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Abstract. We shall present some facts relevant to solving the problems of polari-
zation optics in the frames of Stokes’s vector and Jones’s spinor formalisms. It is known
that the completely polarized light can be described by Stokes 4-dimensional vector
or alternatively by Jones complex 2-dimensional spinor. It is known that the Stokes
formalism may be extended to a partially polarized light, but Jones approach does not. In
the present paper, we introduce the concept of 4-dimensional Jones type spinor, first for
a completely polarized light. This approach is extended to the partially polarized light.
From 4-dimensional spinor follow both 4-vector and antisymmetric tensor of Stokes
type. Stokes vector depends on four parameters, whereas the Stokes tensor depends on
five parameters. By this reason, we can assume that the Stokes tensor contains more
information about the partially polarized light than the Stokes vector. We have found
relationships between the four components of Stokes vector and five components of
Stokes tensor in analytical form, they are studied numerically as well. In addition, we
shortly discuss relationships between polarization of the light and space models with
spinor structure.

Key words: Completely and partially polarized light, Stokes vector, Stokes
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1. INTRODUCTION

The main line of evolution in theoretical tools of the polarization optics [1]-[22]
seems to be quite independent on relativistic symmetry methods, developed in the
physics of elementary particles. However, it was noticed by many authors [23]-[29]
that these two branches of physics employ the very similar mathematical techniques,
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with distinctions in notation and physical emphasis; also see recent publications [30]—
[33]. In the present paper, we shall focus on the unity of the mathematical foundations
of particle physics and polarized light optics. Keeping in mind the notable differences
between the properties of isotropic and time-like vectors in Special Relativity, we
should expect the similar major differences in describing the completely polarized
and partially polarized light. To clarify this point, we shall consider these two cases
separately.

2. POLARIZATION OF THE LIGHT, STOKES-MUELLER FORMALISM

To elucidate how mathematical facts on the Euclidean rotation and relativistic
Lorentz groups may be applied to problems of polarization optics, let us shortly recall
some definitions.

For a plane electromagnetic wave spreading along the axis z, at an arbitrary
fixed point z we have the following behavior of the field variables (for simplicity
follow only electric components)

E'= Ncoswt, E?= Mcos(wt+A),E>=0,N>0,M >0,A € [-m,7]. (1)

If the amplitudes IV, M and the phase shift A are not changed in the measuring
process, the Stokes parameters are equal to (/ is the intensity)

So=I=N?>+M?83=N2—M? S =2NMcosA,S,=2NMsinA; (2)

the identity holds S, S = I? — S2 = 0. This means that S = In,n? = 1, where n
stands for any 3-vector. In other words, for the completely polarized light, the Stokes
4-vector is an isotropic one. For natural light, the Stokes parameters are trivial,
S8+ = (Inat,0,0,0).

When summing two non-coherent light waves, their Stokes parameters behave
in accordance with the rule: I1 4 I5,S1 + So. The partially polarized light can be

obtained as the superposition of natural and completely polarized light:

Ipol
Zat = (Inat707070)7 Sgol = ([pol; Ipoln)7 Sa = (Inat + Ipol)(17 —B
Inat + Ipol
With the notations ;
I=TInt+Ip, p=—22%
nat pol » P Inat + Ipol
the Stokes 4-vector of the partially polarized light is specified as
Se=(I, Ipn), S,S*=TI*(1—p*) >0, pe|o, 1]. )

The properties of Stokes 4-vectors for the completely and partially polarized light
may be considered as isomorphic to the behavior of the isotropic and time-like vectors
with respect to the Lorentz group in Special Relativity.
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3. JONES 2-DIMENSIONAL FORMALISM

Let us recall the Jones approach, and consider its connection with the concept
of spinor for rotation and Lorentz groups. It is convenient to start with a relativistic
2-spinor W, representation of the special linear group SL(2,C'), covering for the
Lorentz group L [38]:

wl

\II - w2

the symbols o7 denote the Pauli matrices, (ko, k;) are complex-valued parameters. A
2-rank spinor ¥ ® W* can be presented as follows

