Nonlinear Dynamics and Applications: Proceedings of JIPNR-Sosny. Vol. 31 (2025) 262 - 286

A Spin 1/2 Particle with Three Additional
Characteristics in Presence of External Fields, (General
Theory within the Gel’fand—Yaglom Formalism
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Within the general method by Gel'fand — Yaglom, starting with the extended 28-component
representation of the Lorentz group (it includes four bispiniors and one spinor of the 3rd rank),
for a spin 1/2 particle, we construct a relativistic P-invariant generalized system of the first order
equations for a spin 1/2 particle with three additional to electric charge characteristics.

First, the model is developed for a free particle, and the system of spinor equations is derived; then
it is transformed to spin-tensor form. In this spin-tensor form, we take into account the presence
of external electromagnetic fields. After eliminating the accessory variables of the complete wave
function, we derive the minimal 4-component Dirac-like equation, the last includes several new
interaction terms which are interpreted as related to some additional electromagnetic characteristics
of a spin 1/2 particle.

PACS numbers: 02.30.Gp, 02.40.Ky, 03.65Ge, 04.62. v

Keywords: Spin 1/2, Gel’fand — Yaglom, extended wave equations, additional characteristics, external
electromagnetic field, Riemannian geometry.

1. Gel’fand — Yaglom formalism, and a new Dirac-like equation

We will construct a generalized relativistic equation for a particle with spin 1/2, using the extended
set of irreducible representations of the proper Lorentz group

T =4(0,1/2) & (1/2,0)] @ [(1/2,1) ® (1, 1/2)]; (1)

with the linking scheme
4(071/2) - 4(1/270)
| |
(1/2,1) (1,1/2)

First we will construct a matrix equation for a free particle

(Tudy+M)T =0, u=1,2,3,4. (3)

In modified Gel’fand — Yaglom basis [2], the components of the complete wave function are determined
as follows

G-Y d 0,1/2 (0,1/2) 1/2,0 1/2,0
v (mod) _ {(‘I’(l))imé/)zv (‘I’<1 )1/2/ 1/2»( 1>)§//2 1/>27 (‘I’(l))i//z 72/2§
(U)o 47, (W2 ()20, (W) T2 s
(W) (W) 2 (N GRA, (BT o5
N(0,1/2) 4)1(0,1/2) 1)) (1/2,0) (4)1(1/2,0)
(‘I’( )1/2 /2> (“P( ))1/2 —1/2 (\I’< )1/2 1/2° (\I’ >)1/2 —-1/2)
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(1,1/2) ,(1,1/2)
‘1/1/2,1/27 ‘1/1/2,71/2’

(1,1/2) 3, (1,1/2)
\113/2,3/27 \1/3/2,73/2’

(1,1/2) ,(1,1/2) (1/2,1) ,(1/2,1) .
\P3/2,1/27 \1’3/2,71/27 \1’3/2,1/2’ \113/2,71/2}147

the symbol T" designates the matrix transposition; the matrix I'y may be presented in the form

1/2,1) g @a/2,1) |
\1'1/2,1/27 W1/2,71/2’

(1/2,1) g(1/2,1) |
\1’3/2,3/27 \1/3/2,73/2’

0(1/2) ®/y4 0

Ta = 0 B QI @ s

where the spin blocks ¢(1/?), ¢(3/2) have the structure

1/2 1/2 1/2 1/2 1/2
e ey ey e ey
Uy (o) {2 (i (12 0010
wo _ | B o Be W T (3/2) _ ~(3/2) 0001
B N R /0 A A P
Way By By Wy B 0100
Cs1r " Csor © Cg3r ° Cyyr " Cyyy

I is a 2x 2 unit matrix; the involved irreducible representations of the proper Lorentz group are numerated
as follows

1,2,3,4= (0,1/2), 1,234 = (1/2,0), 5= (1,1/2), 5 = (1/2,1).

According to [1, 2|, we have

iv/3crs

c11 c1 C13 C1ar
Ca1/ Coa/ Ca3 cor iV/3cay

B =1 ey 32/ 33/ ey iV3ess CB/?) = 2055, (7)
cq1 Cq2/ C43 car iV3esy

iv3es1r iV3esa iV3esy iV3esy

where c;;; are some numerical parameters, on which special constraints will be imposed later on.

In order to simplify the calculations bellow, let us take into account the possibility to break the linking
between repeated representations [1]; this is achieved by vanishing the corresponding parameters in the
block ¢(1/2):

Cs55/

C11/ 0 0 O ’i\/§Cl5/
0 o 0 0 iV3cos
1/2) — 0 0 Cy 0 i\/gcz),y B2 = 2c55 . (8)

0 0 0 Caq
iv/3es1 iV3esy iV3esy iV 3esw

iV/3cusy

Cs55/

Because we assume the absence states with spin 3/2, we should set cs5 = 0; then we arrive at

C11/ 0 0 0 i\/gcl5f
0 Coor 0 0  ivV3cay
0(1/2) = 0 0 C3/ 0 i\/3635/ 6(3/2) =0. (9)
0 0 0 Caq/ i\/§045’
iv/3es1 iV3esy iV3esy iV3esw 0
It is convenient to introduce the new notations:
At =cir, Ay =car, A3=cC33, A= cCay, (10)
P e P2 e B P
VBT a T g T g T e )
Bs = ic517, —= = iCs2/, P = iCs3, Ps = iCs4/;
V2 V2 V2 V2
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so we obtain

At 0 0 0 —4/3B
0 A 0 0 —/2p
A2 =1 0 0 A3 0 —\/38s | (12)
0 0 0 M /3B
\/555 \/%66 \/%57 \/gﬁs 0

The matrices of the bilinear form should have the structure

kL 0 0 0 0
(1/2) 0 k2 0 0 O
— | @ 0 W2 =10 0 k3 0 0O (/2 — _diag(k; 13
n 0 n(3/2)®12®,y4 ) n 0 0 63]{4 0 ) n g( 1); ( )
0 0 0 0 ks

where k; = +1. Due to the known constraint (n'y)™ = nl'y, we find restrictions on parameters \;, §;:

AT =XM1, A3=Xa, A3=2A3, AL =g
Bs = —kiksf7, B = —kaoksfs, (14)
Br = —k3ksB3, s = —kaksf}.

Because the particle under consideration has only one mass parameter M, and the spin equals 1/2, the
matrix ¢(1/2) (10) should have only one non-vanishing eigenvalue (+1). We use this property to derive
additional restrictions on parameters \;, 5;:

Spc/D =1, S (VD)2 =1, S,(c1/D)P =1, SV =1, detcM/D =0. (15)

From expression for ¢(*/?) (11) and condition (14), it follows

M+ Ao+ As+ A= 1. (16)
From equality
(0(1/2))2
M =318 —3B1Bs — 38157 —3818s —\/3A\1B
—3B2Bs N3 — 38286 —5P20r 28288 —/ 3 X203
=| —3p38s —3B3Bs A3 —3B3B87  —3B3fs =1/ 3303 (17)
—3B4ps 3846 —3B4B7 A3 — 3B4fs —\/ 2B
3185 3 X206 \/§A367 \/§A4ﬁs —3(B1Bs + B2B6 + B3 Br + BafBs)

it follows (see (14))

(AT 4+ A3+ A3+ AD) — 3(B1Bs + B2B6 + BBz + Bafs) = 1. (18)
Due to (15), we have (A1 + A2 + A3 + M\4)? =1, or
A2+ X222 40D 20000 + Mds + M+ Aoz + Ao + Ashy) = 1. (19)

From (17),(19) we obtain
3
(MA2 + A3+ A1+ Aads + Aodg + Ashy) + 5(5155 + B2 + B3f7 + Bafs) = 0. (20)

From definition for (C(1/2))3:

A (AT —3B105)
—2B2B5( M1 + o)
(/D)3 = —5B3B5(M + A3)
—5B4B5(A1 + A1)

V38513 — $(81Bs + Bafs + BBr + Bubs)
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—2B186(A1 + A2)
A2(A3 — 36206)
—2B366(A2 + As)
—5B4B86 (A2 + A1)

\/%56 (A3 — 2(B1B5 + B286 + B3B7 + BaPs)]

—3B1B7(M1 + A3)
—5B2B87(A2 + A3)
A3(\3 — 38307)
—2B4Br(Xs + A1)

V382103 — $(B1Bs + Bafs + BBr + Bubs)

—2818s(A1 + A4)

—5B288(A2 4+ Ag)

—58308( A3 + A1)
(A} — 3B4Bs)

V38213 — $(81Bs + Bas + BBr + Bubs)

*\/gﬂl (A2 — 2(81B5 + BaB6 + BsBr + Bafs))

— /382103 — 38165 + Bafs + BB + Babs)

/385108 — (8185 + o + BB + BaBs)] |

—\/§ﬂ4[hi — 3(B1Bs + BaBe + BsBr + Bafs))]
—2[MB1Bs + 23286 + AsBs 7 4 Aafafs]

we get

A+ 23+ A)) - g(AlﬂlﬂS + AoB2B6 + A3B307 + Aafafls) = 1.

