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A Spin 1/2 Particle with Three Additional
Characteristics in Presence of External Fields, General

Theory within the Gel’fand–Yaglom Formalism
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Within the general method by Gel’fand – Yaglom, starting with the extended 28-component
representation of the Lorentz group (it includes four bispiniors and one spinor of the 3rd rank),
for a spin 1/2 particle, we construct a relativistic P -invariant generalized system of the first order
equations for a spin 1/2 particle with three additional to electric charge characteristics.

First, the model is developed for a free particle, and the system of spinor equations is derived; then
it is transformed to spin-tensor form. In this spin-tensor form, we take into account the presence
of external electromagnetic fields. After eliminating the accessory variables of the complete wave
function, we derive the minimal 4-component Dirac-like equation, the last includes several new
interaction terms which are interpreted as related to some additional electromagnetic characteristics
of a spin 1/2 particle.

PACS numbers: 02.30.Gp, 02.40.Ky, 03.65Ge, 04.62.+v
Keywords: Spin 1/2, Gel’fand – Yaglom, extended wave equations, additional characteristics, external
electromagnetic field, Riemannian geometry.

1. Gel’fand – Yaglom formalism, and a new Dirac-like equation

We will construct a generalized relativistic equation for a particle with spin 1/2, using the extended
set of irreducible representations of the proper Lorentz group

T = 4[(0, 1/2)⊕ (1/2, 0)]⊕ [(1/2, 1)⊕ (1, 1/2)]; (1)

with the linking scheme

4(0, 1/2) − 4(1/2, 0)
| |

(1/2, 1) − (1, 1/2)
(2)

First we will construct a matrix equation for a free particle 1

(Γµ∂µ +M)Ψ = 0, µ = 1, 2, 3, 4. (3)

In modified Gel’fand – Yaglom basis [2], the components of the complete wave function are determined
as follows

ΨG-Y(mod) =
{
(Ψ(1))

(0,1/2)

1/2,1/2, (Ψ
(1))

(0,1/2)

1/2,−1/2, (Ψ
(1))

(1/2,0)

1/2,1/2, (Ψ
(1))

(1/2,0)

1/2,−1/2;

(Ψ(2))
(0,1/2)

1/2,1/2, (Ψ
(2))

(0,1/2)

1/2,−1/2, (Ψ
(2))

(1/2,0)

1/2,1/2, (Ψ
(2))

(1/2,0)

1/2,−1/2;

(Ψ(3))
(0,1/2)

1/2,1/2, (Ψ
(3))

(0,1/2)

1/2,−1/2, (Ψ
(3))

(1/2,0)

1/2,1/2, (Ψ
(3))

(1/2,0)

1/2,−1/2;

(Ψ(4))
(0,1/2)

1/2,1/2, (Ψ
(4))

(0,1/2)

1/2,−1/2, (Ψ
(4))

(1/2,0)

1/2,1/2, (Ψ
(4))

(1/2,0)

1/2,−1/2;
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1 Applying the ict-metric.
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Ψ
(1,1/2)

1/2,1/2,Ψ
(1,1/2)

1/2,−1/2,Ψ
(1/2,1)

1/2,1/2,Ψ
(1/2,1)

1/2,−1/2;

Ψ
(1,1/2)

3/2,3/2,Ψ
(1,1/2)

3/2,−3/2,Ψ
(1/2,1)

3/2,3/2,Ψ
(1/2,1)

3/2,−3/2;

Ψ
(1,1/2)

3/2,1/2,Ψ
(1,1/2)

3/2,−1/2,Ψ
(1/2,1)

3/2,1/2,Ψ
(1/2,1)

3/2,−1/2

}
T
; (4)

the symbol T designates the matrix transposition; the matrix Γ4 may be presented in the form

Γ4 =

∣∣∣∣ c(1/2) ⊗ γ4 0
0 c(3/2) ⊗ I2 ⊗ γ4

∣∣∣∣ , (5)

where the spin blocks c(1/2), c(3/2) have the structure

c(1/2) =

∣∣∣∣∣∣∣∣∣∣∣

c
(1/2)
11′ c

(1/2)
12′ c

(1/2)
13′ c

(1/2)
14′ c

(1/2)
15′

c
(1/2)
21′ c

(1/2)
22′ c

(1/2)
23′ c

(1/2)
24′ c

(1/2)
25′

c
(1/2)
31′ c

(1/2)
32′ c

(1/2)
33′ c

(1/2)
34′ c

(1/2)
35′

c
(1/2)
41′ c

(1/2)
42′ c

(1/2)
43′ c

(1/2)
44′ c

(1/2)
45′

c
(1/2)
51′ c

(1/2)
52′ c

(1/2)
53′ c

(1/2)
54′ c

(1/2)
55′

∣∣∣∣∣∣∣∣∣∣∣
, C(3/2) = C

(3/2)
55′ , γ4 =

∣∣∣∣∣∣∣
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

∣∣∣∣∣∣∣ ; (6)

I2 is a 2×2 unit matrix; the involved irreducible representations of the proper Lorentz group are numerated
as follows

1, 2, 3, 4 =⇒ (0, 1/2), 1′, 2′, 3′, 4′ =⇒ (1/2, 0), 5 =⇒ (1, 1/2), 5′ =⇒ (1/2, 1).

According to [1, 2], we have

c(1/2) =

∣∣∣∣∣∣∣∣∣∣
c11′ c12′ c13′ c14′ i

√
3c15′

c21′ c22′ c23′ c24′ i
√
3c25′

c31′ c32′ c33′ c34′ i
√
3c35′

c41′ c42′ c43′ c44′ i
√
3c45′

i
√
3c51′ i

√
3c52′ i

√
3c53′ i

√
3c54′ c55′

∣∣∣∣∣∣∣∣∣∣
, C(3/2) = 2C55′ , (7)

where cij′ are some numerical parameters, on which special constraints will be imposed later on.
In order to simplify the calculations bellow, let us take into account the possibility to break the linking

between repeated representations [1]; this is achieved by vanishing the corresponding parameters in the
block c(1/2):

c(1/2) =

∣∣∣∣∣∣∣∣∣∣
c11′ 0 0 0 i

√
3c15′

0 c22′ 0 0 i
√
3c25′

0 0 c3′ 0 i
√
3c35′

0 0 0 c44′ i
√
3c45′

i
√
3c51′ i

√
3c52′ i

√
3c53′ i

√
3c54′ c55′

∣∣∣∣∣∣∣∣∣∣
, c(3/2) = 2c55′ . (8)

Because we assume the absence states with spin 3/2, we should set c55′ = 0; then we arrive at

c(1/2) =

∣∣∣∣∣∣∣∣∣∣
c11′ 0 0 0 i

√
3c15′

0 c22′ 0 0 i
√
3c25′

0 0 c3′ 0 i
√
3c35′

0 0 0 c44′ i
√
3c45′

i
√
3c51′ i

√
3c52′ i

√
3c53′ i

√
3c54′ 0

∣∣∣∣∣∣∣∣∣∣
, c(3/2) = 0. (9)

It is convenient to introduce the new notations:

λ1 = c11′ , λ2 = c22′ , λ3 = c33′ , λ4 = c44′ , (10)

β1√
2
= −ic15′ ,

β2√
2
= −ic25′ ,

β3√
2
= −ic35′ ,

β4√
2
= −ic45′ ,

β5√
2
= ic51′ ,

β6√
2
= ic52′ ,

β7√
2
= ic53′ ,

β8√
2
= ic54′ ;

(11)
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so we obtain

c(1/2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ1 0 0 0 −
√

3
2β1

0 λ2 0 0 −
√

3
2β2

0 0 λ3 0 −
√

3
2β3

0 0 0 λ4 −
√

3
2β4√

3
2β5

√
3
2β6

√
3
2β7

√
3
2β8 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (12)

The matrices of the bilinear form should have the structure

η =

∣∣∣∣ η(1/2) ⊗ γ4 0
0 η(3/2) ⊗ I2 ⊗ γ4

∣∣∣∣ , η(1/2) =

∣∣∣∣∣∣∣∣∣
k1 0 0 0 0
0 k2 0 0 0
0 0 k3 0 0
0 0 0 k4 0
0 0 0 0 k5

∣∣∣∣∣∣∣∣∣ , η(3/2) = −diag(ki), (13)

where ki = ±1. Due to the known constraint (ηΓ4)
+ = ηΓ4, we find restrictions on parameters λi, βi:

λ∗
1 = λ1, λ∗

2 = λ2, λ∗
3 = λ3, λ∗

4 = λ4,

β5 = −k1k5β
∗
1 , β6 = −k2k5β

∗
2 ,

β7 = −k3k5β
∗
3 , β8 = −k4k5β

∗
4 .

(14)

Because the particle under consideration has only one mass parameter M , and the spin equals 1/2, the
matrix c(1/2) (10) should have only one non-vanishing eigenvalue (+1). We use this property to derive
additional restrictions on parameters λi, βi:

Spc
(1/2) = 1, Sp[(c

(1/2))2] = 1, Sp(c
(1/2))3 = 1, Sp(c

(1/2))4 = 1, det c(1/2) = 0. (15)

From expression for c(1/2) (11) and condition (14), it follows

λ1 + λ2 + λ3 + λ4 = 1. (16)

From equality

(c(1/2))2

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ2
1 − 3

2β1β5 − 3
2β1β6 −3

2β1β7 −3
2β1β8 −

√
3
2λ1β1

−3
2β2β5 λ2

2 − 3
2β2β6 −3

2β2β7 −3
2β2β8 −

√
3
2λ2β2

−3
2β3β5 − 3

2β3β6 λ2
3 − 3

2β3β7 −3
2β3β8 −

√
3
2λ3β3

−3
2β4β5 − 3

2β4β6 −3
2β4β7 λ2

4 − 3
2β4β8 −

√
3
2λ4β4√

3
2λ1β5

√
3
2λ2β6

√
3
2λ3β7

√
3
2λ4β8 −3

2 (β1β5 + β2β6 + β3β7 + β4β8)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(17)

it follows (see (14))

(λ2
1 + λ2

2 + λ2
3 + λ2

4)− 3(β1β5 + β2β6 + β3β7 + β4β8) = 1. (18)

Due to (15), we have (λ1 + λ2 + λ3 + λ4)
2 = 1, or

(λ2
1 + λ2

2 + λ2
3 + λ2

4) + 2(λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4) = 1. (19)

From (17),(19) we obtain

(λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4) +
3

2
(β1β5 + β2β6 + β3β7 + β4β8) = 0. (20)

From definition for (C(1/2))3:

(c(1/2))3 =

∣∣∣∣∣∣∣∣∣∣∣

λ1(λ
2
1 − 3β1β5)

−3
2β2β5(λ1 + λ2)

−3
2β3β5(λ1 + λ3)

−3
2β4β5(λ1 + λ4)√

3
2β5[λ

2
1 − 3

2 (β1β5 + β2β6 + β3β7 + β4β8)]
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−3
2β1β6(λ1 + λ2)
λ2(λ

2
2 − 3β2β6)

−3
2β3β6(λ2 + λ3)

−3
2β4β6(λ2 + λ4)√

3
2β6[λ

2
2 − 3

2 (β1β5 + β2β6 + β3β7 + β4β8)]

−3
2β1β7(λ1 + λ3)

−3
2β2β7(λ2 + λ3)
λ3(λ

2
3 − 3β3β7)

−3
2β4β7(λ3 + λ4)√

3
2β7[λ

2
3 − 3

2 (β1β5 + β2β6 + β3β7 + β4β8)]

−3
2β1β8(λ1 + λ4)

−3
2β2β8(λ2 + λ4)

−3
2β3β8(λ3 + λ4)
λ4(λ

2
4 − 3β4β8)√

3
2β7[λ

2
4 − 3

2 (β1β5 + β2β6 + β3β7 + β4β8)]

−
√

3
2β1[λ

2
1 − 3

2 (β1β5 + β2β6 + β3β7 + β4β8)]

−
√

3
2β2[λ

2
2 − 3

2 (β1β5 + β2β6 + β3β7 + β4β8)]

−
√

3
2β3[λ

2
3 − 3

2 (β1β5 + β2β6 + β3β7 + β4β8)]