, V' =B(k)¥, B(k)=ko+kjo!, detB=ki-k>=1; (4)

1 1 ;

\I/®\I/*:§(Sa§a):§(50—5j0]), 5a:(I,—Uj)- (5)

The spinor nature of ¥ generates a definite transformation for coefficients S,
S! &% =S, B(k)a*B*(k), (6)
whence, using the well-known relations in the Lorentz group theory, we obtain
B(k)a*Bt (k) =6°L," = S,=1L1,S,,
Ly (k, k) = 68 (=62 K™k + kek™ + kfk* 4+ €, ko kr, ),

the modified Kronecker symbol is

SC— +1, C:b:(),
b7 —1,¢=b=1,2,3.

If we restrict ourselves to the SU(2) group, we get [38]

k() =Ny, kj = —inj, n%—i—ﬁQ = +1, B(’I’L) =nNyo —injaj,
1 0 0 0
L(n) = 0 1—2(n2+ n%) —2ngns +2n1no 2ngns +2nins
10 2nons+2nins 1—2(n3+n2) —2ngni+2nans
0 —2ngng +2n1n3 2ngni + 2nans 1—2(n? +n2)

Now, let us introduce the Jones polarization 2-spinor W:

(1o
v— ﬁzﬂ N >0, M >0,
whence it follows
N2 NMe—i(B~q) 1] So+S3 S1—iSy
* _ [
Vel = NMetiB—a) M? T 9| S14iSy Sy—S3 |’ )
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that is
Sy =2NMcos(3—a), Sy=2NMsin(B—a),

®)
S3=N*-M?*, Sy=N*+M?=,/S?+53+82=285.

The formulas (8) should be compared with equations (2), written as
SO:NQ—FMQ:”S%—FS%—FSZ’ SgZNQ—M2, ©)
S1=2NM cosA, So=2NMsinA, [—a=A.

Instead of o and /3, one may introduce the new variables A =8 —a, v= 8+ «;
accordingly, the spinor ¥ reads

, N e7iA/2 , (S+S53)/2 e~iA/2
_ /2 ] _ /2 3 ) .
v=e M e+zA/2 € /(S _ 53)/2 eJrzA/Z ) (10)

the last formula (up to the phase multiplier ?7/2) coincides with the Jones spinor. The
inverse relations to (8), (9) read

2N?=S5+S53, 2M?=S5-—S3, tanA=Sy/5i; (11)
these relations correlate with the formulas defining the parabolic coordinates
E=r+z, n=r-—z, tang =y/x. (12)

Thus, the evident isomorphism exists between the parameters (N, M,A) and the
parabolic coordinates (£,7,¢) in the effective space of Stokes 3-vector:

E=2N* n=2M? ¢=0A; =85, y=>05, z=25;. (13)
Let us find a space spinor W, [38] related to the Cartesian coordinates
Vopaoe = | pypois |+ Wopaoe®Whpaee =3 | 12070 a4
then we produce formulas similar to (10):
Upaee = €2 VIEze O | Ve o= T s
VT — zetid/? \/ﬁeﬂqﬁ/ 2 N

The spinor ¥ (or W) has obvious peculiarities: at the whole axis S1 = S2 =0
(or at z = y = 0), its defining relations assume the ambiguity (0+¢0)/0. It should
be mentioned that the polarization singularities, attracting attention [10], should be
associated with the appearance of this ambiguity.

Also, one can pay special attention to the multiplayers e**%/2 and e~**/2 in the
expression for the Jones spinor, which leads to (4)-ambiguity at the values ¢ = 0 and
¢ =+2mor A =0and A = +2m. This is an old problem with spinors applied to the
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description of 3-vectors, and it can be overcome within the framework of space spinor
structure [34]-[35]. Does the spinor group topology is relevant to the Jones complex
formalism or not — this issue remains open for both theory and experiments.