Taking in mind (15), we find (A1 + X2 + A3 + A\y)3 =1, or

M+X+A3+ )M+ A2+ X3+ )\4)2

= (A1 4+ A2+ A3+ A)[(AT + A3 + A3+ A0) +2(Atd2 + Atds + Ada + Aeds + deds + Asha)] = 1

so we arrive at
O3+ 23+ 23 420 4303 + A3+ A1) + 300 A3+ A1) +3Xs (AT + A3 +A9)
F3A(AT + A3 4+ A3) + 6(Ad2 A3 + At doda + Adsda + Ao dsha) = 1.
Relation (23) may be presented as follows
AT+ A3+ 23+ 2D = 3007 + 23 + A5+ A1) +3(M1 + A2 + Az + ) (AT + A3+ 23 + A)

F6(A1A2A3 + A1 A2 As + A dsAa + Ao dsdg) = 1,
whence (taking in mind (16)) it follows

20 A3 AT A 3N H A2 AN
F6(A1A2A3 + A A2 As + A Az As + AadgAg) = 1.

Therefore, we get (taking in mind (19))

(A3 A3 423+ 20D = 3( M1 d2A3 + Ao + Az + Az )y)
=3(A A2+ A1 A3 + A1 Ag + Aadg + Aoy + Azhg) + 1.

Allowing for (20), we transform (25) to other form
A3 423+ X3 + 23 = 3(A1hads 4+ A dody
9
FA1 A3 + Aoz y) + 5(5155 + B236 + Bafr + Pafs) + 1.
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From (26), (22) we derive
(A A2A3 + A A2hs + A AsAg + Aadghy)
F210 = M85 + (1= Aa)Bafls + (1= As)Bafy + (1 — Ma)Bafis] =0, (21)

or differently
(A1 A2z + A Ao + A Az + XaAzAg)

+g[()\2 4+ A3 4+ A1)B18s5 + (A1 + A3 4+ A1) B286 + (M1 + A2 + A1) B3 57
+(A1 4+ A2+ A3)BaBs] = 0. (28)

Allowing for (25) and (22), we transform the last equation to the new form

(A1 A2A3 + At A2 s + A s da + Aoz ) — (A d2 + Ads + Ada + Aads + Ao da + Asy)
3
—5(/\1,31& + A2f286 + A3B3f7 4+ Aafafis) = 0. (29)

With the use of explicit form of (C(1/2))* (we present the matrix by columns):

(C(1/2))4

281B5[A? — (5155 + P26 + 367 + 4s)]
—*5255 [)\2 + A3+ /\1)\2 — 3(B1B5 + B2B6 + B3 B7 + Bafs)]
— EBBBS A4+ A3 4+ Mids — 2(B1Bs + B2Bs + BaBr + Babs)]
2BaBs[A3 + )\2 + XAy — 5(B185 + B2f6 + B3fr + Bafs)]

\/%55 (A3 — 2X1(B1B5 + B286 + B3B7 + BaBs) — 3 (M B1Bs + X2B2B6 + As3B3Br + AaBafs)]

_%/81/86[)\% + A3+ )\1>\2 — 3(B1Bs + BaBe + BsBr + Bafs))]
25256‘ [A3 — (5150 + P26 + B367 + Pafs)]

§6356[>‘2 + 23+ )\2)\3 — 3(B1Bs + Ba2Be + BsBr + Bafs))

2B4B6[A3 + A] + Ao s — 3(B185 + B286 + B3B7 + BaBs)]

\/%56[)\3 — 3X2(B185 + Bafs + B3Br + Bafs) — 3(MB1P5 + A2f286 + AsB3P7 + AafBafs)]

35157[)\2 + A+ MAs — %(ﬂlﬁs + B2 + B3B7 + Bafs)]

5257[>\2 + 3+ )\2)\3 5(B1Bs + B2fs + Bafr + Bafs)]
353/57[/\2 5(B1Bs + B2B6 + BsBr + Bafs))]

354/37[ + A1+ )\3>\4 — 3(B1Bs + B2B6 + BsBr + Bafs))]

\/%57”% — 3X3(B1B5 + B2B6 + B3B7 + Bafs) — 3(MB1Bs + X2B2B6 + AsBsBr + AaBafs)]

—2B1Bs[A] + AT + Mids — 2(B1Bs + B2fBs + B3Br + Bafs)]

gﬁzﬁs[)\g + /\4 + Aoy — 5(B1B5 + B2B6 + 387 + Bafs)]

53/38[)\2 + A%+ A3y — 5(B1Bs + B286 + BsBr + BaBs)]
M — *54ﬂ8 (A2 — (8185 + B2B6 + BB + Bafs)]

\/gﬁ A} = 3X4(B1Bs + BaBe + BsBr + BaBs) — 2(M1B1Bs + A2B286 + A3B3B7 + AafBafs)]

[\S][9% ] [W% )

=1/ 381\ — 3A1(B1B5 + B2fBs + B3Br + Bafs) — 3(A1B1Bs + A2B2B6 + A3B3Br + AafBafs)]
—1/ 2B2[A3 — 32 (B1B5 + B2B6 + BsBr + Bafs) — 3(MB1Bs + A2f2fs + A3fBsfr + Aafafs)]
—\/ 383[A] — 2X3(B1B5 + B2l + BB + BabBs) — 3(M1B1B5 + AaBafs + AsBsBr + Mafafs)] (30)
=/ 384} — 2Xa(B1Bs + B2fBs + B3Br + Bafs) — S(A1B1Bs + A2B2B6 + A3B3Br + AafBafs)]
— 318185 + A3B2686 + A3Bs 7 + MiBafSs) — 3515 + BabBe + P37 + Bafs)’]
we derive

(A 4+ 23+ X3+ 0D — 6(A281 85 + A3Bafs + A2BsBr + A2Pafs)
+§(5155 + BofBs + B3P7 + Bafs)? = 1. (31)
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Taking in mind (20), the last equation (31) may be transformed to other form
(AT + X3+ A3+ A1) — 6(ATB185 + A38286 + A58 57 + A1Bafs)
+2(AM1 A2 + M Az + A+ Aoz + dodg + AzAg)? = 1.
Whence, taking into account (16), we derive (A1 + Aa + Az + A\g)* = 1, or differently
(A1 4+ A2 + X3+ Aa) (A1 + X2 + Az + Ma)®
=M +A+ A+ /\4){(A? + A3 AT 2D 3002 + Az + M)

F3X2(A 4 As 4 A1) + 3203 (A1 + Az + A1) + 303 (A2 + As + As)
+6(A1X2As + A1 A2 Aa + A1 Az + )\2>\3)\4)}

= (A1 + A +>\3—|—>\4){ S AT AT AD) 30200+ As + )

+3(A1 + A2 + A3+ Aa) (AT + A3+ A3 4+ AD) + 6(Aid2As + At doda + Aidsha + mm)}
= —2(A1 + A2+ Az 4+ A) A+ A3+ A3 + 24D + 302 (A2 + A3 + \)