−
√

3
2β4[λ

2
4 − 3

2 (β1β5 + β2β6 + β3β7 + β4β8)]

−3
2 [λ1β1β5 + λ2β2β6 + λ3β3β7 + λ4β4β8]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (21)

we get

(λ3
1 + λ3

2 + λ3
3)−

9

2
(λ1β1β5 + λ2β2β6 + λ3β3β7 + λ4β4β8) = 1. (22)

Taking in mind (15), we find (λ1 + λ2 + λ3 + λ4)
3 = 1, or

(λ1 + λ2 + λ3 + λ4)(λ1 + λ2 + λ3 + λ4)
2

= (λ1 + λ2 + λ3 + λ4)[(λ
2
1 + λ2

2 + λ2
3 + λ2

4) + 2(λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4)] = 1,

so we arrive at

(λ3
1 + λ3

2 + λ3
3 + λ3

4) + 3λ1(λ
2
2 + λ2

3 + λ2
4) + 3λ2(λ

2
1 + λ2

3 + λ2
4) + 3λ3(λ

2
1 + λ2

2 + λ2
4)

+3λ4(λ
2
1 + λ2

2 + λ2
3) + 6(λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4) = 1. (23)

Relation (23) may be presented as follows

(λ3
1 + λ3

2 + λ3
3 + λ3

4)− 3(λ3
1 + λ3

2 + λ3
3 + λ3

4) + 3(λ1 + λ2 + λ3 + λ4)(λ
2
1 + λ2

2 + λ2
3 + λ2

4)

+6(λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4) = 1,

whence (taking in mind (16)) it follows

−2(λ3
1 + λ3

2 + λ3
3 + λ3

4) + 3(λ2
1 + λ2

2 + λ2
3 + λ2

4)

+6(λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4) = 1. (24)

Therefore, we get (taking in mind (19))

(λ3
1 + λ3

2 + λ3
3 + λ3

4) = 3(λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4)

−3(λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4) + 1. (25)

Allowing for (20), we transform (25) to other form

(λ3
1 + λ3

2 + λ3
3 + λ3

4) = 3(λ1λ2λ3 + λ1λ2λ4

+λ1λ3λ4 + λ2λ3λ4) +
9

2
(β1β5 + β2β6 + β3β7 + β4β8) + 1. (26)
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From (26), (22) we derive

(λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4)

+
3

2
[(1− λ1)β1β5 + (1− λ2)β2β6 + (1− λ3)β3β7 + (1− λ4)β4β8] = 0, (27)

or differently
(λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4)

+
3

2
[(λ2 + λ3 + λ4)β1β5 + (λ1 + λ3 + λ4)β2β6 + (λ1 + λ2 + λ4)β3β7

+(λ1 + λ2 + λ3)β4β8] = 0. (28)

Allowing for (25) and (22), we transform the last equation to the new form

(λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4)− (λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4)

−3

2
(λ1β1β5 + λ2β2β6 + λ3β3β7 + λ4β4β8) = 0. (29)

With the use of explicit form of (C(1/2))4 (we present the matrix by columns):

(C(1/2))4

=

∣∣∣∣∣∣∣∣∣∣∣

λ4
1 − 9

2β1β5[λ
2
1 − 1

2 (β1β5 + β2β6 + β3β7 + β4β8)]
−3

2β2β5[λ
2
1 + λ2

2 + λ1λ2 − 3
2 (β1β5 + β2β6 + β3β7 + β4β8)]

−3
2β3β5[λ

2
1 + λ2

3 + λ1λ3 − 3
2 (β1β5 + β2β6 + β3β7 + β4β8)]

−3
2β4β5[λ

2
1 + λ2

4 + λ1λ4 − 3
2 (β1β5 + β2β6 + β3β7 + β4β8)]√

3
2β5[λ

3
1 − 3

2λ1(β1β5 + β2β6 + β3β7 + β4β8)− 3
2 (λ1β1β5 + λ2β2β6 + λ3β3β7 + λ4β4β8)]

−3
2β1β6[λ

2
1 + λ2

2 + λ1λ2 − 3
2 (β1β5 + β2β6 + β3β7 + β4β8)]

λ4
2 − 9

2β2β6[λ
2
2 − 1

2 (β1β5 + β2β6 + β3β7 + β4β8)]
−3

2β3β6[λ
2
2 + λ2

3 + λ2λ3 − 3
2 (β1β5 + β2β6 + β3β7 + β4β8)]

−3
2β4β6[λ

2
2 + λ2

4 + λ2λ4 − 3
2 (β1β5 + β2β6 + β3β7 + β4β8)]√

3
2β6[λ

3
2 − 3

2λ2(β1β5 + β2β6 + β3β7 + β4β8)− 3
2 (λ1β1β5 + λ2β2β6 + λ3β3β7 + λ4β4β8)]

−3
2β1β7[λ

2
1 + λ2

3 + λ1λ3 − 3
2 (β1β5 + β2β6 + β3β7 + β4β8)]

−3
2β2β7[λ

2
2 + λ2

3 + λ2λ3 − 3
2 (β1β5 + β2β6 + β3β7 + β4β8)]

λ4
3 − 9

2β3β7[λ
2
3 − 1

2 (β1β5 + β2β6 + β3β7 + β4β8)]
−3

2β4β7[λ
2
3 + λ2

4 + λ3λ4 − 3
2 (β1β5 + β2β6 + β3β7 + β4β8)]√

3
2β7[λ

3
3 − 3

2λ3(β1β5 + β2β6 + β3β7 + β4β8)− 3
2 (λ1β1β5 + λ2β2β6 + λ3β3β7 + λ4β4β8)]

−3
2β1β8[λ

2
1 + λ2

4 + λ1λ4 − 3
2 (β1β5 + β2β6 + β3β7 + β4β8)]

−3
2β2β8[λ

2
2 + λ2

4 + λ2λ4 − 3
2 (β1β5 + β2β6 + β3β7 + β4β8)]

−3
2β3β8[λ

2
3 + λ2

4 + λ3λ4 − 3
2 (β1β5 + β2β6 + β3β7 + β4β8)]

λ4
4 − 9

2β4β8[λ
2
4 − 1

2 (β1β5 + β2β6 + β3β7 + β4β8)]√
3
2β8[λ

3
4 − 3

2λ4(β1β5 + β2β6 + β3β7 + β4β8)− 3
2 (λ1β1β5 + λ2β2β6 + λ3β3β7 + λ4β4β8)]

−
√

3
2β1[λ

3
1 − 3

2λ1(β1β5 + β2β6 + β3β7 + β4β8)− 3
2 (λ1β1β5 + λ2β2β6 + λ3β3β7 + λ4β4β8)]

−
√

3
2β2[λ

3
2 − 3

2λ2(β1β5 + β2β6 + β3β7 + β4β8)− 3
2 (λ1β1β5 + λ2β2β6 + λ3β3β7 + λ4β4β8)]

−
√

3
2β3[λ

3
3 − 3

2λ3(β1β5 + β2β6 + β3β7 + β4β8)− 3
2 (λ1β1β5 + λ2β2β6 + λ3β3β7 + λ4β4β8)]

−
√

3
2β4[λ

3
4 − 3

2λ4(β1β5 + β2β6 + β3β7 + β4β8)− 3
2 (λ1β1β5 + λ2β2β6 + λ3β3β7 + λ4β4β8)]

− 3
2 [(λ

2
1β1β5 + λ2

2β2β6 + λ2
3β3β7 + λ2

4β4β8)− 3
2 (β1β5 + β2β6 + β3β7 + β4β8)

2]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(30)

we derive

(λ4
1 + λ4

2 + λ4
3 + λ4

4)− 6(λ2
1β1β5 + λ2

2β2β6 + λ2
3β3β7 + λ2

4β4β8)

+
9

2
(β1β5 + β2β6 + β3β7 + β4β8)

2 = 1. (31)
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Taking in mind (20), the last equation (31) may be transformed to other form

(λ4
1 + λ4

2 + λ4
3 + λ4

4)− 6(λ2
1β1β5 + λ2

2β2β6 + λ2
3β3β7 + λ2

4β4β8)

+2(λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4)
2 = 1. (32)

Whence, taking into account (16), we derive (λ1 + λ2 + λ3 + λ4)
4 = 1, or differently

(λ1 + λ2 + λ3 + λ4)(λ1 + λ2 + λ3 + λ4)
3

= (λ1 + λ2 + λ3 + λ4)
{
(λ3

1 + λ3
2 + λ3

3 + λ3
4) + 3λ2

1(λ2 + λ3 + λ4)

+3λ2
2(λ1 + λ3 + λ4) + 3λ2

3(λ1 + λ2 + λ4) + 3λ2
4(λ2 + λ3 + λ3)

+6(λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4)
}

= (λ1 + λ2 + λ3 + λ4)
{
− 2(λ3

1 + λ3
2 + λ3

3 + λ3
4) + 3λ2

1(λ2 + λ3 + λ4)

+3(λ1 + λ2 + λ3 + λ4)(λ
2
1 + λ2

2 + λ2
3 + λ2

4) + 6(λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4)
}

= −2(λ1 + λ2 + λ3 + λ4)(λ
3
1 + λ3

2 + λ3
3 + λ3

4) + 3λ2
1(λ2 + λ3 + λ4)

+3(λ1 + λ2 + λ3 + λ4)
2(λ2

1 + λ2
2 + λ2

3 + λ2
4) + 6(λ1 + λ2 + λ3 + λ4)(λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4)

= (λ4
1 + λ4

2 + λ4
3 + λ4

4)− 2λ1(λ
3
2 + λ3

3 + λ3
4)− 2λ2(λ

3
1 + λ3

3 + λ3
4)

−2λ3(λ
3
1 + λ3

2 + λ3
4)− 2λ4(λ

3
1 + λ3

2 + λ3
3) + 6(λ2

1λ
2
2 + λ2

1λ
2
3 + λ2

1λ
2
4

+λ2
2λ

2
3 + λ2

2λ
2
4 + λ2

3λ
2
4) + 6λ3

1(λ2 + λ3 + λ4) + 6λ3
2(λ1 + λ3 + λ4)

+6λ3
3(λ1 + λ2 + λ4) + 6λ3

4(λ1 + λ2 + λ3) + 12λ2
1(λ2λ3 + λ2λ4 + λ3λ4)

+6λ3
3(λ1 + λ2 + λ4) + 6λ3

4(λ1 + λ2 + λ3) + 12λ2
1(λ2λ3 + λ2λ4 + λ3λ4)

12λ2
2(λ1λ3 + λ1λ4 + λ3λ4) + 12λ2

3(λ1λ2 + λ1λ4 + λ2λ4) + 12λ2
4(λ1λ2 + λ1λ3 + λ2λ3) + 24λ1λ2λ3λ4

= (λ4
1 + λ4

2 + λ4
3 + λ4

4)− 2λ1(λ
3
2 + λ3

3 + λ3
4)− 2λ2(λ

3
1 + λ3

3 + λ3
4)

−2λ3(λ
3
1 + λ3

2 + λ3
4)− 2λ4(λ

3
1 + λ3

2 + λ3
3) + 6(λ1λ2 + λ1λ3 + λ1λ4

+λ2λ3 + λ2λ4 + λ3λ4)
2 + 6λ3

1(λ2 + λ3 + λ4) + 6λ3
2(λ1 + λ3 + λ4)

+6λ3
3(λ1 + λ2 + λ4) + 6λ3

4(λ1 + λ2 + λ3)

= −3(λ4
1 + λ4

2 + λ4
3 + λ4

4) + 4(λ1 + λ2 + λ3 + λ4)(λ
3
1 + λ3

2 + λ3
3 + λ3

4)

+6(λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4)
2 − 12λ1λ2λ3λ4 = 1.