Besides, we might pay attention to the fact that, usually, the space vector (z,y, 2)
is not assumed to be a pseudovector, but the construction of (x,y, z) according to (14)
leads to such a pseudovector model. In this connection we can recall the Cartan’s
classification [36]-[37] for the nonrelativistic 2-spinors with respect to spinor P-
reflection: namely, the simplest irreducible representations of the unitary extended
group S~U(2), are 2-component spinors of two types. According to Cartan, there exist
two ways to construct a 3-vector in terms of 2-spinors

1) Wepace @ Weppee =7 +x5 07, 7 =+/T; T , x; is a pseudovector;
(16)
2) \I/{Space ® \Ijgpace = (yj +ij)0-]0- y Y5, T4 are vectors.

The variant 1 provides us with the possibility to build a spinor model for the pseudovec-
tor 3-space, whereas variant 2 leads to a spinor model of the proper vector 3-space.
These spinors, W pace and Ve, .. respectively, turn out to be different functions of
Cartesian coordinates [38]. In particular, the second spinor model corresponding to a

vector space (variant 2) is described by two spinors W{ .. (x), each covering a vector

half-space
) r— (wz —|—y2)1/2 efi¢/2 ' B
r3>0, \Ils—]i?_ace = ‘ , el/2 — M;
T+ (22 +42) 12 etid/2 /22 142
. a7
, [y — ($2 +y2 1/2 p—io/2 . -
23 <0, W =i ) , golr— _ [ TXW
r+ (332 +y2)1/2 etio/2 ’m2+y2
In the context of polarization optics, instead of (17), we have
N I wr
S3>0, ¥, = 761A/2: —,
\/S+(S%+S§)1/2e+m/2 VST +53
(18)
\/S— <S2 +52)1/2 efio/2 A Gl 4 ;G2
Sy <0, T —i b go/2 = _j |2t

VS + (57483112 etiol2 ’ VST +S3
Finally, let us write down the two different formulas for Stokes 3-vectors:

traditional ¥(S)
N

M INM
S1 = 5 cosA, Sy = 5 sinA, S3 = N2 — M?;
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alternative ¥’(S)

2| M'2—N"2|cosA, Sy =1/2| M2~ N2 [sinA, S3 = £VN'M'".

In general, the properties of any optical medium in the context of polarization
optics are determined only by the medium itself, so we cannot anticipate the type of
behavior of Stokes 3-vectors: of true-vector or of pseudovector nature.

4. 4-SPINORS AND COMPLETELY POLARIZED LIGHT

Let us start with the well-known relations [38], [39] between a 2-rank bispinor
and simplest tensors. Such a bispinor U = ¥ ® ¥ can be decomposed into the scalar
S, vector Sy, pseudoscalar S , pseudovector 5'1,, and skew-symmetric tensor Sgp,
according to the formula

U=00V=(—iS+1"S+i0" Su+7" S+iy"° S,)E™Y (19

to handle with relativistic tensors, we assume the use of the metrical tensor with

signature (4, —,—,—); for instance, S, = gabSb, and so on. We shall refer all the
subsequent considerations to the spinor basis
afs a _
U 55 Ay o oa an 75:‘_0[ OI
H‘ . ) o ) 4 )
« Tlap 20)
ab_ 1 %t — G0 0 _ DILLINN0 _
4 0 o5 —obe | | 0 Xeb |’
the symbol E in (19) stands for a bispinor metrical matrix,
| €aB 0 o io? 0
b= 0 ¥ ‘ |0 —io?
The inverses of the relations (19) have the form
1 ~ 1
Sa= 1 Sp [E'YaU] ) So = E Sp [E’YS’YaU] )

1 ~ 1 1 @D
S=1Sp[EU], S=7Sp [EA°U), Spn = —5: Sp [EomnU] .