(32)

F3(M F Az 4+ A3+ A)ZAT 4+ A3+ A3+ 20 + 601 + Az 4+ Az + ) (A dads + Aidods + XAz A + Aads )

= (AT H A 254+ 21 — 20 (A5 + 23 + A1) — 20\ + A3 + D)

—2X3(AT 4+ A5 4+ AD) — 200\ + X3+ A3+ 6(AIAS + AN + ATA]

FAIAS 4+ A3AT + A3 + 6T (2 + Az + Aa) 4+ 6A3 (A1 + Az + Aa)
F6X3 (A1 4+ A2 + A1) 4+ 6AF (A1 4 A2 4 A3) + 1207 A2z 4+ Ao da + Az ha)
FOAF(A1 + A2 + A1) + 6AT(AL + Az + A3) + 1207 (A2 A3 + Ao da + Asha)

12X3( A1 A3 + Mida 4 Asda) + 1203 (A1 d2 4+ At g + A2da) + 1207 (A1 d2 + Az + dads) + 2401 Aa Ay

= (A1 + A2+ A3+ A1) — 20 (A3 + A3 + AD) — 20 (AT + A3 + AD)
—2X3(AT 4+ A3 + A0) — 20 (AT + A3 + A3) + 6(AA2 + Ads + A
+A2A3 + Aads + /\3)\4)2 + 6)\?()\2 + A3+ A1) + 6)\3(/\1 + A3+ A\4)
F6A5 (A1 + Az 4 A1) 4+ 6AT (A1 + A2 + A3)
= 3T HF A A D F 400+ Ao+ A3+ AT+ A3+ 23 +0))
F6(A1 A2 + A1 A3 + A A + Aods + Ao + )\3>\4)2 — 12X 1 A2 A3 = 1.
From the last equation, with the us of (15) and (25), we obtain

AT+ 23+ 23+ A1) = L+ 4(A1A2ds + A deda + Aidsha + A2dsa)

—4(A1 A2 + A1z + At da + A2As + A2 A + Ashg)
+2(A1 A2 + A1ds + A s + A2 ds + Ao da + Asha)? — Ahi A dsAa,

whence it follows (see (32), (33))
(A X2As + A dada 4+ A AsAa 4+ A2z Aa) + (A1 + Mids + At da + Aads + Aods + Azhg)?
—(Aid2 + AMAs 4+ AAs 4 Aeds + Ao A + Asha)
3 (X218 + N3Baf + X361 + NiBafl) — A haAsAs = 0.

Equations (33) and (34) may be transformed to other form with the use of (20), (29):
()\411 + M54+ A5+ Ai) =14 6(A1S185 + A2B2086 + A38307 + AaB41fs)

+§(ﬂlﬂ5 + B2B6 + Bafr + B1fs)? — AN X2z,

(A1B1B8s + A2B286 + A3B3B7 + Aafafs) + 2(5155 + B2Be + Bafr + ﬁ4ﬂ8)2

8
—(A1B1Bs + A3B2f6 + N3BsBr + \iBafs) — g)u)\z/\s)u; =0.

Due to the structure of eigenvalues of the matrix C(*/?) (10), its determinant equals zero:

A1 A2(AaB3B7 + A3B4B8) + AsAa(A1B286 + A26185) = 0.
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The above restrictions on parameters \;, 3; may be found differently: by using the characteristic
equation for the matrix C'(1/2)

(C/2)5 — a1 (CO/DY 4 ap(CH/D)3 — ag(C1/2)2 4 ay(CHD)) — a5 = 0, (37)

where .
a1 = Sp(CM7), a2 = S [(S,(CTP))* = 8,(CP)),

a = 3 {S(C)* = S5, C D)) + 5(5,0),
as = ({8 (D) = 28,00 ) (5, (D))

1

(S COAP) (8,002, () o

6(spc<1/2>)4}, as = det ¢/2). (38)

Taking into account possible eigenvalues for matrix C(*/2), we get:
a1 =1, as=a3=a4=as=0. (39)
At this we again arrive at relations (15),(20),(27),(37), and
221 02030 + 381 85(A2As + A2 As + AgAa) + 38286(M1As + A1 Aa + Azha)

+38387 (A1 A2 + At dg + Aady) + 3B4Bs(A1 A2 + A1 Az + AaAz) = 0. (40)

2. Transformation to the spinor basis

Let us find explicit form of the matrix I'y in spinor basis, this will permits us to determine an explicit
form of the complete equation in the spinor basis. Such a transition is performed in several steps.
In canonical basis, the complete function ® consists of the following components

D 1)(0,1/2) 1),(0,1/2) 1)(1/2,0) 1)y(1/2,0)
g (KAHOH.) _ {(\I/( ))(0’1/2), (1 ))(0’71/2)7 (w( ))(1/270)7 (o ))(71/2’0),

(\I,(Q))(Oal/z) (\11(2))(0;1/2) (\I/(z))(l/2’0) (\11(2))(1/2’0) .

(0,1/2)° (0,—1/2)? (1/2,0)’ (—=1/2,0)’
(OG0 (WG Ty (G20 (W5
(¥ )75, (¥, (¥, (¥
Y Yo Yo e Yo U
v v e e e e (1)

The functions G Y (m0d) iy modified Gelfand Yaglom basis and in canonical basis W21 are related
by the linear transformation A:

\I,GfY(mod) — Agplcan) (42)
Explicate form of the matrix A according to the general rule
Ly _ P (1,1

\112,53) = 0133;?/lg\1/(l3,lg)7 (43)

S

where Cl813 %, are the Clebsch — Gordan coefficients; the summing is over indices I3,l3 at restriction
3

)

I3 + 15 = s3. For given case, we obtain
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and

In detailed form, the matrix FELG_Y

Iiexi6 =

Ti6x16

Ti6x16

g(can) :A+\I,G—Y(mod), Fican) :A+FE—Y(mod)

A1
A1
A1

_ 1 2
V3 V3o
_./2 1
3 V3
1
2 1
3 V3
1 2
NE 3
_ 1
V3
_./2
3
2
3
1
V3
1
V3
2
3
2
3
1
V3

1 _./2
V3 3
2
3
1
2 1
3 /3
1
3
1 )
2
3
1
73
1
V3
2
. 3
1.
1

(mod)) reads
(spin) _ —1n.(can) , | Tigx16 [axie
Ty =BT B= Ti6x12 0 ’
A1
A2 .
. A2
Ao .
A2 .
. A3 .
. A3
A3 . .
A3 .
. A4 .
. A4
Ay
A4
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Y
. . . /3B ..
—\/gﬁl . . S
. —\/3p . L
—\/ 282 L
i
—\/ 382 . . .
—/3B .
li2x16 = .
—\/568s . ...
—\/3Bs . . ...
/5B .
/36 .
/38 .
/3B ..
/3B .
/3B .
205 586 : 387
: : 3§65 VEXE .
%BE” %ﬁ‘e‘. . %57 .
: %ES . %ﬁs . %37
Tiex12 =
therefore
(can) _ | Tiex16 Tiaxie | _ 4+-G-Y(mod)
L “ | Tiexa2 0 = AT,
where \
1.
. A1
A1 .
A .
. Ay .
. Ao
A2 . .
A .
Tiex16 = 2 "
. A3
A3 . .
A3
D VI
A4
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f% Y
) ) Y % :
. % R .
B -4
_ B2 Ji;
) ) R % )
. % B .. .o
. B — B2 ) o
Tioxi6 = vz B3 )
) ) . —PBs % )
) % . =B .. .
Bs —Ls
_Ba 8
. . 73 . 4 . .
) ) - % )
. % —Ba .
. Bs . f% ..
_Bs ,.576 Bz
V2 V2 : V2
—Bs . —Ps —B7
Bs Be . B7 .
2 2 2
Fiex12 = ’
Bs Be Bz Bs
V2 V2 : V2 V2
Bs Be . Br Bs
—Bs —Bs . —p7 —fs
_Bs _Bs _ Bz _
V2 V2 ’ V2

When defining the matrix Ffpm) in spinor basis, we apply the general formula

Y

W (20)! }1/2{ (20)! }1/2 (i..i3..3)
(Is:l3) (I+13)!(1 —13)! (I + )11 = 15)! (1...12..2)"

As the result we obtain the following linear transformation
p(can) _ B\I,(spin),

where . . 4 4 .
WP — L) (@2, (@), (805 (8P (@), (8,

()25 (W)L, (@), (@), (0o (8!, (w2,
(‘I’<4))1a (‘I’(4>)2§ \11%11)5 ‘I’%u), ‘I’%22)§ ‘1’<211)7 \I’%12)7 ‘I’(222)§

ii i2 22 ii i2 22
IR T T i N

Ti6x16
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Iiex16 -
1 . .
N VAVO R

. . 1 .
1 . .
L 1V2

SN2

A

1
L 1/V2 .
A |

@ (Spin) _ B-lylcan) Pispin) _ B_lfflcan)B.