From the last equation, with the us of (15) and (25), we obtain

(λ4
1 + λ4

2 + λ4
3 + λ4

4) = 1 + 4(λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4)

−4(λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4)

+2(λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4)
2 − 4λ1λ2λ3λ4, (33)

whence it follows (see (32), (33))

(λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4) + (λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4)
2

−(λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4)

−3

2
(λ2

1β1β5 + λ2
2β2β6 + λ2

3β3β7 + λ2
4β4β8)− 4λ1λ2λ3λ4 = 0. (34)

Equations (33) and (34) may be transformed to other form with the use of (20), (29):

(λ4
1 + λ4

2 + λ4
3 + λ4

4) = 1 + 6(λ1β1β5 + λ2β2β6 + λ3β3β7 + λ4β4β8)

+
9

2
(β1β5 + β2β6 + β3β7 + β4β8)

2 − 4λ1λ2λ3λ4, (35)

(λ1β1β5 + λ2β2β6 + λ3β3β7 + λ4β4β8) +
3

2
(β1β5 + β2β6 + β3β7 + β4β8)

2

−(λ2
1β1β5 + λ2

2β2β6 + λ2
3β3β7 + λ2

4β4β8)−
8

3
λ1λ2λ3λ4 = 0.

Due to the structure of eigenvalues of the matrix C(1/2) (10), its determinant equals zero:

λ1λ2(λ4β3β7 + λ3β4β8) + λ3λ4(λ1β2β6 + λ2β1β5) = 0. (36)

267



V.V. Kisel, E.M. Ovsiyuk, P.O. Sachenok, A.S. Martynenko, A.V. Bury, V.M. Red’kov

The above restrictions on parameters λi, βi may be found differently: by using the characteristic
equation for the matrix C(1/2)

(C(1/2))5 − a1(C
(1/2))4 + a2(C

(1/2))3 − a3(C
(1/2))2 + a4(C

(1/2))− a5 = 0, (37)

where
a1 = Sp(C

(1/2)), a2 =
1

2
[(Sp(C

(1/2)))2 − Sp(C
(1/2))2],

a3 =
1

3

{
Sp(C

(1/2))3 − 3

2
(Sp(C

(1/2)))(Sp(C
(1/2))2) +

1

2
(SpC

(1/2))3
}
,

a4 =
1

4

{
Sp(c

(1/2))4 − 4

3
(SpC

(1/2))(Sp(c
(1/2))3)

−1

2
(Sp(C

(1/2))2)2 + (SpC
(1/2))2Sp(c

(1/2))2 − 1

6
(Spc

(1/2))4
}
, a5 = det c(1/2). (38)

Taking into account possible eigenvalues for matrix C(1/2), we get:

a1 = 1, a2 = a3 = a4 = a5 = 0. (39)

At this we again arrive at relations (15),(20),(27),(37), and

2λ1λ2λ3λ4 + 3β1β5(λ2λ3 + λ2λ4 + λ3λ4) + 3β2β6(λ1λ3 + λ1λ4 + λ3λ4)

+3β3β7(λ1λ2 + λ1λ4 + λ2λ4) + 3β4β8(λ1λ2 + λ1λ3 + λ2λ3) = 0. (40)

2. Transformation to the spinor basis

Let us find explicit form of the matrix Γ4 in spinor basis, this will permits us to determine an explicit
form of the complete equation in the spinor basis. Such a transition is performed in several steps.

In canonical basis, the complete function Φ consists of the following components

Ψ(канон.) =
{
(Ψ(1))

(0,1/2)
(0,1/2), (Ψ

(1))
(0,1/2)
(0,−1/2), (Ψ

(1))
(1/2,0)
(1/2,0), (Ψ

(1))
(1/2,0)
(−1/2,0);

(Ψ(2))
(0,1/2)
(0,1/2), (Ψ

(2))
(0,1/2)
(0,−1/2), (Ψ

(2))
(1/2,0)
(1/2,0), (Ψ

(2))
(1/2,0)
(−1/2,0);

(Ψ(3))
(0,1/2)
(0,1/2), (Ψ

(3))
(0,1/2)
(0,−1/2), (Ψ

(3))
(1/2,0)
(1/2,0), (Ψ

(3))
(1/2,0)
(−1/2,0);

(Ψ(4))
(0,1/2)
(0,1/2), (Ψ

(4))
(0,1/2)
(0,−1/2), (Ψ

(4))
(1/2,0)
(1/2,0), (Ψ

(4))
(1/2,0)
(−1/2,0);

Ψ
(1,1/2)
(1,1/2),Ψ

(1,1/2)
(0,1/2),Ψ

(1,1/2)
−1,1/2,Ψ

(1,1/2)
1,−1/2,Ψ

(1,1/2)
(0,−1/2),Ψ

(1,1/2)
(−1,−1/2);

Ψ
(1/2,1)
1/2,1 ,Ψ

(1/2,1)
1/2,0 ,Ψ

(1/2,1)
1/2,−1,Ψ

(1/2,1)
−1/2,1,Ψ

(1/2,1)
−1/2,0,Ψ

(1/2,1)
−1/2,−1

}
T
. (41)

The functions ΨG–Y(mod) in modified Gelfand – Yaglom basis and in canonical basis Ψ(can) are related
by the linear transformation A:

ΨG–Y(mod) = AΨ(can). (42)

Explicate form of the matrix A according to the general rule

Ψ(l,l′)
s,s3 = Σ Cs,s3

ll3;l′l′3
Ψ

(l,l′)
(l3,l′3)

, (43)

where Cs,s3
ll3;l′l′3

are the Clebsch – Gordan coefficients; the summing is over indices l3, l
′
3 at restriction

l3 + l′3 = s3. For given case, we obtain
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A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I16×16

. − 1√
3

. 2√
3

. . . . . . . .

. . −
√

2
3

. 1√
3

. . . . . . .

. . . . . . . 1√
3

. −
√

2
3

. .

. . . . . . . .
√

2
3

. − 1√
3

.

1 . . . . . . . . . . .
. . . . . 1 . . . . . .
. . . . . . 1 . . . . .
. . . . . . . . . . . 1

.
√

2
3

. 1√
3

. . . . . . . .

. . 1√
3

.
√

2
3

. . . . . . .

. . . . . . .
√

2
3

. 1√
3

. .

. . . . . . . . 1√
3

.
√

2
3

.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

A+ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I16×16

. . . . 1 . . . . . . .

− 1√
3
. . . . . . . .

√
2
3

. . .

. −
√

2
3

. . . . . . . 1√
3

. .√
2
3

. . . . . . . 1√
3

. . .

. 1√
3

. . . . . . .
√

2
3

. .

. . . . . 1 . . . . . .

. . . . . . 1 . . . . .

. . 1√
3

. . . . . . .
√

2
3

.

. . .
√

2
3

. . . . . . . 1√
3

. . −
√

2
3

. . . . . . . 1√
3

.

. . . − 1√
3

. . . . . . .
√

2
3

. . . . . . . 1 . . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

and

Ψ(can) = A+ΨG-Y(mod), Γ
(can)
4 = A+Γ

G-Y(mod)
4 A.

In detailed form, the matrix Γ
(G-Y(mod))
4 reads

Γ
(spin)
4 = B−1Γ

(can)
4 B =

∣∣∣∣ Γ16×16 Γ12×16

Γ16×12 0

∣∣∣∣ , (44)

Γ16×16 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . λ1 . . . . . . . . . . . . .

. . . λ1 . . . . . . . . . . . .
λ1 . . . . . . . . . . . . . . .
. λ1 . . . . . . . . . . . . . .
. . . . . . λ2 . . . . . . . . .
. . . . . . . λ2 . . . . . . . .
. . . . λ2 . . . . . . . . . . .
. . . . . λ2 . . . . . . . . . .
. . . . . . . . . . λ3 . . . . .
. . . . . . . . . . . λ3 . . . .
. . . . . . . . λ3 . . . . . . .
. . . . . . . . . λ3 . . . . . .
. . . . . . . . . . . . . . λ4 .
. . . . . . . . . . . . . . . λ4

. . . . . . . . . . . . λ4 . . .

. . . . . . . . . . . . . λ4 . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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Γ12×16 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . −
√

3
2
β1 . . . . . . . . .

. . . −
√

3
2
β1 . . . . . . . .

−
√

3
2
β1 . . . . . . . . . . .

. −
√

3
2
β1 . . . . . . . . . .

. . −
√

3
2
β2 . . . . . . . . .

. . . −
√

3
2
β2 . . . . . . . .

−
√

3
2
β2 . . . . . . . . . . .

. −
√

3
2
β2 . . . . . . . . . .

. . −
√

3
2
β3 . . . . . . . . .

. . . −
√

3
2
β3 . . . . . . . .

−
√

3
2
β3 . . . . . . . . . . .

. −
√

3
2
β3 . . . . . . . . . .

. . −
√

3
2
β4 . . . . . . . . .

. . . −
√

3
2
β4 . . . . . . . .

−
√

3
2
β4 . . . . . . . . . . .

. −
√

3
2
β4 . . . . . . . . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

Γ16×12 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. .
√

3
2
β5 . . .

√
3
2
β6 . . .

√
3
2
β7 . . .

√
3
2
β8 .

. . .
√

3
2
β5 . . .

√
3
2
β6 . . .

√
3
2
β7 . . .

√
3
2
β8√

3
2
β5 . . .

√
3
2
β6 . . .

√
3
2
β7 . . .

√
3
2
β8 . . .

.
√

3
2
β5 . . .

√
3
2
β6 . . .

√
3
2
β7 . . .

√
3
2
β8 . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

;

therefore

Γ
(can)
4 =

∣∣∣∣ Γ16×16 Γ12×16

Γ16×12 0

∣∣∣∣ = A+Γ
G-Y(mod)
4 A, (45)

where

Γ16×16 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . λ1 . . . . . . . . . . . . .

. . . λ1 . . . . . . . . . . . .
λ1 . . . . . . . . . . . . . . .
. λ1 . . . . . . . . . . . . . .
. . . . . . λ2 . . . . . . . . .
. . . . . . . λ2 . . . . . . . .
. . . . λ2 . . . . . . . . . . .
. . . . . λ2 . . . . . . . . . .
. . . . . . . . . . λ3 . . . . .
. . . . . . . . . . . λ3 . . . .
. . . . . . . . λ3 . . . . . . .
. . . . . . . . . λ3 . . . . . .
. . . . . . . . . . . . . . λ4 .
. . . . . . . . . . . . . . . λ4

. . . . . . . . . . . . λ4 . . .

. . . . . . . . . . . . . λ4 . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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Γ12×16 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . . . . . . − β1√
2

. β1 . .

. . . . . . . . −β1 . β1√
2

.

. β1√
2

. −β1 . . . . . . . .

. . β1 . − β1√
2

. . . . . . .

. . . . . . . − β2√
2

. β2 . .

. . . . . . . . −β2 . β2√
2

.

. β2√
2

. −β2 . . . . . . . .

. . β2 . − β2√
2

. . . . . . .

. . . . . . . − β3√
2

. β3 . .

. . . . . . . . −β3 . β3√
2

.

. β3√
2

. −β3 . . . . . . . .

. . β3 . − β3√
2

. . . . . . .

. . . . . . . − β4√
2

. β4 . .

. . . . . . . . −β4 . β4√
2

.

. β4√
2

. −β4 . . . . . . . .

. . β4 . − β4√
2

. . . . . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

Γ16×12 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . . . . . . . . . . . . . . .

. . − β5√
2

. . . − β6√
2

. . . − β7√
2

. . . − β8√
2

.

. . . −β5 . . . −β6 . . . −β7 . . . −β8

. . β5 . . . β6 . . . β7 . . . β8 .

. . . β5√
2

. . . β6√
2

. . . β7√
2

. . . β8√
2

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .
β5√
2

. . . β6√
2

. . . β7√
2

. . . β8√
2

. . .

. β5 . . . β6 . . . β7 . . . β8 . .
−β5 . . . −β6 . . . −β7 . . . −β8 . . .
. − β5√

2
. . . − β6√

2
. . . − β7√

2
. . . − β8√

2
. .

. . . . . . . . . . . . . . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

When defining the matrix Γ
(spin)
4 in spinor basis, we apply the general formula

Ψ
(l,l′)
(l3,l′3)

=
[ (2l)!

(l + l3)!(l − l3)!

]1/2[ (2l′)!

(l′ + l′3)!(l
′ − l′3)!