First, let us detail the vector .S,, applying the 2 x 2 block form

g 1 i026,H  i0%G.n
‘2 P —i020,6  —iclo,A |
[(Hy'— H?) = (A% = AL) | =&y — Eny,

[(H' = H?)+ (A =A%) ] =&l — Ens,
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S = 5 [(H 4 H2) 4 (A +8%) | =i (€' +€m),
S5 =g [(H, + H2) (A% +8%) | = — (€ + Eny).
Similarly, for the pseudovector we have
o=y il el
So = % [—(Hy' = H?) = (A% - Al) =0,
S5 [—(H; = )+ (8% - a%) | =0,
Sy = % [—(H,' + H2) + (AL +A2) ] =0,
Sy =3 [~ (Hy + H?) + (2% + A1) =0,

In the same manner, we obtain expressions for scalar and pseudoscalar
i ~ 1
§ = (€T =€) = (myi +niz) ] = 0,8 = J[=( =€) = (myi +miz)] = 05
and for the skew-symmetric tensor

SO = %[(5151 — &)+ (nymi —namy)], S = %[(flfl =€) — (ning —mmy)],
S = —%[(flﬁl +E2E) + (ymi +mamz)], ™2 = —%[Slé‘z —0ins)s

1 i
§7 = = U1+ — (nimi +mymy)], % = =S [€1€ 4+ mims)].
After collecting the results together, we get

, U0 = S=0, §=0,5,=0,5,#0, Sy #0. (22

(0%

v-|f

Moy

In order that the vector and the tensor be both real, one should impose additional
restrictions (of Majorana type). The first possibility is

n=Fiot & = mi=+&" = (23)
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this implies*

—(slgl* +E27) <0, S3=(£M¢h -2,
Sp =i (¢ —&2¢M),
L (£ - 287 4 (20> — e ],
[('¢h —€26%) — (2¢> — ¢! ],
[(£'eM+26%) + (¢ +£1¢) ],
(1 +8) — (e )],
_% [51&-2_{_52*&-1*].

SO

531

503:_5 (g 52_52*51*), 5112:

(5152* +E%¢M),

"N"‘HM»—MJMHAM

Exists an alternative possibility

n=—io?&*

which implies’

= ;=& ny =+,

So= (£ +€%%) >0, S3=—(¢'¢" — %M,
= (e + &%), Sy=—i(ele -g%h),

and

SO

S31 _

= H’N’—‘.M'—‘

= i [(6'¢" - €26 + (€ € —¢he™)),

[(6'¢" —€%€%) — (€%¢> — e,
[(€1€" +62%) + (7> + e ],

— 5 [+ — (e +7¢)],
03__f 142
§% =3 (gl

_62*51*)) 512 — _% [5152 +§2*€l*]

(24)

(25)

(26)

(27)

The case (26) seems to be appropriate to describe the Stokes 4-vector and
additionally to determine the Stokes 2-rank tensor (27). So we obtain expressions for

*Note that Sg < 0.
"Note that Sp > 0.
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Stokes 4-vectors and Stokes 4-tensors:

3
n=—io?¢
So = (E1eM +€26%) >0, S5 =— (£ — %),

S1=—(E€¥ + 631, Sy =—i (1 — %),

U= ; ‘I/®\I/ - SQ#O, Smn%ov

al :501 =

[(g6! —€2¢%) +(€2e> — e ],

{2

1 (28)
[ =) — (e — e,

1

1

1

by =S5% =
ay = 5% =~ [(£'€' + 7€) + (€€ +£7¢™) ),
b2 — 531 _ _Zi [ (5161 +€2§2) _ (62*52* +€1*§1*) ]’

as = 503 — _% (6152_52* fl*> 7 b3 — 512 — _% (€1£2 _’_52*51*)_

We can calculate the main invariant for the 4-vector, which turns out to be equal
to zero
SoSo— 9555 = (£'€") (£26%) — (£1¢*) (%) =0, (29)
so the quantity S, indeed may be considered as a Stokes 4-vector for the completely
polarized light. In turn, the 4-tensor S,,,,,, constructed from the Jones bispinor ¥, will
be called a Stokes tensor. Let us calculate the two invariants for S,,,,:

Il — _% Smnsmn — 3.2 _ 'b2 — %[_2(5161 o 5252)2 o 2(£1*§-1* _52*52*)

26161 +6267)7 +2(81 M + €7 ¢P) - 8(1)%(€7)2 - 8(61)* (€77
and the second invariant is