In explicit form Ffpm) reads

I,4(lspin) _ Bilfgcan)B _ | Tiex16 T'12x16

| Tiex12 0 ’
A1
. A1
A1 .
.M .
. Ao .
. A2
Ao . .
Piex16 = . - S
. A3
A3 . .
A3 .
. D VI
. A4
).V .
.. A4
Y A
S I
. B . =B . . L.
R T
B . B ..
S R
. B2 . =B .. . L.
T N
Y A N
S . B . By .
. Bs . —Bs . .. . L.
R A
.
S R T
. Bs . =P . .. . . ..
R A
_Bs _Be _ Bz _Bs
2 2 2 - 2
T e S X
Bs .. Be . B B
Bs Be Bz Bs
. G . . . . . . . 3 . :
Fiex12 = ’ ’
Bs Be Br Bs
2 2 2 : 2
Bs Bs . B Bs
-Bs . —Bs . —B7 . —Bs .
_Bs _ Be _ Bt _Bs
2 2 . 2 2
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The matrix FESpm) may be presented with the use of the spinor elements of the complete matrix
algebra:

spin _ 1 a ab 0 o
P = {0 [0 el @ €7t + () pe @bt [ ha[(0%) el @ 52 + (0%)yeg? © €]
2 [(0)els © s + ()apef @ et | M () elt @ €7t + (o) yeft @ e
+B1(o ) [@al ®e "’eol ® e(ba)w2( ) [eﬂz ®e + 682 ®e(ba)]
+8s(c*)? [ea3 ® ep® + eo3 ® e(ba)} + Ba(o*)? [ea4 ®ept + 604 ® e(ba)] + 55(04)2[317}‘ ®eg, + egl ® e(cfllc)]

+B(0*)alel2;, @ b, + e © el + Br(o*)alels, @ b, + e @ els?)]

(ab)
+Bs(0*)alefsy @ b, + et @ et} (50)
Similarly may be obtained all four matrices F,(LSpm) ; to this end, it suffices to make the formal change
(0*) = (oM):
1_01 2__0*7: 3_10 4_20
(U )ab—‘l 0 dbv (U )ab— i 0 db: (O’ )ab— 0 —1 db: (O’ )ab 0 i db-

Recall that the spinor elements of the complete matrix algebra obey the following rules

54eC

(B) _5A5C g g Dpens (eg)D

505 =0p05,  epeh =0gep, (51)

the digital index at spinors (like as a;) determine the number of spinor equation with respect to repeating
presentations.
(spin)

The complete matrix equation determined by four I';, consists of 5 equations:

/\1{8‘“’ ®eb+aabeo®eo}\1/“>+ﬁ 8b{ 9 @ ef

+eg®e‘<lba)}\I/+M{eg®eg+e§®68}\11(1) =0, (52)

A2{a“b 0®e)+ 8abeo ® eo}\I!(2) + /328”{ ) Qe + 5 ® e(ba)}\ll
+M{eg ®ed + eg ® eg}\I/@) =0, (53)

A3 (adbeg ®e)+8,;ek ® 68) o® 4 808 (efflé) ®ep +ef ® e‘(lba))\ll
+M{eg ® el + eg ® eg}\II(S) =0, (54)

)\4(8ab 0o e) + Babeo ® eo)\If<4 + B4 Bb( (49) & 9 4 60 ® e(pa) )‘1/
—&—M{eg ®ed+ eg ® eZ}\I/(4) =0, (55)

o (e(db) ®ef +eq® e(ac)) (55\11(1) + B0

+80 ) + 0@ ) 4 M (i) @ et 4 el @ ey ) = 0, (56)

where

8&1, = ;8,,‘(0'“)(1}). (57)

Let us transform the above system (52)—(56) to spinor form. We start with Eq. (52), it leads to (see

(51))

{aab( OdEgwhe c+8ab(€0) (e )D\I/<1)B}+/B ab{( CNAENSTE + (e5)d (e(ba))D‘PC}
] (e AESED)E + () AEenFEVE} =0,
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or
ab A 0 i b i ac i ca 7,é
Al{aab5§5%qf<”b + aa,-,(sgaz,\p(”o} T 5@2{555%@@ ) 4 5863, (W}

+M{5f§%(\p“>)3 T 55‘6;3\1/(”2} —0.
Let A = l%, D = 0, then we obtain
MO T 4 3w 4 e WE
Let A=0, D =k, then we get
M8 TP 1 g 9wl s+ MUY = 0.
Taking in account identities

¥ i T R . | . C
WD = 500 (oW = S (320% + ahol) (o) iw = S{ (2wl + (0w

. ™ r n 1 é é
Cay = O (0 = SO0+ 030) (0 )W = £ (0100 + (0500},
we derive (see .(58) and (59)

nokwl) 4 {(a“)éagw; + Ot )il b+ e — o,

My 0 4 ﬂl{(oﬂ) 00Uy, + Oy b+ MUY =0,

or
8kb\11(1) 4+ 2 B { . (Uu)kbabéq/z . 8éb(0u)bé\1,ﬁ} + M\I,(l)ic -0,
)\18’“1’@(1)6 + %{ = (@")ke0" Wy, — abé(”“)éb‘l’k#} + M\I’z(cl) =0.

Joining equations (62) and (63) into a matrix one one, we get

0 ok || w®b] B ()" 0 ‘I’F
é’)kb 0 \Ijb 2 0 ( ) 8 ¢ c,u
9% (o) o6k 0 v } Sk
— ¢ ; m M =0.
0 6(15(0'#)}”152 \ch,u + \I/](cl)
Allowing for the identities
ool 4+ oV ol = 25,02, o 4o bo'“bC = —20,,05, oﬂabob”a = a:l-)cr”i’a = —20,0,
we get the following presentation for Dirac matrices
1o ograv|
; a(lfb 0 = Yus
so we arrive at
A 14
MOvW 25, { — 0w, Za(w%)} + Me® =,

where bispinors and vector-bispinor are introduced:

\Ij(l)a’
1) _
g — ’ \Ilgl)

)

g — ‘ \I’Z
ap
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In similar way, we derive the following equations
200 4 3000 Mw =,
M8 U+ Br0ewl, )+ MU =0,

A 1
00D — 28,{0,W, - 500, 9,) } + MIP =0,

4
A0 ¢ Bga’é’\lfﬁké) L MU®F —
A3 U 4 Ba0ew?, )+ MUY =0,
A3OT®) — z2ﬁ3{8 v, 18(%\1/ )} +MT®) = 0;
WL +me\l,ucc') +ME@E )
M8 U+ B0ewl )+ MUY =0,

1
MOPD —28,{0,0,, = 7007, 9,) } + MED = 0.
Now we turn to Eq. (56), it leads to
3d{( éab))A(eo)D + (ed)B (ac) }{5 ‘1’(1)3

+66\I/(2)C + 57‘11(3)0 + BT } + M{ EGZ; )b + (e ) EZZ; }‘IJC =0,

or
b b b
Oubasy 01 (85 25" 1 BeW g+ B8P+ BT )

081055 (B B 4 50+ W)+ M {6k W + 5150wl } = 0.