]1/2
Ψ

(1̇...1̇2̇...2̇)
(1...12...2). (46)

As the result we obtain the following linear transformation

Ψ(can) = BΨ(spin), (47)

where
Ψ(spin) =

{
(Ψ(1))1̇, (Ψ(1))2̇, (Ψ(1))1, (Ψ

(1))2; (Ψ
(2))1̇, (Ψ(2))2̇, (Ψ(2))1,

(Ψ(2))2; (Ψ
(3))1̇, (Ψ(3))2̇, (Ψ(3))1, (Ψ

(3))2; (Ψ
(4))1̇, (Ψ(4))2̇,

(Ψ(4))1, (Ψ
(4))2; Ψ

1̇
(11),Ψ

1̇
(12),Ψ

1̇
(22); Ψ

2̇
(11),Ψ

2̇
(12),Ψ

2̇
(22);

Ψ
(1̇1̇)
1 ,Ψ

(1̇2̇)
1 ,Ψ

(2̇2̇)
1 ,Ψ

(1̇1̇)
2 ,Ψ

(1̇2̇)
2 ,Ψ

(2̇2̇)
2

}
, (48)

B =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I16×16 . . . . . . . . . . . .
. 1 . . . . . . . . . . .

. .
√
2 . . . . . . . . . .

. . . 1 . . . . . . . . .

. . . . 1 . . . . . . . .

. . . . .
√
2 . . . . . . .

. . . . . . 1 . . . . . .

. . . . . . . 1 . . . . .

. . . . . . . .
√
2 . . . .

. . . . . . . . . 1 . . .

. . . . . . . . . . 1 . .

. . . . . . . . . . .
√
2 .

. . . . . . . . . . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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B−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I16×16 . . . . . . . . . . . .
. 1 . . . . . . . . . . .

. . 1/
√
2 . . . . . . . . . .

. . . 1 . . . . . . . . .

. . . . 1 . . . . . . . .

. . . . . 1/
√
2 . . . . . . .

. . . . . . 1 . . . . . .

. . . . . . . 1 . . . . .

. . . . . . . . 1/
√
2 . . . .

. . . . . . . . . 1 . . .

. . . . . . . . . . 1 . .

. . . . . . . . . . . 1/
√
2 .

. . . . . . . . . . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

Ψ(spin) = B−1Ψ(can), Γ
(spin)
4 = B−1Γ

(can)
4 B.

In explicit form Γ
(spin)
4 reads

Γ
(spin)
4 = B−1Γ

(can)
4 B =

∣∣∣∣ Γ16×16 Γ12×16

Γ16×12 0

∣∣∣∣ , (49)

Γ16×16 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . λ1 . . . . . . . . . . . . .

. . . λ1 . . . . . . . . . . . .
λ1 . . . . . . . . . . . . . . .
. λ1 . . . . . . . . . . . . . .
. . . . . . λ2 . . . . . . . . .
. . . . . . . λ2 . . . . . . . .
. . . . λ2 . . . . . . . . . . .
. . . . . λ2 . . . . . . . . . .
. . . . . . . . . . λ3 . . . . .
. . . . . . . . . . . λ3 . . . .
. . . . . . . . λ3 . . . . . . .
. . . . . . . . . λ3 . . . . . .
. . . . . . . . . . . . . . λ4 .
. . . . . . . . . . . . . . . λ4

. . . . . . . . . . . . λ4 . . .

. . . . . . . . . . . . . λ4 . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

Γ12×16 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . . . . . . −β1 . β1 . .

. . . . . . . . −β1 . β1 .

. β1 . −β1 . . . . . . . .

. . β1 . −β1 . . . . . . .

. . . . . . . −β2 . β2 . .

. . . . . . . . −β2 . β2 .

. β2 . −β2 . . . . . . . .

. . β2 . −β2 . . . . . . .

. . . . . . . −β3 . β3 . .

. . . . . . . . −β3 . β3 .

. β3 . −β3 . . . . . . . .

. . β3 . −β3 . . . . . . .

. . . . . . . −β4 . β4 . .

. . . . . . . . −β4 . β4 .

. β4 . −β4 . . . . . . . .

. . β4 . −β4 . . . . . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

Γ16×12 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . . . . . . . . . . . . . . .

. . −β5
2

. . . −β6
2

. . . −β7
2

. . . −β8
2

.
. . . −β5 . . . −β6 . . . −β7 . . . −β8

. . β5 . . . β6 . . . β7 . . . β8 .

. . . β5
2

. . . β6
2

. . . β7
2

. . . β8
2

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .
β5
2

. . . β6
2

. . . β7
2

. . . β8
2

. . .
. β5 . . . β6 . . . β7 . . . β8 . .

−β5 . . . −β6 . . . −β7 . . . −β8 . . .
. −β5

2
. . . −β6

2
. . . −β7

2
. . . −β8

2
. .

. . . . . . . . . . . . . . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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The matrix Γ
(spin)
4 may be presented with the use of the spinor elements of the complete matrix

algebra:

Γ
spin
4 =

1

i

{
λ1

[
(σ4)ȧbe0̇1ȧ1

⊗ eo1b1 + (σ4)aḃe
ḃ1
0̇1

⊗ ea1
01

]
λ2

[
(σ4)ȧbe0̇2ȧ2

⊗ eo2b2 + (σ4)aḃe
ḃ2
0̇2

⊗ ea2
02

]
+λ3

[
(σ4)ȧbe0̇3ȧ3

⊗ eo3b3 + (σ4)aḃe
ḃ3
0̇3

⊗ ea3
03

]
λ4

[
(σ4)ȧbe0̇4ȧ4

⊗ eo4b4 + (σ4)aḃe
ḃ4
0̇4

⊗ ea4
04

]
+β1(σ

4)bċ[e
ȧċ
ȧ1

⊗ e01b + eċ0̇1 ⊗ ea1
(ba)]β2(σ

4)bċ[e
ȧċ
ȧ2

⊗ e02b + eċ0̇2 ⊗ ea2
(ba)]

+β3(σ
4)bċ[e

ȧċ
ȧ3

⊗ e03b + eċ0̇3 ⊗ ea3
(ba)] + β4(σ

4)bċ[e
ȧċ
ȧ4

⊗ e04b + eċ0̇4 ⊗ ea4
(ba)] + β5(σ

4)ḋa[e
ḃ1
(ȧḃ)

⊗ ea01 + e0̇1
ḋ

⊗ e(ac)c1 ]

+β6(σ
4)ḋa[e

ḃ2
(ȧḃ)

⊗ ea02 + e0̇2
ḋ

⊗ e(ac)c2 ] + β7(σ
4)ḋa[e

ḃ3
(ȧḃ)

⊗ ea03 + e0̇3
ḋ

⊗ e(ac)c3 ]

+β8(σ
4)ḋa[e

ḃ4
(ȧḃ)

⊗ ea04 + e0̇4
ḋ

⊗ e(ac)c4 ]
}
. (50)

Similarly may be obtained all four matrices Γ
(spin)
µ ; to this end, it suffices to make the formal change

(σ4) =⇒ (σµ):

(σ1)ȧb =

∣∣∣∣ 0 1
1 0

∣∣∣∣
ȧb

, (σ2)ȧb =

∣∣∣∣ 0 −i
i 0

∣∣∣∣
ȧb

, (σ3)ȧb =

∣∣∣∣ 1 0
0 −1

∣∣∣∣
ȧb

, (σ4)ȧb

∣∣∣∣ i 0
0 i

∣∣∣∣
ȧb

.

Recall that the spinor elements of the complete matrix algebra obey the following rules

(eȦ
Ḃ
)Ċ
Ḋ

= δȦ
Ḋ
δĊ
Ḃ
, eȦ

Ḃ
eĊ
Ḋ

= δȦ
Ḋ
eĊ
Ḃ
, (eAB)

C
D = δADδCB , eABe

C
D = δCBe

A
D, (51)

the digital index at spinors (like as ȧ1) determine the number of spinor equation with respect to repeating
presentations.

The complete matrix equation determined by four Γ
(spin)
µ consists of 5 equations:

λ1

{
∂ȧbe0̇ȧ ⊗ e0b + ∂aḃe

ḃ
0̇ ⊗ ea0

}
Ψ(1) + β1∂

b
ċ

{
e
(ȧċ)
ȧ ⊗ e0b

+eċ0̇ ⊗ ea(ba)

}
Ψ+M

{
e0̇0̇ ⊗ eaa + eȧȧ ⊗ e00

}
Ψ(1) = 0, (52)

λ2

{
∂ȧbe0̇ȧ ⊗ e0b + ∂aḃe

ḃ
0̇ ⊗ ea0

}
Ψ(2) + β2∂

b
ċ

{
e
(ȧċ)
ȧ ⊗ e0b + eċ0̇ ⊗ ea(ba)

}
Ψ

+M
{
eȧȧ ⊗ e00 + e0̇0̇ ⊗ eaa

}
Ψ(2) = 0, (53)

λ3

(
∂ȧbe0̇ȧ ⊗ e0b + ∂aḃe

ḃ
0̇ ⊗ ea0

)
Ψ(3) + β3∂

b
ċ

(
e
(ȧċ)
ȧ ⊗ e0b + eċ0̇ ⊗ ea(ba)

)
Ψ

+M
{
eȧȧ ⊗ e00 + e0̇0̇ ⊗ eaa

}
Ψ(3) = 0, (54)

λ4

(
∂ȧbe0̇ȧ ⊗ e0b + ∂aḃe

ḃ
0̇ ⊗ ea0

)
Ψ(4) + β4∂

b
ċ

(
e
(ȧċ)
ȧ ⊗ e0b + eċ0̇ ⊗ ea(ba)

)
Ψ

+M
{
eȧȧ ⊗ e00 + e0̇0̇ ⊗ eaa

}
Ψ(4) = 0, (55)

∂ḋ
a

(
eḃ(ḋḃ) ⊗ ea0 + e0d ⊗ e(ac)c

)(
β5Ψ

(1) + β6Ψ
(2)

+β7Ψ
(3) + β8Ψ

(4)
)
+M

(
e
(ȧḃ)

(ȧḃ)
⊗ ecc + eȧȧ ⊗ e

(bc)

(bc)

)
Ψ = 0, (56)

where

∂ȧb =
1

i
∂µ(σ

µ)ȧb. (57)

Let us transform the above system (52)–(56) to spinor form. We start with Eq. (52), it leads to (see
(51))

λ1

{
∂ȧb(e0̇ȧ)

Ȧ
Ḃ(e

0
b)

C
DΨ(1)Ḃ

C + ∂aḃ(e
ḃ
0̇)

Ȧ
Ḃ(e

a
0)

C
DΨ(1)Ḃ

D

}
+ β1∂

b
ċ

{
(e

(ȧċ)
ȧ )ȦḂ(e

0
b)

C
DΨḂ

C + (eċ0̇)
Ȧ
Ḃ(e

a
(ba))

C
DΨḂ

C

}
+M

{
(eȧȧ)

Ȧ
Ḃ(e

0
0)

C
D(Ψ(1))ḂC + (e0̇0̇)

Ȧ
Ḃ(e

a
a)

C
DΨ(1)Ḃ

C

}
= 0,
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or
λ1

{
∂ȧbδȦȧ δ0DΨ(1)0̇

b + ∂aḃδ
Ȧ
0̇ δaDΨ(1) ḃ

0

}
+ β1∂

b
ċ

{
δȦȧ δ0DΨ

(ȧċ)
b + δȦ0̇ δaDΨċ

(ba)

}
+M

{
δȦȧ δ0D(Ψ(1))ȧ0 + δȦ0̇ δaDΨ(1)0̇

a

}
= 0.