_[2 — % Eabmnsabsmn —a-b= 1276[(5151 _5252)2 _ (51*61* _§2*§2*)2

_(§1§1 FE262)2 4 (€l 4 g2 e 4 ele? g2 el (ehe? 4 2]
_ %6[(_451615252 FAgI IR ey (4811262 gelrel e e )] = ),
We can describe the Jones bispinor with the use of parameters M, N, «, 5:
Nelia
_MMGiZ L URU = Sy A0, Sy A0,
N e—ia (30)
So=M?+N?, S3=M?—-N?,
S1=—-2MN cos(a—3), S2 =2M Nsin(a— ),

0,

\I/:
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which coincide with (8); and
a; =S = —%(N2 sin 20 — M?sin24),
by =5% = —k%(N2 cos 2 — M2 cos2f),
ag2502:—%(N2c052a+M2cos26), G

1
by =53 = _§(N2 sin2a + M?sin28),
a3 =S8% = +NMsin(a+B), by = S'2 = —~N M cos(a + ).
Instead of the Stokes tensor 5,3, one may introduce a complex Stokes 3-vector,
s =a+ib:
s =al+ibt = 89 44823 = B (5151 —5252)7
1
so = a2 +ib% = 592 4§31 — -3 (E1e + €262, (32)
s3=a’+ib> = S 44512 = —i ¢1¢?;
whence it follows
s1tisy=—i &2, si—isy=+iglE, s=-i'¢ (33)

so that

€= Vil i), €= Vil T, = —iyst g G

Therefore, there exists possibility to express the components (5% +4512) through the
quantities (S°' 4-3523) and (S°2 +4.53!). In other words, among the six components
of the Stokes tensor only four are independent, and two remaining are expressed
through the four independent.

It may be noted that the quantity s transforms as a vector under the complex
rotation group SO(3,C); recall that this group is isomorphic to the Lorentz group
L [38]. In other words, instead of the Stokes tensor formalism one can apply other
technique, based on the use of complex 3-vector:

. i (N262z:oc _ M2€2z:/3)
s=a+ib==| — (N2e?* 4 M2e2P) |; (35)
2 —2i NM eilath)

this complex vector is isotropic, the condition s> = 0 provides us with two constraints
(see (34)).
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5. ON JONES 4-SPINORS FOR PARTIALLY POLARIZED LIGHT

Now, let us examine other possibility to construct tensors from 4-spinors [38],
[39]:

A| | 4D | | AD* —AC* —AB* +AA*
. |B| | -c*| | BD* —BC* -BB* +BA"
Yeov =\ o 1® _p-|T| cp* —ccr —cB +coar | GY
D| | +4*| | DpD* -DC* -DB* +DA’

where W€ is a charge conjugated bispinor. We readily obtain expressions for the
components of the tensors equivalent to ¥ ® W¢:

the scalar and the pseudo-scalar (they are both imaginary)

b= —4%,(140*%— BD* + CA*+ DB*),§ = —i(ACH— BD* —CA*— DB");
the 4-vector (it is real)
SO = i(AA*—i— BB*+DD*+CC*), S = %(AA*— BB*+DD*—CC*),

S'= %(AB*JFBA* —CD* - DC*),8% = —%(—AB” BA*+CD" - DC™);

the pseudo-vector (it is imaginary)

_ 1

4

- 1 ~ 1

St = 1 (AB"+BA"+CD" + DC"), 5% = —7(-AB"+ BA" = CD" 4 DC");
?

SO (AA*+ BB*—DD*—(CC*),5% = %(AA*—BB* —DD*+CC),

the skew-symmetric tensor (it is real)
S0 — i(ADmBC* —CB*—DA*), 8% = i(AD*JrBC* +CB*+ DA*),
S92 = —i(AD*— BC* —CB*+DA*), $3 = E(AD*— BC*+CB*—DA"),
§% = L(~AC"+ BD"+ CA*~DB"),§"=— (- AC*+ BD'~ CA*+DB"),
5 = %(AD* +BCY), 55 = —% (AD* — BC™), s3 = %(AC* _BDY).