Let A= (kn), D =r; then we get

n b o)
o855 (80" 4 Bw®” 4 grw @Y 1 gw @’ prwl o,

or

Vi hon  on b b b b -
§ag(5§65 +5§5d)(/35‘1/(1) + B0 D7 4+ 07 4 gew ™7y 4wt — o,

that is
%{af(gw“” +Bs0D" 4 Bru®" 4w
IR LR ICLER 0L ng/(‘*)k)} + Mu =,
Allowing for Eq. (60), we obtain
R 5@ 4w M(‘”ﬁ)
T R L N ) R (COR RN A
Let A =7, D = (kn), then from Eq. (77) it follows
S{OEEID 1 e + 5w 4 puwlh)

+OR (B0 + B ¥ + B0 + Baw(D) |+ M) =0,

Ly
S{OL B + 0D + Bru? 4 o)

> 1 - -
0L (BT Y + BeWD 4 B0 4 58x1/§j))} + §M{(a“)k\llw + (U”)n\llku} —0.

(79)

(80)

Let us act on Eq. (79) by (0’\)2, and on Eq. (80) — by (¢*)k4 after this we convolute the spinor indices;

in this way, we arrive at

1 T n n n
_5{ Mrg (BT D 4 Beu @ 4 g g 4 gg
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+0™(07), (ﬂs‘l/(l)k + Be¥F 4 g 4w h) |
_*M{ rk‘I’n (o )m(f’A)rk\I" } =0,
*%{(0 Jerd™ (BT + Be WD + U + BsUY)
+0ar(eN)in (B0 + B + B + Bew)

ML) (") W+ (0" )r(0) 0} = 0,
or

l1y2 n n n n
5{{‘%(55‘1’(1) F BT 4 @ 4 gepn

=0 (), (B0 45U 4 Uy gw W g Sar{2w] - (0)7 (oY) 0k} =0, (81)

2{ VBT + B 4 B 4 BwD)
0 () (50D + o0 + B + W) L S {20y — (0")ar(0V) W L = 0. (82)

Joining two last equations(81) and (82) into the matric one, we get

1¢2 gbn p2)n g Pd)n
5{;&[65 g [T g | F57) go [+ @ }
ahr(a_)\)r' ) \I/(l)k \I’(2>k \11(3)19 \1/(4)1‘5
70 o S| S o S |
1 L4 (") (™), : \Ifk _
rpirfe) gk sty || s |1 =0

Allowing for (66), we rewrite the last equation in the form

1 ) . A . 1
5{ =08+ 90— 200, f (B 0D + 80P + B 4 Bow®) 4 SM {205 — (0, + 205} =0,

or

1 - 1
=i(0n = 7O (B0 + B0 + B + @) 4 M{ Wy — (7, W,) | = 0. (83)

3. The minimal form of equations

Let us derive the minimal form of the above system (67),(70),(73),(76),(83). From (83) it follows

1 j 1 4

Ty = 7 T) = 2700 = 700) (52D + B0 + o) 4 guW), (84)
4 M 4

Let us substitute this expression (84) in equations (67), (70), (73), (76). We will take into account the

identities

%

1 A 1
O\ (U — Z’YA(% w) =0V — =01 ¥y) = M( Z 9) (B 4 B 4 B0 4 gew ™)

»JM»—'

= 4M DB T + Be¥® + 0@ 4 0 ™),

so we derive

(M + 2,0)¥) 4 %5(55\1/“) + B0 4 5,06 4 gow™)y = 0, (85)
(M + X20)¥? 4 25 DB TN + B0 + g0 4 g™ = 0, (86)
(M + \30)W®) 4 25 D(B; TN + B0 + g0 4 g™ = 0, (87)
(M + \0) w4 25 D(B; TN + B0 + B0 4 g™ = 0. (88)
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Let us act on Eq. (85) be operator

B5(M + \a0) (M + A\30)(M + \s0);
on Eq. (86) — by

Bs(M + M) (M + A30)(M + \s0);
on Eq. (87) by

Br(M + M) (M + \2d) (M + \s0);
on Eq. (88) — by

Bs(M + A10)(M + X20) (M + A30);
and sum the results — this gives

{M4 + M2 (A1 + X2+ Az 4+ A1)+ M2 (Ad2 + Mids + Ada + A2z + Ao da + Asha)O
FM (A d2As + Adz A + A AsA + A2AsAa)d0 + >\1>\2>\3>\4DD}(55\P(1) + B 0® + B0 4 BT )

o { MO (515 + B2 + Bsr + Bafs)

+M2[()\2 + A3+ A0)B185 + (A1 + Az + A1) B286 + (A1 + A2 + A1) B3B7
+(A1+ A2 + )\3)5458]é + M[B185(A2A3 + A2 Aa + A3A4)
+B286 (A1 A3 + A A + AsAa) + B3B7(A1 A2 + A da + A2 dd) + Bafs(A1 A2 + Aids + A2 A3)]0

H[A1A2(AaB367 + A3B4Bs) + Az Aa(A2f185 + )\15256)]5‘]}

><\:|(55\I/(1> + 56\1,(2) + 57\1,(3) + 58\1,(4)) =0,
or ) R
{M4 + M3 (AL 4 Az + Az + M)+ M2 (M2 + Ads + Aida + Aods + Aeda + Asha)

+g(5155 + B2f6 + P37 + Bafs)|0
M [()\1)\2)\3 A A2+ A s+ A2 dsAa) + g((AQ + s+ Aa)BiBs
O+ A+ A8 + (M + Ao+ M)BsBr + (A + Ao + As)Bafs) | 5D
e dshs + (8185 0nhs + dada + Asha)
6285 (0 As + Aiha + AsAa) + BsBr(0ida + Mha + A2ha) + Bafs(Auda + Aids + A2a))] 00
A2 (AaBsBr + AaBafs) + Asha (N B + M 5206)}000 )

X(ﬁ5\11(1> + ﬂa\l/@) + ﬂ7\11(3> + ﬂg\l/(4>) =0. (89)

Taking in mind restrictions (16), (20), (28), (37), (41) for parameters \;, B, we derive
(M +0) (B0 + 56w + g0 4w ) =0, (90)

which is the minimal Dirac equation for a free plarticle with spin 1/2, with respect to the following
bispinor

o = 55\11(1) + ﬁﬁ\p(?) + 57\1,(3) + 58\11(4)_ (91)
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4. Equation in presence of electromagnetic fields

We start with the equations in presence of external electromagnetic fields (D, = 0,, — ieA

. ‘ 1.

(M + A\ D)o — 1251{1)#\1/# 1 m%)} =0,
@) Ly —

(M + Ao D)¥ —1252{ — 1D, )}_0,
3) Ly _

(M +XsD) ) — i23{ D, ¥, — 2 D(3,9,) } =0,

1~
(M +\D)e — i28,{ D, ¥ - <D (W) } =0,

, 1 . 1
—i(Dx = D) (B0 + 80P + 30 4 Bow @)+ 2r{wy — 1)} =0,

4
From Eq. (96), it follows

1 ) 1 .
Wy - 1%\(%‘1’#) = M(D/\ - Z%\D)(ﬁs‘l’(l) + B0 + B U@ + gw ™),

Correspondingly, we obtain

1. )
D, — D0, ¥,) =

~1 (D? — SDD)(B 0D + o0 + 5 U@ 4 fu),

4
Taking into account this identity (97) in equations (92)—(95), we derive

(M + D) + 2 (D2 ZDD) (B0 + 5o+ Bru) 4 ) = 0,
(M + XsD) ) 4 2 2% (02— 1DD)( + G0 + 5 1 uD) =0,
(M + A3 D) ¥ + 23 2% (02— 1DD)( ™ + 50 + 5 1 uD) =0,
(M + A, D) B + 254( — TDD)B YY) 4 5o 15U 4 ) = 0,