Let Ȧ = k̇, D = 0, then we obtain

λ1∂
k̇bΨ

(1)
b + β1∂

b
ċΨ

(k̇ċ)
b +MΨ(1)k̇ = 0. (58)

Let Ȧ = 0̇, D = k, then we get

λ1∂kḃΨ
(1)ḃ + β1∂

b
ċΨ

ċ
(bk) +MΨ

(1)
k = 0. (59)

Taking in account identities

Ψ(ȧḃ)
c = δ

(ȧḃ)
(ṙṅ)(σ

µ)ṙcΨ
ṅ
µ =

1

2
(δȧṙ δ

ḃ
ṅ + δȧṅδ

ḃ
ṙ)(σ

µ)ṙcΨ
ṅ
µ =

1

2

{
(σµ)ȧcΨ

ḃ
µ + (σµ)ḃcΨ

ȧ
µ

}
, (60)

Ψċ
(ab) = δ

(rn)
(ab) (σ

µ)ċrΨnµ =
1

2
(δraδ

n
b + δna δ

r
b )(σ

µ)ċrΨnµ =
1

2

{
(σµ)ċaΨbµ + (σµ)ċbΨaµ

}
, (61)

we derive (see .(58) and (59)

λ1∂
k̇bΨ

(1)
b +

β1

2

{
(σµ)k̇b∂

b
cΨ

ċ
µ + ∂b

ċ(σ
µ)ċbΨ

k̇
µ

}
+MΨ(1)k̇ = 0,

λ1∂kḃΨ
(1)ḃ +

β1

2

{
(σµ)ċk∂

b
ċΨbµ + ∂b

ċ(σ
µ)ċbΨkµ

}
+MΨ

(1)
k = 0,

or

λ1∂
k̇bΨ

(1)
b +

β1

2

{
− (σµ)k̇b∂bċΨ

ċ
µ − ∂ ċb(σµ)bċΨ

k̇
µ

}
+MΨ(1)k̇ = 0, (62)

λ1∂kḃΨ
(1)ḃ +

β1

2

{
− (σµ)kċ∂

ċbΨbµ − ∂bċ(σ
µ)ċbΨkµ

}
+MΨ

(1)
k = 0. (63)

Joining equations (62) and (63) into a matrix one one, we get

λ1

∣∣∣∣ 0 ∂k̇b

∂kḃ 0

∣∣∣∣
∣∣∣∣∣ Ψ(1)ḃ

Ψ
(1)
b

∣∣∣∣∣+ β1

2

{
−

∣∣∣∣∣ (σµ)k̇b∂bċ 0

0 (σµ)kḃ∂
ḃc

∣∣∣∣∣
∣∣∣∣ Ψċ

µ

Ψcµ

∣∣∣∣
−

∣∣∣∣∣ ∂ ċb(σµ)bċδ
k̇
ċ 0

0 ∂aḃ(σ
µ)ḃaδc

k̇

∣∣∣∣∣
∣∣∣∣ Ψċ

µ

Ψcµ

∣∣∣∣ }+M

∣∣∣∣∣ Ψ(1)k̇

Ψ
(1)
k

∣∣∣∣∣ = 0. (64)

Allowing for the identities

σµȧbσν
bċ + σνȧbσµ

bċ = −2δµνδ
ȧ
ċ , σµ

aḃ
σνḃc + σν

aḃ
σµḃc = −2δµνδ

c
a, σµaḃσν

bȧ = σµ

aḃ
σνḃa = −2δµν , (65)

we get the following presentation for Dirac matrices

1

i

∣∣∣∣ 0 σµȧb

∂µ
ab 0

∣∣∣∣ = γµ ; (66)

so we arrive at

λ1∂̂Ψ
(1) − 2β1

{
− ∂µΨµ − 1

4
∂̂(γµΨµ)

}
+MΨ(1) = 0, (67)

where bispinors and vector-bispinor are introduced:

Ψ(1) =

∣∣∣∣ Ψ(1)a′

Ψ
(1)
a

∣∣∣∣ , Ψ(1) =

∣∣∣∣ Ψȧ
µ

Ψaµ

∣∣∣∣ .
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In similar way, we derive the following equations

λ2∂
k̇bΨ

(2)
b + β2∂

b
ċΨ

(k̇ċ)
b +MΨ(2)k̇ = 0, (68)

λ2∂kḃΨ
(2)ḃ + β2∂

c
ḃ
Ψḃ

(kc) +MΨ
(2)
k = 0, (69)

λ2∂̂Ψ
(2) − i2β2

{
∂µΨµ − 1

4
∂̂(γµΨµ)

}
+MΨ(2) = 0; (70)

λ3∂
k̇bΨ

(3)
b + β3∂

b
ċΨ

(k̇ċ)
b +MΨ(3)k̇ = 0, (71)

λ3∂kḃΨ
(3)ḃ + β3∂

c
ḃ
Ψḃ

(kc) +MΨ
(3)
k = 0, (72)

λ3∂̂Ψ
(3) − i2β3

{
∂µΨµ − 1

4
∂̂(γµΨµ)

}
+MΨ(3) = 0; (73)

λ4∂
k̇bΨ

(4)
b + β4∂

b
ċΨ

(k̇ċ)
b +MΨ(4)k̇ = 0, (74)

λ4∂kḃΨ
(4)ḃ + β4∂

c
ḃ
Ψḃ

(kc) +MΨ
(4)
k = 0, (75)

λ4∂̂Ψ
(4) − i2β4

{
∂µΨµ − 1

4
∂̂(γµΨµ)

}
+MΨ(4) = 0. (76)

Now we turn to Eq. (56), it leads to

∂ḋ
a

{
(eḃ(ȧḃ))

Ȧ
Ḃ(e

a
0)

C
D + (e0d)

Ȧ
Ḃ(e

(ac)
c )CD

}{
β5Ψ

(1)Ḃ

C

+β6Ψ
(2)Ḃ

C + β7Ψ
(3)Ḃ

C + β8Ψ
(4)Ḃ

C

}
+M

{
(e

(ȧḃ)

(ȧḃ)
)(ecc)

C
D + (eȧȧ)

Ȧ
Ḃ(e

(bc)

(bc))
C
D

}
ΨḂ

C = 0,

or
∂ḋ
aδ

Ȧ
(ḋḃ)δ

a
D(β5Ψ

(1)ḃ
0 + β6Ψ

(2)ḃ

0 + β7Ψ
(3) ḃ

0 + β8Ψ
(4) ḃ

0)

+∂ḋ
aδ

Ȧ
ḋ δ

(ac)
D (β5Ψ

(1)0̇

c + β6Ψ
(2)0̇

c + β7Ψ
(3)0̇

c + β8Ψ
(4)0

c) +M
{
δȦ(ȧḃ)δ

c
DΨ(ȧḃ)

c + δȦȧ δ
(bc)
D Ψȧ

(bc)

}
= 0. (77)

Let Ȧ = (k̇ṅ), D = r; then we get

∂ḋ
r δ

(k̇ṅ)

(ḋḃ)
(β5Ψ

(1)ḃ + β6Ψ
(2) ḃ + β7Ψ

(3)(ḃ) + β8Ψ
(4)ḃ +MΨ(k̇ṅ)

r = 0,

or
1

2
∂ḋ
r (δ

k̇
ḋδ

ṅ
ḃ + δk̇ḃ δ

ṅ
ḋ )(β5Ψ

(1) ḃ + β6Ψ
(2) ḃ + β7Ψ

(3) ḃ + β8Ψ
(4)ḃ) +MΨ(k̇ṅ)

r = 0,

that is

1

2

{
∂k̇
r (β5Ψ

(1)ṅ + β6Ψ
(2)ṅ + β7Ψ

(3)ṅ + β8Ψ
(4)ṅ)

+∂ṅ
r (β5Ψ

(1)k̇ + β6Ψ
(2)k̇ + β7Ψ

(3)k̇ + β8Ψ
(4)k̇)

}
+MΨ(k̇ṅ)

r = 0. (78)

Allowing for Eq. (60), we obtain

1

2

{
∂k̇
r (β5Ψ

(1)ṅ + β6Ψ
(2)(ṅ)

+ β7Ψ
(3)ṅ + β8Ψ

(4)ṅ)

+∂ṅ
r (β5Ψ

(1)k̇ + β6Ψ
(2)k̇ + β7Ψ

(3)k̇ + β8Ψ
(4)k̇)

}
+

1

2
M

{
(σµ)k̇rΨ

ṅ
µ + (σµ)ṅrΨ

k̇
µ

}
= 0. (79)

Let Ȧ = ṙ, D = (kn), then from Eq. (77) it follows

1

2

{
∂ṙ
k(β5Ψ

(1)
n + β6Ψ

(2)
n + β7Ψ

(3)
n + β8Ψ

(4)
n )

+∂ṙ
n(β5Ψ

(1)
k + β6Ψ

(2)
k + β7Ψ

(3)
k + β8Ψ

(4)
k )

}
+MΨṙ

(kn) = 0,

1

2

{
∂ṙ
k(β5Ψ

(1)
n + β6Ψ

(2)
n + β7Ψ

(3)
n + β8Ψ

(4)
n )

+∂ṙ
n(β5Ψ

(1)
k + β6Ψ

(2)
k + β7Ψ

(3)
k + β8Ψ

(4)
k )

}
+

1

2
M

{
(σµ)ṙkΨnµ + (σµ)ṙnΨkµ

}
= 0. (80)

Let us act on Eq. (79) by (σλ)r
k̇
, and on Eq. (80) – by (σλ)kṙ4 after this we convolute the spinor indices;

in this way, we arrive at

−1

2

{
σλk̇r∂rk̇(β5Ψ

(1)ṅ + β6Ψ
(2)ṅ + β7Ψ

(3)ṅ + β8Ψ
(4)ṅ)
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+∂ṅr(σλ)rk̇(β5Ψ
(1)k̇ + β6Ψ

(2)k̇ + β7Ψ
(3)k̇ + β8Ψ

(4)k̇)
}

−1

2
M

{
(σλ)k̇r(σµ)rk̇Ψ

ṅ
µ + (σµ)ṅr(σλ)rk̇Ψ

k̇
µ

}
= 0,

−1

2

{
(σλ)kṙ∂

ṙk(β5Ψ
(1)
n + β6Ψ

(2)
n + β7Ψ

(3)
n + β8Ψ

(4)
n )

+∂ṅr(σ
λ)ṙk(β5Ψ

(1)
k + β6Ψ

(2)
k + β7Ψ

(3)
k + β8Ψ

(4)
k )

}
−1

2
M

{
(σλ)kṙ(σ

µ)ṙkΨnµ + (σµ)nṙ(σ
λ)ṙkΨkµ

}
= 0,

or
1

2

{2

i
∂λ(β5Ψ

(1)ṅ + β6Ψ
(2)ṅ + β7Ψ

(3)ṅ + β8Ψ
(4)ṅ)

−∂ṅr(σλ)rk̇(β5Ψ
(1)k̇ + β6Ψ

(2)k̇ + β7Ψ
(3)k̇ + β8Ψ

(4)k̇)
}
+

1

2
M

{
2Ψṅ

λ − (σµ)ṅr(σλ)rk̇Ψ
k̇
µ

}
= 0, (81)

1

2

{2

i
∂λ(β5Ψ

(1)
n + β6Ψ

(2)
n + β7Ψ

(3)
n + β8Ψ

(4)
n )

−∂nṙ(σ
λ)ṙk(β5Ψ

(1)
k + β6Ψ

(2)
k + β7Ψ

(3)
k + β8Ψ

(4)
k )

}
+

1

2
M

{
2Ψnλ − (σµ)nṙ(σ

λ)ṙkΨkµ

}
= 0. (82)

Joining two last equations(81) and (82) into the matric one, we get

1

2

{2

i
∂λ

[
β5

∣∣∣∣ Ψ(1)ṅ

Ψ
(1)
n

∣∣∣∣+ β6

∣∣∣∣ Ψ(2)ṅ

Ψ
(2)
n

∣∣∣∣+ β7

∣∣∣∣ Ψ(3)ṅ

Ψ
(3)
n

∣∣∣∣+ β8

∣∣∣∣ Ψ(4)ṅ

Ψ
(4)
n

∣∣∣∣ ]
∣∣∣∣ ∂ṅr(σλ)rk̇ .

. ∂nṙ(σ
λ)ṙk

∣∣∣∣ [β5

∣∣∣∣∣ Ψ(1)k̇

Ψ
(1)
k

∣∣∣∣∣+ β6

∣∣∣∣∣ Ψ(2)k̇

Ψ
(2)
k

∣∣∣∣∣+ β7

∣∣∣∣∣ Ψ(3)k̇

Ψ
(3)
k

∣∣∣∣∣+ β8

∣∣∣∣∣ Ψ(4)k̇

Ψ
(4)
k

∣∣∣∣∣ ]
+
1

2
M

{
2

∣∣∣∣ Ψṅ
λ

Ψnλ

∣∣∣∣− ∣∣∣∣ (σµ)ṅr(σλ)rk̇ .
. (σµ)nṙ(σ

λ)ṙk

∣∣∣∣ ∣∣∣∣ Ψk̇
µ

Ψkµ

∣∣∣∣ } = 0.