Allowing for the identities

S2— 8% = %(AA* +DD*)(BB*+CC*),
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1

Si+9; =15

we find the invariant of S%:

(AB*—CD*)(A*B—C*D),

1 1
S48, = 1—6(AC* +BD*) (A*C+B*D) = T | AC*+BD* >0, (37)
which means that the vector is time-like. Bearing in mind that S° > 0, we conclude
that the 4-vector S can be considered as a Stokes vector of partially polarized light.
The corresponding complex 3-vector s is not isotropic:

1 N N 1
s? = 1 i +Em3)° = 1

With the use of the explicit form of the (imaginary) pseudo-vector Se,

(AC* 4+ BD*)? #0. (38)

g0 _ AA*—-DD*+ BB*-CC* 38 _ AA*—-DD*—-BB*-CC*
) ’ ) ’
gl _ AB*+CD*+ BA*+DC* g2 _ AB*+CD*—- BA*+DC*
44 ’ 44 ’
for its invariant we find
Sg—éf—gg—gfzi(AC*JrBD*)(A*CJrB*D) >0. (39)

This means that the corresponding real 4-pseudo-vector iS® cannot be considered as
being of Stokes type.

Let us establish the explicit form of the above Stokes tensors, applying the
following parametrization of the initial 4-spinor:

A a e
B bets

U = c 1= ceis |- (40)
D d et

We readily derive (follow only Stokes 4-vector and Stokes tensor)

1 1
$'= 1 (@+P+P+d), =1 (=P - +d),

gl _ ab cos(a— ) — ed cos(s—t) o2 _ ab sin(f —a) +cd sin(s —t)
B 2 T 2 ’
and
G0l _ adsin(a —t) + be sin(5 — s) g23 _ adcos(a—t) 4+ bceos(5 — s)
B 2 ’ B 2 ’
02 _ adcos(a—t) —becos(S — s) 31 _ adsin(a—t) — besin(5 — s)
- 9 ) - 9 ’
03 _ —acsin(a — s) + bdsin(S —t) g2 _ accos(a— s) — bdcos( —t)

2 ’ 2
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These tensors are specified by the following parameters
S* = a,b,c,d,a—fB,s—t; S® = a,b,c,d,a—t,f—s,a—s,f—t. (41)

The matrix ¥ @ U explicitly reads

ade’ =t —qgee@=3)  _qbet@—h) a?
c bde! Bt _peet(B—9) —b? abe—i(a=p)
U=doi = Cd@i(s_t) —02 —bce_i(ﬁ_s) ace—i(a—s) ’ (42)
d? —ede Hs—t)  _pde—iB—t)  gde—i(a—t)

the initial 4-spinor may be factorized as follow

ellath)/2 0 0 0 o eila—5)/2
0 eilat+B)/2 0 0 © o _ | b e—(a=p)/2

V= 0 0 i(s+t)/2 0 WL W = ceils—t)/2 | (43)
0 0 0 eils+t)/2 d e—ils—1)/2

6. STOKES VECTOR S® AND TENSOR 5%, PARTIALLY POLARIZED LIGHT

Having in mind the identities

a+pB  a+p s+t a+B s+t
= — = r
s+t a+B s+t a+B s+t
= —_ — — — I_‘
we can present the Jones bispinor (43) differently
e 0 0 0
| 0 et 0 O) — ¢ exepy (iT2") O
U=e 0 0 T 0 U = e exp (iI'y”) U . (44)
0 0 0 e

Correspondingly, the components of the Stokes tensor read

Qo1 _ adsin(a —t) +besin(B — s) 23 _ adcos(a—t) +bccos(B — s)
- 9 ) - 9 )
_adcos(av—t) —bccos(B —s) 31 _ adsin(a —t) —besin(fB — s)
2 o 2 ’

03 _ —acsin(a — s) +bdsin(8 —t) §12 _ accos(a— s) —bdcos(f —t)

2 ’ 2 '

502 —
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7. THE MINIMAL JONES BISPINOR

Let us detail some facts concerning the Stokes 4-vector. It is convenient to
introduce new parametrization for parameters a, b, c,d:

2(So+83) = a’+d*> = a =+/2(Sg + S3) cos X,d = /2(Sy + S3) sin X ;