Let us act on Eq. (98) by operator
B5(M + Ay D)(M + A3D)(M + M\sD),
on Eq. (99) — by
Bs(M + M D)(M + AsD)(M + \4D),
in Eq. (100) — by
Br(M + A D)(M + X2 D)(M + AaD),
on Eq. (101) — by
Bs(M +MD)(M + X2 D)(M + AsD),
and sum the results; so we derive
{M4 + MPD + M2 (A Aa + Mds + M A+ A2ds + Aeda + Asha) DD

+M (A1 223 + A A2 + A Asha + A2 Asha) DDD
+)\1/\2)\3)\4ﬁbﬁb}(55‘1’(1) + ,36‘1’(2) + ,37‘1’(3) + ,38‘1’(4))

2
+M{5155 [MS

+B2B6[M* + M* (M1 + Az + A1) D + M(AiAs + Ada + Asha) DD + A AshaDDD)

+B3B7[M® + M?(A1 + X2 + Aa)D + M(Aid2 + M + A2Aa) DD + M A DD D]

+ M*(A2 + Az 4+ A1) D + M(Xads + AaAa + Asha) DD + AadsAa DD D]
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+B1Bs[M® + M1 + Ao + 2a)D + M(Aade + s + Aaa) DD + \idads DDD] }
x(D* = 2 DD) (B0 + pew® + 70 + gw ) =0, (102)

We will use the identity DD =D?— 1eF,1 110, S0 that
D? = DD + ieFlu I ju); (103)

where Fj,,) = 9,4, — 0,4, is the electromagnetic tensor, and If,,) = %('Yu% — YY) Allowing for
relations (103), we transform Eq. (102) to the form

{M4 +M*D + M2[(>\1)\2 + A1z + A 4+ A2z + Ao s + Ashy)

3 A
+§(5155 + B286 + B3B7 + Bafs)|DD
+M[()\1A2)\3 + A1 Ao Ay + A1 A3y + )\2)\3A4)

3 3 3 3 PP
+§ﬁ155(/\2 + X3+ M) + 5,82,36()\1 + A3+ ) + §B357(A1 + X2+ )+ 5/34/88(A1 + X2 +A3)]DDD
3 3
+ [/\1)\2)\3)\4 + 55155()\2)\3 + Aoda + Azhd) + 55256()\1>\3 + Mg+ Azhq)

3 3 PPN
58587 (M A2+ MAa + Aeda) + 5 BaBs(Mide + MAs + )\2)\3)] DDDD

21@ {MS (8185 + B2B6 + B3B7 + Bafs) Frpv L[

+M2[ﬁlﬁ5()\2 + A3+ M) + 5,82,66()\1 + A3+ A1) + 55357()\1 + Ao+ M)+ 56458()\1 + A2 + )\3)}ﬁF[‘u.V]I[;LV]
+M[B185(A2A3 + A2da + AsAa) + B286(AM1As + A1 Aa + Asha)
+B3B87(A1 A2 + M Aa + Aadd) + BafBs(Ai A2 + Mg + AgAg,)]ﬁbF[W] Tt

+[B1B85X2AsAa + B2B6 M1 AsAa + BsBrAideNa + BaBs i AeAs] DDDF i Iy }

X (ﬂ5\11(1> + ﬂG\P(Q) + ﬂ7\Ij(3) + ﬂg\ll(4>) =0.
Taking in mind restrictions (20), (28), (41), (37), and (91), we derive
{M4 +M3*D + 2ieM2(ﬂ1ﬂ5 + B286 + B3B7 + Bafs) Fluv L[

+2ieM [B185(A2 + Az + A1) + B286(A1 + Az + Aa) + 8307 (A1 + A2 + Aa) + Bafs(A1 + X2 + )‘3)]bF[MV]I[HV]
+2ie[B185 (A2 Az + A2 da + Asha) + B286(A1 Az + AMida + Asha)

+BaBr (A + AAa + Aada) + Bafs (M de + Ads + A2Xa)| DD Fluuy I @ =0, (104)
or differently
M+D-— ie% [i(/\lAQ + AAs + A+ XA + A2+ AsAa) Fu I
()\1)\2)\3 F A Ao + M AsAs 4 A2 AsAa) DFui Iy + +~= ,\1,\2A3,\4DDFWIM} =0. (105)

Allowing for the identities
DD = D? —ieFi,n I,
1
Ve = OuvVo = Oup Vo + Oup i + Curpn V5 Y0y Vs Vu Ve = OuvYs = 5 €uvpATpVA-
we get

7)\1)\2/\3)\4{D2F[HU]I[HD]© - ieF[pA FW, I[pA]IW,]‘I'}

e /\1)\2)\3)\4D Fuy]luu]q)

M3
e
5 A2 A A E ox Flun T ipa () = WAMQA:WD Flun 1) @,

1 1
7)‘1)‘2>‘3/\4{F[w Twoyyute + Z€on Flun)vs — §F[w1Fw1}‘P~
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Therefore, Eq. (124) may be presented as

4
{M +4.D, %g(A1>\2+>\1>\3+>\1>\4+>\2>\3+>\2>\4+>\3>\4) Fip T
ie
T M2?23

1 1
_W 3A1/\2/\3/\4 (D Fun T + Flun Fopvuve + 5 Flund Flun) + Z€pnun Flox F[w]%)‘b = 0. (106)

()\1)\2)\3 + A A2Aa + A A3y + )\2)\3)\4) DF[W]IW

Let us introduce the notations

4
n= g()\l)\Q 4+ AAs + Mg + A2 As + Ao g + >\3)\4),

4 4
o= (Almg A A2+ A s + A2A3A4), n=3 MAadaks;

then the above equation reads

ie
{M""VPDP_ Vis Fuplup — MQJDFuﬁIuﬁ
ie 1 1
_7M317 (DZFO(BLX,B + FaﬁFﬁp’Yaﬁ/p =+ §FQ5F[O[5] =+ Zep)\a/ng,\Faﬁ’y5)¢) =0. (107)

This equation should be considered as related to a spin 1/2 particle which in addition to electric charge
has three other electromagnetic characteristics u,o,vy. The p corresponds to the anomalous magnetic
moment; the o corresponds to the polarizability; and the parameter + should be associated with a
certain intrinsic structure which assumes rather complicated additional interaction with the external
electromagnetic field.

5. Equation in presence of gravitational fields

Assuming the use of relativistic interval in explicit real-valued form (Minkowski space with the signature
(+a T *))
dS? = 2dt* —da? — dy* — dz*,  (t,z,y,2) = (%), a=0,1,2,3

one should use the basic equation in the form
{mpD —M+ FagJ"ﬁ + 2 DF.pJ*°

1
M”g ( s T 4y FoapF? y iFagFO‘B + 17 EPMBFPAFQB)@ ~0; (108)

recall the notaions

) » o « 1 « a
D, =0, +ied,, D=19"D,, D*=g BDQD;;, TP = Z('Y ’75*75’7 ).

Let us extend this approach to curved space-time background. We should start with the modified
system of the first order equations

1.
(M + M\ D)y —QZﬁl(D“\IIM T wqfu)) =0, (109)

1~
(M + Ao D)@ —2252(1)#\1/” T fy“\IJM)) =0, (110)

1 4
(M + A5 D)W — 208 (D w,, - 3 (7"9,)) =0, (111)

1 A
(M + \D)ys® — 2ip, (D“\IJ - <D «wqfﬂ)) =0, (112)

, 1. 1

—i(Dx = 7nD) (B + B0 + B0 4 @) mr{wy - (e f =0, (113)

In this system, ¥(®)(a = 1,2,3,4) are covariant bispinors, and V¥, is a covariant vector-bispinor. We
apply the generalized derivative D,,, it takes into account the presence of electromagnetic fields and any
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curved space-time background; the symbol V,, designates the covariant derivative; the symbol I',(z)
stands for the bispinor connection; I', () represents the local Dirac matrices:

D, =V, —ieA,(z)+T,(z), D= v*D, = v*(x) (V# —ieA, + F#),

A A anB B anB _ ABAo
DD = (’YaDa)(’YBDﬁ) — Dawl)ﬁ —&—Dang
2 2 (114)
= g*%(2)DoDj = D* Dy + J**(2)[Do, D) - = D* + 0" () Mo (),

D® = D®Dq, Map(2) = [Da, Dgl-, J*(x) =

From Eq. (113), it follows
1

1 1 .
Uy — 000 = 12 (Dy = D) (B9 + B + 6ru® + gow®).