Allowing for (66), we rewrite the last equation in the form

1

2

{
− i∂λ + iγλ∂̂ − 2i∂λ

}
(β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4)) +

1

2
M

{
2Ψλ − γλ(γµΨµ) + 2Ψλ

}
= 0,

or

−i(∂λ − 1

4
γλ∂̂)(β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4)) +M

{
Ψλ − 1

4
γλ(γµΨµ)

}
= 0. (83)

3. The minimal form of equations

Let us derive the minimal form of the above system (67),(70),(73),(76),(83). From (83) it follows

Ψλ − 1

4
γλ(γµΨµ) =

i

M
(∂λ − 1

4
γλ∂̂)

(
β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4)

)
. (84)

Let us substitute this expression (84) in equations (67), (70), (73), (76). We will take into account the
identities

∂λ(Ψλ − 1

4
γλ(γµΨµ)) = ∂λΨλ − 1

4
∂̂(γµΨµ) =

i

M
(2− 1

4
∂̂∂̂)(β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4))

=
i3

4M
2(β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4)),

so we derive

(M + λ1∂̂)Ψ
(1) +

3β1

2M
2(β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4)) = 0, (85)

(M + λ2∂̂)Ψ
(2) +

3β2

2M
2(β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4)) = 0, (86)

(M + λ3∂̂)Ψ
(3) +

3β3

2M
2(β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4)) = 0, (87)

(M + λ4∂̂)Ψ
(4) +

3β4

2M
2(β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4)) = 0. (88)
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Let us act on Eq. (85) be operator

β5(M + λ2∂̂)(M + λ3∂̂)(M + λ4∂̂);

on Eq. (86) – by

β6(M + λ1∂̂)(M + λ3∂̂)(M + λ4∂̂);

on Eq. (87) by

β7(M + λ1∂̂)(M + λ2∂̂)(M + λ4∂̂);

on Eq. (88) – by

β8(M + λ1∂̂)(M + λ2∂̂)(M + λ3∂̂);

and sum the results – this gives{
M4 +M3(λ1 + λ2 + λ3 + λ4)∂̂ +M2(λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4)2

+M(λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4)∂̂2+ λ1λ2λ3λ422

}
(β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4))

+
3

2M

{
M3(β1β5 + β2β6 + β3β7 + β4β8)

+M2[(λ2 + λ3 + λ4)β1β5 + (λ1 + λ3 + λ4)β2β6 + (λ1 + λ2 + λ4)β3β7

+(λ1 + λ2 + λ3)β4β8]∂̂ +M [β1β5(λ2λ3 + λ2λ4 + λ3λ4)

+β2β6(λ1λ3 + λ1λ4 + λ3λ4) + β3β7(λ1λ2 + λ1λ4 + λ2λ4) + β4β8(λ1λ2 + λ1λ3 + λ2λ3)]2

+[λ1λ2(λ4β3β7 + λ3β4β8) + λ3λ4(λ2β1β5 + λ1β2β6)]∂̂2
}

×2(β5Ψ
(1) + β6Ψ

(2) + β7Ψ
(3) + β8Ψ

(4)) = 0,

or {
M4 +M3(λ1 + λ2 + λ3 + λ4)∂̂ +M2(λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4)

+
3

2
(β1β5 + β2β6 + β3β7 + β4β8)]2

+M
[
(λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4) +

3

2
((λ2 + λ3 + λ4)β1β5

+(λ1 + λ3 + λ4)β2β6 + (λ1 + λ2 + λ4)β3β7 + (λ1 + λ2 + λ3)β4β8)
]
∂̂2

+
[
λ1λ2λ3λ4 +

3

2
(β1β5(λ2λ3 + λ2λ4 + λ3λ4)

+β2β6(λ1λ3 + λ1λ4 + λ3λ4) + β3β7(λ1λ2 + λ1λ4 + λ2λ4) + β4β8(λ1λ2 + λ1λ3 + λ2λ3))
]
22

+[λ1λ2(λ4β3β7 + λ3β4β8) + λ3λ4(λ2β1β5 + λ1β2β6)]∂̂22

}
×(β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4)) = 0. (89)

Taking in mind restrictions (16), (20), (28), (37), (41) for parameters λi, βk, we derive

(M + ∂̂)
(
β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4)

)
= 0, (90)

which is the minimal Dirac equation for a free p[article with spin 1/2, with respect to the following
bispinor

Φ = β5Ψ
(1) + β6Ψ

(2) + β7Ψ
(3) + β8Ψ

(4). (91)
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4. Equation in presence of electromagnetic fields

We start with the equations in presence of external electromagnetic fields (Dµ = ∂µ − ieAµ

(M + λ1D̂)Ψ(1) − i2β1

{
DµΨµ − 1

4
D̂(γµΨµ)

}
= 0, (92)

(M + λ2D̂)Ψ(2) − i2β2

{
DµΨµ − 1

4
D̂(γµΨµ)

}
= 0, (93)

(M + λ3D̂)Ψ(3) − i2β3

{
DµΨµ − 1

4
D̂(γµΨµ)

}
= 0, (94)

(M + λ4D̂)Ψ(4) − i2β4

{
DµΨµ − 1

4
D̂(γµΨµ)

}
= 0, (95)

−i(Dλ − 1

4
γλD̂)(β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4)) +M

{
Ψλ − 1

4
γλ(γµΨµ)

}
= 0. (96)

From Eq. (96), it follows

Ψλ − 1

4
γλ(γµΨµ) =

i

M
(Dλ − 1

4
γλD̂)(β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4)).

Correspondingly, we obtain

DµΨµ − 1

4
D̂(γµΨµ) =

i

M
(D2 − 1

4
D̂D̂)(β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4)). (97)

Taking into account this identity (97) in equations (92)–(95), we derive

(M + λ1D)Ψ(1) +
2β1

M
(D2 − 1

4
D̂D̂)(β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4)) = 0, (98)

(M + λ2D)Ψ(2) +
2β2

M
(D2 − 1

4
D̂D̂)(β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4)) = 0, (99)

(M + λ3D)Ψ(3) +
2β3

M
(D2 − 1

4
D̂D̂)(β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4)) = 0, (100)

(M + λ4D)Ψ(4) +
2β4

M
(D2 − 1

4
D̂D̂)(β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4)) = 0. (101)

Let us act on Eq. (98) by operator

β5(M + λ2D̂)(M + λ3D̂)(M + λ4D̂),

on Eq. (99) – by

β6(M + λ1D̂)(M + λ3D̂)(M + λ4D̂),

in Eq. (100) – by

β7(M + λ1D̂)(M + λ2D̂)(M + λ4D̂),

on Eq. (101) – by

β8(M + λ1D̂)(M + λ2D̂)(M + λ3D̂),

and sum the results; so we derive{
M4 +M3D̂ +M2(λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4)D̂D̂

+M(λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4)D̂D̂D̂

+λ1λ2λ3λ4D̂D̂D̂D̂
}
(β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4))

+
2

M

{
β1β5[M

3 +M2(λ2 + λ3 + λ4)D̂ +M(λ2λ3 + λ2λ4 + λ3λ4)D̂D̂ + λ2λ3λ4D̂D̂D̂]

+β2β6[M
3 +M2(λ1 + λ3 + λ4)D̂ +M(λ1λ3 + λ1λ4 + λ3λ4)D̂D̂ + λ1λ3λ4D̂D̂D̂]

+β3β7[M
3 +M2(λ1 + λ2 + λ4)D̂ +M(λ1λ2 + λ1λ4 + λ2λ4)D̂D̂ + λ1λ2λ4D̂D̂D̂]
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+β4β8[M
3 +M2(λ1 + λ2 + λ3)D̂ +M(λ1λ2 + λ1λ3 + λ2λ3)D̂D̂ + λ1λ2λ3D̂D̂D̂]

}
×(D2 − 1

4
D̂D̂)

(
β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4)

)
= 0. (102)

We will use the identity D̂D̂ = D2 − ieF[µν]I[µν], so that

D2 = D̂D̂ + ieF[µν]I[µν]; (103)

where F[µν] = ∂µAν − ∂νAµ is the electromagnetic tensor, and I[µν] = 1
4 (γµγν − γνγµ). Allowing for

relations (103), we transform Eq. (102) to the form{
M4 +M3D̂ +M2[(λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4)

+
3

2
(β1β5 + β2β6 + β3β7 + β4β8)]D̂D̂

+M [(λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4)

+
3

2
β1β5(λ2 + λ3 + λ4) +

3

2
β2β6(λ1 + λ3 + λ4) +

3

2
β3β7(λ1 + λ2 + λ4) +

3

2
β4β8(λ1 + λ2 + λ3)]D̂D̂D̂

+
[
λ1λ2λ3λ4 +

3

2
β1β5(λ2λ3 + λ2λ4 + λ3λ4) +

3

2
β2β6(λ1λ3 + λ1λ4 + λ3λ4)

+
3

2
β3β7(λ1λ2 + λ1λ4 + λ2λ4) +

3

2
β4β8(λ1λ2 + λ1λ3 + λ2λ3)

]
D̂D̂D̂D̂

+
3

2M
[β1β5λ2λ3λ4 + β2β6λ1λ3λ4 + β3β7λ1λ2λ4 + β4β8λ1λ2λ3]D̂D̂D̂D̂D̂

}
(β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4))

+
2ie

M

{
M3(β1β5 + β2β6 + β3β7 + β4β8)F[µν]I[µν]

+M2[β1β5(λ2 + λ3 + λ4) +
3

2
β2β6(λ1 + λ3 + λ4) +

3

2
β3β7(λ1 + λ2 + λ4) +

3

2
β4β8(λ1 + λ2 + λ3)]D̂F[µν]I[µν]

+M [β1β5(λ2λ3 + λ2λ4 + λ3λ4) + β2β6(λ1λ3 + λ1λ4 + λ3λ4)

+β3β7(λ1λ2 + λ1λ4 + λ2λ4) + β4β8(λ1λ2 + λ1λ3 + λ2λ3)]D̂D̂F[µν]I[µν]

+[β1β5λ2λ3λ4 + β2β6λ1λ3λ4 + β3β7λ1λ2λ4 + β4β8λ1λ2λ3]D̂D̂D̂F[µν]I[µν]

}
×
(
β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4)

)
= 0.