(45)
2(Sp—S3) =b*+¢* = b=1/2(Sp — S3)cosY, ¢ =/2(Sp — S3)sinY,

where X,Y € [0,7/2]. Dependence of the bispinor ¥ on the parameters X, Y can
be described as follows

cosX 0 0 0 2(So + S3) etila=h)/2
70 _ 0 cosY O 0 2(Sy — S3) e~ila=A)/2 46)
o 0 sinY 0 V/2(Sp — S3) etils=0/2 |
0 0 0 sinX 2(So+ S3) e~Hs—1)/2

Parameters X,Y are not measurable quantities. The simplest way to restrict the
freedom in () is to set X =Y = 7 /4; in this way we obtain the minimal description
of the Jones bispinor

aeiT/Q
) b —iT/2
a=d=+/So+S3, b=c=1+/Sy—S;, Wmin_ beew/Q L@
—i0/2
ae

The formulas defining the Stokes 4-vector take on the form

S = (@ +1%), 8 = 5(a® ~ %) = a = /So + 85, b="/5o— 55,
S = %[abcos(a — ) —cdcos(s—t)] = %\ /S3 — S3(cosT —coso), s
Sy = % [—absin(a — ) + cdsin(s — t)] = % 52 — S2(—sinT +sino),
Si+1iSy = %«/sg — S2(e"7 —€'T), S1 —iSy = %\/sg —S2(e7" —e').
Equations from the fourth row may be solved with respect to = = €7,y = ¢
2(S1+11S2) P 2(S1 —1iS2) :1_1. 49)
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The last equation has two solutions

+(S3+58) —i\/(ST+53) (S3— 57— 53— 3)
xr1 = =€

(S1—iSy) \/SE— 52

—(S3+53)—i\/(S7+3) (S3—S7 -3 53)
Y1 = =e'

(S1—iS2) /S8 — 53

(50)
+(S3+83) +iy/(S3+93) (S3-S2 -3 58)
T = =e'%2,
? (S1 —iS5) /52— 52
—(S3+53)+i\/(S3+53) (F-S2-$3-3)
= =e'2,
vz (51— iS2)\/SZ 52
Therefore we obtain two different solutions
elo2/2 — it /2, e l02/2 — e—iT1/2;
o o (51)
e™/? = jeioy [2,e72/? = —j e—ioy /2.

In other words, two different minimal bispinors W7 and W5*" lead to one the same
Stokes vector:

a eTiT/2 a etTim™2/2

—i71/2 —iT2/2

v = l(y) €+ioij2 LU= ’ €+102;2

e be™?
qe~t01/2 a e~ 02/2
iq etion/2 q etlor+m)/2 (52)
—ib e—i01/2 b e—i(01+7r)/2
= i e+ = b eiln+m)/2 | To =01+, 09 =T1 +T.

)

—jae—im/2 q e—Hmtm)/2

The Stokes vector S, determines only two differences o« — 3 =7, s —t = o, but
it does not fix separately four parameters «, [3,s,t. Similar effect may be seen in
2-dimensional Jones spinor — see relation (10). Below we will see that the components
of Stokes tensor S% describe the freedom in choosing parameters «, 5 and s, t.

The angular parameters are determined by the explicit formulas

e'! =cosoy +isinoy,

+1(57+53)+ 52,/ (52 +53) (53— 52— 53— 53)

(SF+53)v/ S5 — S5 ’

Ccoso1 =
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S2(83+53) — 511/ (52 +53) (53— 52— 53— 55)
(S3+53)/S;— 5% ’

€™ = cosT, +isinTy,
—51(S3+53) + 52,/ (57 +83) (53— 57— 83 - 83)
(S2+53)\/S3— 53 ’
~55(S3+53)— 511/ (S} +53) (83— 57— 53— 53)

(S3+53)\/S3— 53 ’

the second solution is determined by the first one:

sinoy =

CoST] =

sinT =

i T T 0
e = —¢e', ' = —¢"t,

From two relations

2551/ (57 +53) [(S3— 53) — (S7 + 53)]

(S3+53)\/S3— 53 ’

COSO +COST =

(53)
251/ (57 +53) [(53 — 57) — (57 + 53)]
COSTO — COST = ,
S SV
it follows the constraint
52_C080+COST (54)

 COSO —COST
Besides, we readily get the identity S — S5 = a?b?. Let us introduce the notation
S2 + 52 = A2 then using Eq. (54) we obtain

A2:S% 1+(COSO'+COS’7')2] A=, 1+(cosa+cosr)2' 55)
COST — COST (coso —cosT)?