Correspondingly, acting on this relation by D), we obtain
1 -
Dy — 1D, = (D2 - 7D D) (B9 + Bow® + B0 4w ). (115)

Taking into account the last identity in equations (109)—(112), we derive

(M + X D)oV 4 2= 261 ( i[)b) (B0 4 B0 @ 4 0B 4 gw@) =0, (116)
(M + A D)B® 4 222 252 ( i ”D) Bs ™ 4 B0 @ 4 BB 4 ™)) = 0, (117)
(M + XD)u® + 2]@3 (D2 i “D) By 4 BT @ 4 B 03) 4 BT = 0, (118)
(M + A\ D)W % (D2 i[) ) (B0 + B0 @ 4+ 5,00 1 gw ™) =, (119)

Let us act:

on Eq. (116) by operator
Bs(M + XaD)(M + A3D)(M + A4 D),

on Eq. (117) — by

B6(M + X1 D)(M + \3D)(M + A\4D),
in Eq. (118) — by

Br(M + M D)(M + X2 D)(M + A\4D),

on Eq. (119) — by
Bs(M + \D)(M + A2 D)(M + A3 D),

and sum the results; so we derive

{M* 4+ MPD 4 MOk + Mds + Ada + ods + Ao + Asha) DD

+M (A A2As + AMAada + AAsAa + Aedsha) DDD + A1A2A3A4Dﬁbb}(ﬂsw<” + 860 4 5@ 4 gw®)

2 . . A P
+ = { BUBSIM® + MP(Aa + Aa + Aa)D + M(Aads + Aoda + Ash) DD + deAaXs DD D)

+B2B6[M> + M* (A1 + Az 4+ A1) D + M (M3 + Mida + Asha) DD + MAs DD D]
+83B7[M? + M* (M1 + A2 4+ A1) D + M (A2 + Mida + Aoda) DD + M Ao X DD D]
FBaBs[M® + M?(A1 + A2 + As)D + M(Ada + AiAs + Aods) DD + AlAzxgbbf)]}
x(D? — ibf)) (/35\1:“) + Bs U@ + B w4 ,88\1:<4>) =0. (120)

We will use the identity (see (114))

DD = D? + J*(2)M,5(z) = D*=DD — M,z (121)
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instead of relation D2 = DD + ielngJ @8 in presence of only electromagnetic field. Therefore, we do not
need to repeat the calculation in Minkovski space, it suffices the formal change

’ieFag — —Mag.
Allowing for relations (120), we transform Eq. (120) to the form

{M4 +M3D + M? ()\1)\2 A3+ A+ Aeds + Aahg - A3A4)D2

+M()\1>\2>\3 + At A2 As + At s + )\2)\3)\4)153 + )\1>\2)\3)\4ﬁ4} (55\1’(1) + B0 4 3w 4 58‘1’(4))
+%{ﬁlﬂs [M3 + M*(A2 + X3 + A1) D + M(X2ds + Aeda + Asha) D? + A2A3A4D3}
+B26 [M3 + MM+ s+ M) D+ M(Ads + Aida + Asha)D? + /\1)\3)\4[33}
B3 [ M* 4+ MO + X + A)D + MOude + M + 22Aa) D + Adaha D
+B4fs [M3 + M?(A1 4+ A2+ A3)D + M(A Az + M As + Ao Xs)D? + )\1)\2)\3ﬁ3] }

3 - o
X(1D° = 0ap *) (B0 + Bov® + Bre® 4 58\1/<4>) =0. (122)

Now, we are grouping the terms with respect to

D, D* D* D* D

in this way we obtain

{M4 + M®D + M? [(/\1)\2 + A1z + A1 da + A2 A3 4+ Aoy + )\3)\4>%(/31/35 + B286 + B3f7 + /B4ﬁ8):|D2

+M[(>\1)\2)\3 A Aods 4 A dsAs + >\2A3)\4) + gﬂl& (A2 s+ )\4)
+%ﬁ256 (A +2s 4 A0) + gﬂ3ﬂ7 (A2 +A0) + 35458 (A + 2+ 29) | D7
+[Mdedods + 25155 (Mods + Aoda + Aaha) + %5256 (Ada + A+ daa)
o B3 (Aha + Aha o+ 2ad) + 5 Ba8s (e + s + dads) | Y
+% [51B5>\2)\3>\4 + BaBeridsha + BaBrArdads + ﬁmmxgxq [)5} (55\1/(” + B 4 Brw® 58\1:<4>)
—%{M?’ (B1ﬁ5 + B26 + Baf7 + ﬁ4ﬂ8)]‘4aﬁt]043
+ M2 (815 (N + Do + M) + gﬂzﬂe (A 2a+A0) + 25357 (A e+ A) + 26458 (M + 22+ 2 ) [ DM s
+M [51ﬁ5 ()\2)\3 o+ )\3/\4) + B2Bs ()\1)\3 A+ /\3)\4)
+B3 ()\1/\2 F A+ Ag,\4) + Bafs (/\1)\2 F s+ A2A3)] D2Mo "
+[B1Bs A2 Xada + BaBohidada + Bafrhideda + Bafshidads] D* Mt}
% (55\1,0) + B0 4 gu® +58\1,<4>) —0.
Taking into account restrictions on parameters (20), (28), (41), (37), and also the notation (91)
oW + B U + B0 4 f0 ) = o,

we derive R
{M4 + M3D — 2M> (5155 + B286 + B3B7 + 5458)Ma5=]a5

—2M [51550\2 + A3+ A1) + B2B6( A1 + As + A1) + B3B7( A1 + A2 + Aa) + BafBs (A1 + A2 + As)] DMaBJQB

-2 [5155()\2)\3 + A2As + Asha) + B286( A1 A3 + A1 s + Asha)
+5387 (A1 A2 + At Aa + Ao Aa) + Bafs (At A2 + A Az + )\2)\3)} ﬁﬁMa,eJaB}fl) =0, (123)
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or differently

M2

M+ D
{a+D+g

Allowing for the identities D? =

{M+D+

(D? + JP? M, ), the last equation transforms to other form

**(M& + A3 + A1As + A2 As + Aoy + )\3)\4)J Meag

M3

1
= (mm + Adeds + Adada + A2deda ) DI Mag + o

M?23
or differently

{M+D+

14
M2

+

1
+—

M 3

3

M33

A1
= {7 (Al/\2 A 4 AL+ Aods 4 Ao hs + )\3)\4)Maﬁjo‘6

(x\l)\g)\g A deAs + MAgAs + Aedghd ) DM T + —/\1)\2)\3>\4D M| b0

14 N
5 (Adz 4 Ak + M da + Aads + dods + Aoda ) T Mag

= (/\1/\2)\3 4+ AA2da + A A3 + )\2/\3)\4)DJQ’BMa5

4 apB po jaf3 _
e 3/\1)\2)\3/\4(D TP Mos + JP° T Mngag)}é =0.

Further, we will work with the short presentation of the above equation

+

M377

- 1 e 1 ayre]
{M + D+ 21 Mo + 550D Mg

Let us detail the commutator M,g:

it is (see in [3])

Do =Vq+ieA,(z) +Tu(x),

MoV =

Let us consider the term (see in [3])

- r
M

Consider the term

M2 Dj

Consider the term

M3

n D2 aBMa

— 1" M,V
Mj B

ﬁMaﬂW - M2 (’Y

Now we are to consider the term

po [ By 1.,
=1 4o {(] B(lerU+§JH Ruvpo) — (Zera+ J pra) )+MUJ ﬂ}Maﬂ

A= 5 775 Mae Mo = 31 j"“{(jaBMpo = Mpof®?) + My j® } Mo

Md

Thus, we get

(DoDg — DgDy,)¥ =

Mo
M

(DQjaﬁMag T j/"’jaﬁMmMaﬁ) }<I> —0.