Taking in mind restrictions (20), (28), (41), (37), and (91), we derive{
M4 +M3D̂ + 2ieM2(β1β5 + β2β6 + β3β7 + β4β8)F[µν]I[µν]

+2ieM [β1β5(λ2 + λ3 + λ4) + β2β6(λ1 + λ3 + λ4) + β3β7(λ1 + λ2 + λ4) + β4β8(λ1 + λ2 + λ3)]D̂F[µν]I[µν]

+2ie[β1β5(λ2λ3 + λ2λ4 + λ3λ4) + β2β6(λ1λ3 + λ1λ4 + λ3λ4)

+β3β7(λ1λ2 + λ1λ4 + λ2λ4) + β4β8(λ1λ2 + λ1λ3 + λ2λ3)]D̂D̂F[µν]I[µν]

}
Φ = 0, (104)

or differently

M + D̂ − ie
4

3

[ 1

M
(λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4)F[µν]I[µν]

+
1

M2
(λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4)D̂F[µν]I[µν] ++

1

M3
λ1λ2λ3λ4D̂D̂FµνI[µν]

]
Φ = 0. (105)

Allowing for the identities
D̂D̂ = D2 − ieF[ρλ]I[ρλ],

γµγνγρ = δµνγρ − δµργν + δνργµ + ϵµνρηγ5γη, γ5γµγν = δµνγ5 −
1

2
ϵµνρλγργλ.

we get
1

M3
λ1λ2λ3λ4

{
D2F[µν]I[µν]Φ− ieF[ρλ]F[µν]I[ρλ]I[µν]Φ

}
=

1

M3
λ1λ2λ3λ4D

2F[µν]I[µν]Φ,

− ie

M3
λ1λ2λ3λ4F[ρλ]F[µν]I[ρλ]I[µν] =

1

M3
λ1λ2λ3λ4D

2F[µν]I[µν]Φ,

− ie

M3
λ1λ2λ3λ4

{
F[µν]I[νρ]γµγρ +

1

4
ϵ[ρλ]F[µν]γ5 −

1

2
F[µν]F[νµ]

}
Φ.
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Therefore, Eq. (124) may be presented as{
M + γσDσ − ie

M

4

3

(
λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4

)
F[µν]I[µν]

− ie

M2

4

3

(
λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4

)
D̂F[µν]Iµν

− ie

M3

4

3
λ1λ2λ3λ4

(
D2F[µν]I[µν] + F[µν]F[νρ]γµγρ +

1

2
F[µν]F[µν] +

1

4
ϵρλµνF[ρλ]F[µν]γ5

)
Φ = 0. (106)

Let us introduce the notations

µ =
4

3

(
λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4

)
,

σ =
4

3

(
λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4

)
, η =

4

3
λ1λ2λ3λ4;

then the above equation reads{
M + γρDρ −

ie

M
µ FµβIµβ − ie

M2
σ D̂FµβIµβ

− ie

M3
η
(
D2FαβIαβ + FαβFβργαγρ +

1

2
FαβF[αβ] +

1

4
ϵρλαβFρλFαβγ5

)
Φ = 0. (107)

This equation should be considered as related to a spin 1/2 particle which in addition to electric charge
has three other electromagnetic characteristics µ, σ, γ. The µ corresponds to the anomalous magnetic
moment; the σ corresponds to the polarizability; and the parameter γ should be associated with a
certain intrinsic structure which assumes rather complicated additional interaction with the external
electromagnetic field.

5. Equation in presence of gravitational fields

Assuming the use of relativistic interval in explicit real-valued form (Minkowski space with the signature
(+,−,−,−))

dS2 = c2dt2 − dx2 − dy2 − dz2, (t, x, y, z) = (xa), a = 0, 1, 2, 3

one should use the basic equation in the form{
iγρDρ −M +

e µ

M
FαβJ

αβ +
e σ

M2
D̂FαβJ

αβ

+
e η

M3

(
D2FαβJ

αβ + γαFαβF
β
ργ

ρ +
1

2
FαβF

αβ +
1

4
γ5 ϵ

ρλαβFρλFαβ

)
Ψ = 0; (108)

recall the notaions

Dρ = ∂ρ + ieAρ, D̂ = γρDρ, D2 = gαβDαDβ , Jαβ =
1

4
(γαγβ − γβγα).

Let us extend this approach to curved space-time background. We should start with the modified
system of the first order equations

(M + λ1D̂)Ψ(1) − 2iβ1

(
DµΨµ − 1

4
D̂(γµΨµ)

)
= 0, (109)

(M + λ2D̂)Ψ(2) − 2iβ2

(
DµΨµ − 1

4
D̂(γµΨµ)

)
= 0, (110)

(M + λ3D̂)Ψ(3) − 2iβ3

(
DµΨµ − 1

4
D̂(γµΨµ)

)
= 0, (111)

(M + λ4D̂)Ψ(4) − 2iβ4

(
DµΨµ − 1

4
D̂(γµΨµ)

)
= 0, (112)

−i(Dλ − 1

4
γλD̂)(β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4)) +M

{
Ψλ − 1

4
γλ(γ

µΨµ)
}
= 0. (113)

In this system, Ψ(a)(a = 1, 2, 3, 4) are covariant bispinors, and Ψµ is a covariant vector-bispinor. We
apply the generalized derivative Dµ, it takes into account the presence of electromagnetic fields and any
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curved space-time background; the symbol ∇µ designates the covariant derivative; the symbol Γµ(x)
stands for the bispinor connection; Γµ(x) represents the local Dirac matrices:

Dµ = ∇µ − ieAµ(x) + Γµ(x), D̂ = γµDµ = γµ(x)
(
∇µ − ieAµ + Γµ

)
,

D̂D̂ = (γαDα)(γ
βDβ) = Dα

γαγβ + γβγα

2
Dβ +Dα

γαγβ − γβγα

2
Dβ

= gαβ(x)DαDβ = DαDα + Jαβ(x)[Dα, Dβ ]− = D2 + σαβ(x)Mαβ(x),

D2 = DαDα, Mαβ(x) = [Dα, Dβ ]−, Jαβ(x) =
γα(x)γβ(x)− γβ(x)γα(x)

4
.

(114)

From Eq. (113), it follows

Ψλ − 1

4
γλ(γ

µΨµ) =
i

M

(
Dλ − 1

4
γλD̂

)(
β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4)

)
.

Correspondingly, acting on this relation by Dλ, we obtain

DλΨλ − 1

4
D̂(γµΨµ) =

i

M

(
D2 − 1

4
D̂D̂

)(
β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4)

)
. (115)

Taking into account the last identity in equations (109)–(112), we derive

(M + λ1D̂)Ψ(1) +
2β1

M

(
D2 − 1

4
D̂D̂

)
(β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4)) = 0, (116)

(M + λ2D̂)Ψ(2) +
2β2

M

(
D2 − 1

4
D̂D̂

)
(β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4)) = 0, (117)

(M + λ3D̂)Ψ(3) +
2β3

M

(
D2 − 1

4
D̂D̂

)
(β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4)) = 0, (118)

(M + λ4D̂)Ψ(4) +
2β4

M

(
D2 − 1

4
D̂D̂

)
(β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4)) = 0. (119)

Let us act:

on Eq. (116) by operator
β5(M + λ2D̂)(M + λ3D̂)(M + λ4D̂),

on Eq. (117) – by
β6(M + λ1D̂)(M + λ3D̂)(M + λ4D̂),

in Eq. (118) – by
β7(M + λ1D̂)(M + λ2D̂)(M + λ4D̂),

on Eq. (119) – by
β8(M + λ1D̂)(M + λ2D̂)(M + λ3D̂),

and sum the results; so we derive{
M4 +M3D̂ +M2(λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4)D̂D̂

+M(λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4)D̂D̂D̂ + λ1λ2λ3λ4D̂D̂D̂D̂
}
(β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4))

+
2

M

{
β1β5[M

3 +M2(λ2 + λ3 + λ4)D̂ +M(λ2λ3 + λ2λ4 + λ3λ4)D̂D̂ + λ2λ3λ4D̂D̂D̂]

+β2β6[M
3 +M2(λ1 + λ3 + λ4)D̂ +M(λ1λ3 + λ1λ4 + λ3λ4)D̂D̂ + λ1λ3λ4D̂D̂D̂]

+β3β7[M
3 +M2(λ1 + λ2 + λ4)D̂ +M(λ1λ2 + λ1λ4 + λ2λ4)D̂D̂ + λ1λ2λ4D̂D̂D̂]

+β4β8[M
3 +M2(λ1 + λ2 + λ3)D̂ +M(λ1λ2 + λ1λ3 + λ2λ3)D̂D̂ + λ1λ2λ3D̂D̂D̂]

}
×(D2 − 1

4
D̂D̂)

(
β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4)

)
= 0. (120)

We will use the identity (see (114))

D̂D̂ = D2 + Jαβ(x)Mαβ(x) =⇒ D2 = D̂D̂ −MαβJ
αβ ; (121)
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instead of relation D2 = D̂D̂+ ieFαβJ
αβ in presence of only electromagnetic field. Therefore, we do not

need to repeat the calculation in Minkovski space, it suffices the formal change

ieFαβ → −Mαβ .

Allowing for relations (120), we transform Eq. (120) to the form{
M4 +M3D̂ +M2

(
λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4

)
D̂2

+M
(
λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4

)
D̂3 + λ1λ2λ3λ4D̂

4
}(

β5Ψ
(1) + β6Ψ

(2) + β7Ψ
(3) + β8Ψ

(4)
)

+
2

M

{
β1β5

[
M3 +M2(λ2 + λ3 + λ4)D̂ +M(λ2λ3 + λ2λ4 + λ3λ4)D̂

2 + λ2λ3λ4D̂
3
]

+β2β6

[
M3 +M2(λ1 + λ3 + λ4)D̂ +M(λ1λ3 + λ1λ4 + λ3λ4)D̂

2 + λ1λ3λ4D̂
3
]

+β3β7

[
M3 +M2(λ1 + λ2 + λ4)D̂ +M(λ1λ2 + λ1λ4 + λ2λ4)D̂

2 + λ1λ2λ4D̂
3
]

+β4β8

[
M3 +M2(λ1 + λ2 + λ3)D̂ +M(λ1λ2 + λ1λ3 + λ2λ3)D̂

2 + λ1λ2λ3D̂
3
]}

×(
3

4
D̂2 − σαβJ

αβ)
(
β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4)

)
= 0. (122)

Now, we are grouping the terms with respect to

D̂, D̂2, D̂3, D̂4, D̂5;

in this way we obtain{
M4 +M3D̂ +M2

[(
λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4

)3
2

(
β1β5 + β2β6 + β3β7 + β4β8

)]
D̂2

+M
[(

λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4

)
+

3

2
β1β5

(
λ2 + λ3 + λ4

)
+
3

2
β2β6

(
λ1 + λ3 + λ4

)
+

3

2
β3β7

(
λ1 + λ2 + λ4

)
+

3

2
β4β8

(
λ1 + λ2 + λ3

)]
D̂3

+
[
λ1λ2λ3λ4 +

3

2
β1β5

(
λ2λ3 + λ2λ4 + λ3λ4

)
+

3

2
β2β6

(
λ1λ3 + λ1λ4 + λ3λ4

)
+
3

2
β3β7

(
λ1λ2 + λ1λ4 + λ2λ4

)
+

3

2
β4β8

(
λ1λ2 + λ1λ3 + λ2λ3

)]
D̂4

+
3

2M

[
β1β5λ2λ3λ4 + β2β6λ1λ3λ4 + β3β7λ1λ2λ4 + β4β8λ1λ2λ3

]
D̂5

}(
β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4)

)
− 2

M

{
M3

(
β1β5 + β2β6 + β3β7 + β4β8

)
MαβJ

αβ

+M2
[
β1β5

(
λ2 + λ3 + λ4

)
+

3

2
β2β6

(
λ1 + λ3 + λ4

)
+

3

2
β3β7

(
λ1 + λ2 + λ4

)
+

3

2
β4β8

(
λ1 + λ2 + λ3

)]
D̂MαβJ

αβ

+M
[
β1β5

(
λ2λ3 + λ2λ4 + λ3λ4

)
+ β2β6

(
λ1λ3 + λ1λ4 + λ3λ4

)
+β3β7

(
λ1λ2 + λ1λ4 + λ2λ4

)
+ β4β8

(
λ1λ2 + λ1λ3 + λ2λ3

)]
D̂2MαβJ

αβ

+
[
β1β5λ2λ3λ4 + β2β6λ1λ3λ4 + β3β7λ1λ2λ4 + β4β8λ1λ2λ3

]
D̂3MαβJ

αβ
}

×
(
β5Ψ

(1) + β6Ψ
(2) + β7Ψ

(3) + β8Ψ
(4)

)
= 0.

Taking into account restrictions on parameters (20), (28), (41), (37), and also the notation (91)

β5Ψ
(1) + β6Ψ

(2) + β7Ψ
(3) + β8Ψ

(4) = Φ,

we derive {
M4 +M3D̂ − 2M2

(
β1β5 + β2β6 + β3β7 + β4β8

)
MαβJ

αβ

−2M
[
β1β5(λ2 + λ3 + λ4) + β2β6(λ1 + λ3 + λ4) + β3β7(λ1 + λ2 + λ4) + β4β8(λ1 + λ2 + λ3)

]
D̂MαβJ

αβ

−2
[
β1β5(λ2λ3 + λ2λ4 + λ3λ4) + β2β6(λ1λ3 + λ1λ4 + λ3λ4)

+β3β7(λ1λ2 + λ1λ4 + λ2λ4) + β4β8(λ1λ2 + λ1λ3 + λ2λ3)
]
D̂D̂MαβJ

αβ
}
Φ = 0, (123)
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or differently {
M + D̂ +

4

3

[ 1

M

(
λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4

)
MαβJ

αβ

+
1

M2

(
λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4

)
D̂MαβJ

αβ +
1

M3
λ1λ2λ3λ4D̂

2MαβJ
αβ

]}
Φ = 0.

