 6, no 3. 772-778.
[31] Angnis Margreta Schmidt-May. Classically Consistent Theories of Interacting Spin-2 Fields. Doctoral Thesis

in Theoretical Physics. Stockholm, Sweden. 2013.
[32] L. Bernard, C. Deffayet, A. Schmidt-May and M. von Strauss. Linear spin-2 fields in most general back-

grounds. Phys. Rev. 2016. D93. 084020.
[33] Masafumi Fukuma, Hikaru Kawai, Katsuta Sakai, and JunjiYamamoto. Massive higher spin fields in curved

spacetime and necessity of non-minimal couplings. Prog. Theor. Exp. Phys. 2016. 073B02.
[34] Koenigstein, F. Giacosa, and D.H. Rischke. Classical and quantum theory of the massive spin-two field. Ann.

Phys. (Amsterdam). 2016. 368. 16.
[35] Charles Mazuet, Mikhail S. Volkov. Massive spin-2 field in arbitrary spacetimes, the detailed derivation.

Phys. Rev. 2017. D96. 124023.

260



Spin 2 Particle in Coulomb Field, the Non-relativistic Approximation

[36] V.V. Kisel, E.M. Ovsiyuk, O.V. Veko, Y.A. Voynova, V. Balan, V.M. Red’kov. Elementary Particles with
Internal Structure in External Fields. I. General Theory; II. Physical Problems. New York: Nova Science
Publishers Inc., 2018. New York: Nova Science Publishers Inc., 2018.

[37] A. Ivashkevich, A. Buryy, E. Ovsiyuk, V. Balan, V. Kisel, V. Red’kov. On the matrix equation for a spin
2 particle in pseudo-Riemannian space-time, tetrad method. Proceedings of Balkan Society of Geometers.
2021. 28. 1-23.

[38] I.G. Dudko, O.A. Semenyuk, V.V Kisel, V.M. Red’kov. Spin 2 particle with anomalous magnetic moment
in Riemann space-time, restriction to massless case, gauge symmetry. Nonlinear Phenomena in Complex
Systems. 2022. 25, no 2. 286-296.

[39] Ivashkevich A. V., Red’kov V. M., Ishkhanyan A. M. Massless spin 2 field in 50-component approach, exact
solutions with cylindrical symmetry, eliminating the gauge degrees of freedom. Proceedings of the National
Academy of Sciences of Belarus. Physics and Mathematics series. 2024. 60, no. 2. 132-145.

[40] A.V. Ivashkevich, A.V. Bury, V.M. Red’kov, V.V. Kisel. On new form of the 50-component theory for spin 2
particle with anomalous magnetic moment in the basis of tensors of 2-nd and 3-rd ranks. Nonlinear Dynamics
and Applications. 2023. 29. 289–330.

[41] A.V. Ivashkevich, A.V. Bury, E.M. Ovsiyuk, V.V. Kisel, V.M. Red’kov. Nonrelativistic approximation in
39-component theory for a spin 2 particle. Proceedings of the Komi Science Centre of the Ural Branch of the
Russian Academy of Sciences. Physical and Mathematical Sciences. 2024. 5(71). 46-57.

[42] Nonrelativistic Approximation in the Theory of a Spin-2 Particle with Anomalous Magnetic Moment Alina
Ivashkevich, Viktor Red’kov, and Artur Ishkhanyan // Axioms. – 2025. Vol. 14(1), 35.

[43] On the matrix equation for a spin 2 particle in pseudo-Riemannian space-time. II. Separating the variables in
spherical coordinates / A. Ivashkevich, A. Bury, E. Ovsiyuk, V. Balan, V. Kisel, V. Red’kov // Proceedings
of Balkan Society of Geometers. – 2022. – P. 12–33.

[44] Varshalovich, D.A.; Moskalev, A.N.; Hersonskiy, V.K., Quantum theory of angular moment. Nauka,
Leningrad, 1975 (in Russian).

[45] V.M. Red’kov. Tetrad formalism, spherical symmetry and Schrödinger basis. Minsk, Belarussian Science
Publ., 2011. 339 p. (in Russian).

[46] Ivashkevich, A.V. Spin 3/2 particle in the Coulomb field, the non-relativistic approximation. A.V. Ivashkevich,
V.M. Red’kov, A.M. Ishkhanyan // Physics of Particles and Nuclei. – 2025. - Vol. 26, no 6 [8 pages].

[47] L. D. Landau, E. M. Lifshitz. Quantum Mechanics. Nonrelativistic theory. 3rd Edition. Elsevier, 2013. 688 p.

261