Ma,g = DaDg — DﬂDa;
. 1,
(teFop + 53 Ry pap)¥

1
JaB (ieFaﬁ + iijRVpaﬂ) N4

af caff svp ﬂ ; ol 1

(ZeFa/gj + 2] j R,,pag)\ll M<l€Faﬁj 4R($))\Il.
) wp 1

’D,) (zeF(w] — ZR(:E))\I’

1 1
_ 4 ; 1e%6}
sV = Wﬁ 9?°(2)D,D, (zeFag] - ZR(x))\II

N .po 1iag v
= W]p {5[] Ba]u ]7R,uupo'+Mpa-] H}]\4aﬁ7

n
A=9p

{77 Mo (57 Map)

1
Z5po
+ 2]
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[jab’,j/w}

_MasRyupe }

=0.

)\1)\2)\3)\4(D +JPUM )JaﬂMaB}(P

:O7

(124)

(125)

(126)

(127)

(128)

(129)

(130)

(131)
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Taking in mind the identity [3]
-3 . ~a B 1
J Mg = (ieFopj™ — ZR)’

we rewrite the last expression as follows

N po n . -po 1 2 L. AP -V
A:ﬁjp j BMPUMQB: e {(zerUjp _ZR) +§Jp [4 5,3“ |- Mug prg}. (132)
We should detail the second term with commutator
1. oL v
B =" [1*"3" ]~ Ruvpo Mas

1 PO Qv vV - (e Pr (027853
= 54" [(95“1 A N (e L J‘”)}Rwa Mg

1 PO o774 g9 {e3 274 « .
= §Jp [Rﬁupa] - Ruﬁpa] —R upo]ﬁ + RM pa]ﬁ'u:| MO(B

1 yelen v {e% -pv «@ . g4
= 5.7/] [(RBupUJ Maﬁ -R l/po']B Maﬁ) + (Rp pg]BuMaB - R,uﬁpa] uMaﬁ)] .

Making the needed change in mute indices, « = 3, 5 = «, we get

1 yelen Qv XV «@ . «@ .
B= EJP [(Rﬂupaj Mag — RBVPU] Mpga) + (Ru pU]BMMaB - R, pvJBHMﬁa)]

1 .o -av .av a a
= 7]p [(Rﬂ af + RBVPO‘] Maﬁ) + (R,u pU]/BMMOéB + R,u pG]BHMDtB)]

- 2 vpold
.po v

1 ., av . po
= 7];7 [ZRBVpUJa Maﬁ +2R,” ]ﬂHMaﬁ:| = Rﬁl/po’.] J Maﬁ + R,uapojpo-]ﬂ”MDéﬁ =B.

2 u po
Making the changes, y = v,a = 3,8 = «, we get

B =R’,,,5" 5" Mag + R,% o5 5" Mus
= RﬁupajpgjauMa/B + RuﬁpajpgjaVM/Ba = RﬁupojpojaVMaﬂ + Rﬂupajpa.jay af
=2R’,,,577j* Mas = B. (133)

Allowing for expression for M,g, we derive
1
B = 2R, j*7j% Mys = 2R®, j*7j° (ieFag +3 j”ng)
= 2ieFupR’, 0 (777 5%) + R,y Rerapi” 5§ (134)

Let us consider the product of two generators

.po - 1 o o a v vV«
374 :17).(7”7 =YY (Y =)

1 o_o_V o _V_« o o _ UV V_«
276[7’1(777 —Y7YYY) =T (Y =Py )}

5 ocavd

1 o o o . .
=E{vp[(v g =97 g7 F iy " ) — (V797 =497 " e

o _va v oo a vo 5 ovad
Ys)

5 prad

o av « 17 v « . 5 (11/5 ro v (% « v .
- [(WPQ —9%9" + 979" + i s) — (V797 =" + g™ iy 75)}}
1 o oV Vv oo . oovr o «@ v v « . arv
:g{vp[—vg +9°97 7% 5| =7 [ =g A g e s |
Therefore, we derive

. .po v i€ o _ov v oo . 5 cavd
C = ieFap R po " = T Fas{ =207 Rp + 97 07 R + 17 95

o_a pv o_v _pa . o avd
+v gp RBVpo’ -7 gp Rﬁupa -y ’756/3 ’75Rﬁupa}

ie « o v «@ . 5 ocav o _« o v « e 5 av
= ZFQB{ — Y R o + "7 R, — iy 57 O R o + 4 VR g — 7Y RE, % 4 i 57 ‘SRﬁW}-
Taking into account the symmetry properties of the curvature tensor, we derive

ie o . o
C= ZFaB{ — "y R, + (=7" + 29" )R’,,* — iv" 57"’ R’
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97 Ry + (177 = 26" R — 97957 O R )
= %Faﬁ{ YR, 4 (" R, = 2RY) = 2iy 75y e Ry — 4" R, + (1R, + 2Ra6)}7
that is
C= %Faa{ — YR, R, — iP5 e R, )
Using the identities
V=257 +9"), =2 +9""), s = (2575 + %),

we arrive at

i@ pa I v « v « . . oav
C = §Fae{ —(2§**R°, + g"*R",) — (2j"°R",,* + ¢"*R",,*) —i(2j"5 + 0")7 ¢ ‘sRﬂypo}

= SFas{ = 2R’ = R = 2R’ + R = 2 R,
- % aﬁ{ —2j"*RP 2P RP, ~ — 2iv5j”6€”a"53ﬁupo} =C (135)

Collecting results together, we get

Uy -3 _ n . yoled 1 2
375 978" Moo Mas = 35 [ (1eFos” = 1)

/1:6 \yele} -V « . . oxvr PO XV ET
+5Fa6(—2jp RP, —2j"PRP, * — 2in7 e 5Rﬂypg) + R, Rerapi™ 5] } (136)

Therefore, the basic equation takes on the form
o . o 1 o . o 1
{(’y Dy, + M)+ ﬁ(zeFa@] A ZR) + el (v*D,) (’LeFagj A ZR>
+-1 [D"D(, (ieFagjaB - 1R) n (ieF 0" — 13)2
ie M3 4 ° 4
SFas (2R, = 25 R, = 20 e R g ) A+ B po Rera 37755 | b = 0. (137)

The operator D? D, is detailed as follows

DDy = (V7 +T1°) (Vo +T,) = VoV, + (Vo) +T°V, + 9V, + T,

= V7V, + (17 — T79,) + 209V, + +T7T,.
The last term in (137) may be presented differently
R?,poRerap 37757 57 = =(RP, 533" (Rager §7) = = X7, " Xap. (138)

It is convenient to transform the last term in (137) to tetrad form:

RBUpo'RETOLﬂ jpajaujeT - _ (Rdnab<x)jab)jnm (Rmdkl(m)jkl) )

Therefore, the basic equation takes on the form

{('VUDG + M) + %(ieFaﬁjaﬁ — iR) + %(WPDP) (ieFaBj"‘B _ iR)

n o . YeYs} 1 . :po 1 2

er {D D, (zeFagj — 1R> + (zergjp — ZR) +
’ij o B v B« - 5.:p0_ avo pfB

+ 2 Faﬁ (2.7 pRp - 2.7 "R vp 227 jp €s R vop

- (Rdmb(x)j“b) jrm <Rmdkl(z) jkl)} }\IJ —0. (139)

Evidently, it is possible to detail additionally the term with the product of two Riemann tensors.
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Conclusions

As seen, in the derived extended equation for spin 1/2 particle, there arises a number of additional
geometrical interaction terms through the Ricci scalar R(x) and tensor Rgp, and the Riemann curvature
tensor Ry,nki(x). The contribution of Ricci tensor and Riemann curvature tensor differ from zero only if
the third parameter 7 vanishes.
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