Allowing for the identities D̂2 = (D2 + JρσMρσ), the last equation transforms to other form{
M + D̂ +

1

M

4

3

(
λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4

)
JαβMαβ

+
1

M2

4

3

(
λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4

)
D̂JαβMαβ +

1

M3

4

3
λ1λ2λ3λ4(D

2 + JρσMρσ)J
αβMαβ

}
Φ = 0,

or differently {
M + D̂ +

1

M

4

3

(
λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4

)
JαβMαβ

+
1

M2

4

3

(
λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4

)
D̂JαβMαβ

+
1

M3

4

3
λ1λ2λ3λ4

(
D2JαβMαβ + JρσJαβMρσMαβ

)}
Φ = 0. (124)

Further, we will work with the short presentation of the above equation{
M + D̂ +

1

M
µjαβMαβ +

1

M2
σD̂jαβMαβ

+
1

M3
η
(
D2jαβMαβ + jρσjαβMρσMαβ

)}
Φ = 0. (125)

Let us detail the commutator Mαβ :

Dα = ∇α + ieAµ(x) + Γα(x), Mαβ = DαDβ −DβDα;

it is (see in [3])

MαβΨ = (DαDβ −DβDα)Ψ = (ieFαβ +
1

2
jνρRνραβ)Ψ. (126)

Let us consider the term (see in [3])

µ

M
jαβMαβΨ =

µ

M
jαβ

(
ieFαβ +

1

2
jνρRνραβ

)
Ψ

=
µ

M

(
ieFαβj

αβ +
1

2
jαβjνρRνραβ

)
Ψ =

µ

M

(
ieFαβj

αβ − 1

4
R(x)

)
Ψ. (127)

Consider the term

σ

M2
D̂jαβMαβΨ =

1

M2
σ (γρDρ)

(
ieFαβj

αβ − 1

4
R(x)

)
Ψ. (128)

Consider the term

η

M3
D2 jαβMαβΨ =

1

M3
η gρσ(x)DρDσ

(
ieFαβj

αβ − 1

4
R(x)

)
Ψ. (129)

Now we are to consider the term

A =
η

M3
jρσjαβMρσ Mαβ =

η

M3
jρσ

{
(jαβMρσ −Mρσj

αβ) +Mρσj
αβ

}
Mαβ

=
η

M3
jρσ

{(
jαβ(ieFρσ +

1

2
jµνRµνρσ)− (ieFρσ +

1

2
jµνRµνρσ)j

αβ
)
+Mρσj

αβ
}
Mαβ

=
η

M3
jρσ

{1

2
[jαβ , jµν ]−Rµνρσ +Mρσj

αβ
}
Mαβ ; (130)

Thus, we get

A =
η

M3

{
(jρσMρσ)(j

αβMαβ) +
1

2
jρσ[jαβ , jµν ]−MαβRµνρσ

}
. (131)

283



V.V. Kisel, E.M. Ovsiyuk, P.O. Sachenok, A.S. Martynenko, A.V. Bury, V.M. Red’kov

Taking in mind the identity [3]

jαβMαβ = (ieFαβj
αβ − 1

4
R),

we rewrite the last expression as follows

A =
η

M3
jρσjαβMρσMαβ =

η

M3

{(
ieFρσj

ρσ − 1

4
R
)2

+
1

2
jρσ[jαβ , jµν ]− Mαβ Rµνρσ

}
. (132)

We should detail the second term with commutator

B =
1

2
jρσ[jαβ , jµν ]− Rµνρσ Mαβ

=
1

2
jρσ

[
(gβµjαν − gβνjαµ)− (gαµjβν − gανjβµ)

]
Rµνρσ Mαβ

=
1

2
jρσ

[
Rβ

νρσj
αν −R β

µ ρσj
αµ −Rα

νρσj
βν +R α

µ ρσj
βµ

]
Mαβ

=
1

2
jρσ

[
(Rβ

νρσj
ανMαβ −Rα

νρσj
βνMαβ) + (R α

µ ρσj
βµMαβ −R β

µ ρσj
αµMαβ)

]
.

Making the needed change in mute indices, α =⇒ β, β =⇒ α, we get

B =
1

2
jρσ

[
(Rβ

νρσj
ανMαβ −Rβ

νρσj
ανMβα) + (R α

µ ρσj
βµMαβ −R α

µ ρσj
βµMβα)

]
=

1

2
jρσ

[
(Rβ

νρσj
ανMαβ +Rβ

νρσj
ανMαβ) + (R α

µ ρσj
βµMαβ +R α

µ ρσj
βµMαβ)

]
=

1

2
jρσ

[
2Rβ

νρσj
ανMαβ + 2R α

µ ρσj
βµMαβ

]
= Rβ

νρσj
ρσjανMαβ +R α

µ ρσj
ρσjβµMαβ = B.

Making the changes, µ =⇒ ν, α =⇒ β, β =⇒ α, we get

B = Rβ
νρσj

ρσjανMαβ +R α
µ ρσj

ρσjβµMαβ

= Rβ
νρσj

ρσjανMαβ +R β
ν ρσj

ρσjανMβα = Rβ
νρσj

ρσjανMαβ +Rβ
νρσj

ρσjανMαβ

= 2Rβ
νρσj

ρσjανMαβ = B. (133)

Allowing for expression for Mαβ , we derive

B = 2Rβ
νρσj

ρσjανMαβ = 2Rβ
νρσj

ρσjαν
(
ieFαβ +

1

2
jϵτRϵταβ

)
= 2ieFαβR

β
νρσ(j

ρσjαν) +Rβ
νρσRϵταβj

ρσjανjϵτ . (134)

Let us consider the product of two generators

jρσjαν =
1

16
(γργσ − γσγρ)(γαγν − γνγα)

=
1

16

[
γρ(γσγαγν − γσγνγα)− γσ(γργαγν − γργνγα)

]
=

1

16

{
γρ

[
(γσgαν − γαgσν + γνgσα + iγ5ϵσανδγδ)− (γσgνα − γνgσα + γαgνσ + iγ5ϵσναδγδ)

]
−γσ

[
(γρgαν − γαgρν + γνgρα + iγ5ϵρανδγδ)− (γρgνα − γνgρα + γαgρν + iγ5ϵρναδγδ)

]}
=

1

8

{
γρ

[
− γαgσν + γνgσα + iγ5ϵσανδγδ

]
− γσ

[
− γαgρν + γνgρα + iγ5ϵρανδγδ

]}
Therefore, we derive

C = ieFαβR
β
νρσj

ρσjαν =
ie

4
Fαβ

{
− γργαgσνRβ

νρσ + γργνgσαRβ
νρσ + iγργ5ϵσανδγδR

β
νρσ

+γσγαgρνRβ
νρσ − γσγνgραRβ

νρσ − iγσγ5ϵρανδγδR
β
νρσ

}
=

ie

4
Fαβ

{
− γργαRβσ

ρσ + γργνRβ α
νρ − iγργδγ

5ϵσανδRβ
νρσ + γσγαRβρ

ρσ − γσγνRβ α
ν σ + iγσγδγ

5ϵρανδRβ
νρσ

}
.

Taking into account the symmetry properties of the curvature tensor, we derive

C =
ie

4
Fαβ

{
− γργαRσβ

σρ + (−γνγρ + 2gρν)Rβ α
νρ − iγργδγ

5ϵσανδRβ
νρσ
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+γσγαRβρ
ρσ + (γνγσ − 2gνσ)Rβ α

ν σ − iγργδγ
5ϵσανδRβ

νρσ

}
=

ie

4
Fαβ

{
− γργαRβ

ρ + (−γνγρRβ α
νρ − 2Rαβ)− 2iγργδγ

5ϵσανδRβ
νρσ − γργαRβ

ρ + (−γνγρRβ α
νρ + 2Rαβ)

}
,

that is

C =
ie

2
Fαβ

{
− γργαRβ

ρ − γνγρRβ α
νρ − iγργδγ

5ϵσανδRβ
νρσ

}
.

Using the identities

γργα = (2jρα + gρα), γνγρ = (2jνρ + gνρ), γργδ = (2jρδ + δρδ),

we arrive at

C =
ie

2
Fαβ

{
− (2jραRβ

ρ + gραRβ
ρ)− (2jνρRβ α

νρ + gνρRβ α
νρ )− i(2jρδ + δρδ)γ

5ϵσανδRβ
νρσ

}
=

ie

2
Fαβ

{
− 2jραRβ

ρ −Rαβ − 2jνρRβ α
νρ +Rαβ − 2ijρδγ

5ϵσανδRβ
νρσ

}
=

ie

2
Fαβ

{
− 2jραRβ

ρ − 2jνρRβ α
νρ − 2iγ5jρδϵσαν

δR
β
νρσ

}
= C. (135)

Collecting results together, we get

η

M3
jρσjαβMρσ Mαβ =

η

M3

[(
ieFρσj

ρσ − 1

4
R
)2

+
ie

2
Fαβ

(
− 2jραRβ

ρ − 2jνρRβ α
νρ − 2iγ5jρδϵσανδR

β
νρσ

)
+Rβ

νρσRϵταβj
ρσjανjϵτ

]
. (136)

Therefore, the basic equation takes on the form{
(γσDσ +M) +

µ

M

(
ieFαβj

αβ − 1

4
R
)
+

σ

M2
(γρDρ)

(
ieFαβj

αβ − 1

4
R
)

+
η

M3

[
DσDσ

(
ieFαβj

αβ − 1

4
R
)
+

(
ieFρσj

ρσ − 1

4
R
)2

ie

2
Fαβ

(
2jαρR β

ρ − 2jνρRβ α
νρ − 2iγ5jρδϵ ανσ

δ Rβ
νσρ

)
+Rβ

νρσRϵταβ jρσjανjϵτ
]}

Ψ = 0. (137)

The operator DσDσ is detailed as follows

DσDσ = (∇σ + Γσ)(∇σ + Γσ) = ∇σ∇σ + (∇σΓ
σ) + Γσ∇σ + Γσ∇σ + ΓσΓσ

= ∇σ∇σ + (γσΓ
σ − Γσγσ) + 2Γσ∇σ ++ΓσΓσ.

The last term in (137) may be presented differently

Rβ
νρσRϵταβ jρσjανjϵτ ≡ −(Rβ

νρσj
ρσ)jνα(Rαβϵτ jϵτ ) ≡ −Xβ

ν jνα Xαβ . (138)

It is convenient to transform the last term in (137) to tetrad form:

Rβ
νρσRϵταβ jρσjανjϵτ = −

(
Rd

nab(x)j
ab
)
jnm

(
Rmdkl(x)j

kl
)
.

Therefore, the basic equation takes on the form{(
γσDσ +M

)
+

µ

M

(
ieFαβj

αβ − 1

4
R
)
+

σ

M2
(γρDρ)

(
ieFαβj

αβ − 1

4
R
)

+
η

M3

[
DσDσ

(
ieFαβj

αβ − 1

4
R
)
+
(
ieFρσj

ρσ − 1

4
R
)2

+

+
ie

2
Fαβ

(
2jαρR β

ρ − 2jνρRβ α
νρ − 2iγ5jρδϵ ανσ

δ Rβ
νσρ

)

−
(
Rd

nab(x)j
ab
)
jnm

(
Rmdkl(x)j

kl
)]}

Ψ = 0. (139)

Evidently, it is possible to detail additionally the term with the product of two Riemann tensors.
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Conclusions

As seen, in the derived extended equation for spin 1/2 particle, there arises a number of additional
geometrical interaction terms through the Ricci scalar R(x) and tensor Rab, and the Riemann curvature
tensor Rmnkl(x). The contribution of Ricci tensor and Riemann curvature tensor differ from zero only if
the third parameter η vanishes.
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