Allowing for this expression for A, we derive (see (53))

2va2b? — A?

b — (coso —cosT)Aab =251V a?b? — A2,
a

Ccoso —cosT = 51

or

(coso —cosT)

2
(coso —cosT)ab \/1 + M =2V a?b? — A2.

Squaring the last equation, we get

1
2a%b* (cos® o +sin’ o) = 4a°b? — 442 — A = ab\/l - 5((30820' +sin?0).
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We can rewrite expression for A in (55) differently

A=, V/2(cos? o +cos?T) ' 56)
COST — COST
Then we obtain the expression for Sy
1 _
Sy = ab\/ 1— = (cos?o +sin? o) ——nd T . (57)
2 V/2(cos2 o +cos?T)
further we obtain the similar expression for So
1
Sy = ab\/l — —(cos?o +sin? o) COSO T COST (58)
2 V/2(cos?o +cos? )

The formulas (57) and (58) determine the correspondence between S1, So and angular
parameters o, T.

8. STOKES TENSOR

Taking into account definitions (45), we find new representation for four com-
ponents of the Stokes tensor (setting X =Y = 7/4):

_ 1
2

§23 = %[ (So+S3) cos(a—t) + (So — S3) cos(B—s) |,

s [(So+S3) sin(ar— 1)+ (So — S3) sin(B—s) ],

; (59)
§% = _5[ (So+S3) cos(aw—t) — (So — S3) cos(B—s) |,

§31 — —%[ (So+S3) sin(a—t) — (Sp — S3) sin(8—s) ],

here we can see only combinations (« —t) and (8 — s); two remaining components
are

1

503 — 5 S2 — S3[—sin(a—s) +sin(8—t)],

1
S12 — 5 52 — S3[cos(a— s) —cos(B—1)],
where we can see only combinations (« — s) and (8 —t). Therefore, the Stokes
tensor depends on four angular parameters, whereas the Stokes vector depends on two
angular parameters 7, 0.

Further we will apply the notations

(60)

a—t=p, f—s=0, a—s=pu, f—t=v.
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Then the above relations may be presented shorter
1
SO — —3 [(So+S3)sinp+ (So — S3) sind],

5% = L [(So+Ss)cos p+ (So — S5) cosd],
(61)

S = [(So+ S3)cosp— (Sp— S3) cosd],

1
2

1
S3l — _5[(50 + S3)sinp — (Sp — S3) sind|;

1
S0 = 5\/S§—S§[—sinu+sinu], S12 = 2\/53—5%[008#—(3081/]. (62)

It is evident that from (61) we can find expressions for cos p, sin p and cos d, sin d:

—~

| =

523 _ 5«02 5101 —1—531 ) 523 _ 502 501 +S31
cosp=———sinp=————, e = —1 ,
P So+S3 P So+S3 So+Ss3 So+S3 63)
523 +SO2 531 _ SOl " 523 + 502 531 _ SOl
6 = - 1 5 = - v = 1
CcOos So—Ss , S1n So—Ss , € So—Ss +1 So—Ss R
from the two last relations in (63) follow constraints for modulus
523 _ 502 SOl +531 523 + SOQ 531 _ 501
—1 = +1 =1.
So+ S3 So+ 53 ‘ So — S5 So—S3
So, we get the explicit expressions for parameters p and §:
523 . SO2 531 4 SOl S31 + SOl
g (5SS e S
So+S3 So+ 53 523 — 5§02
(64)
523 —|—SO2 531 _ 501 531 _ SOl
6 =arg : )s tand =+ 2o
M\ TS5y S5, ) 0T Tomygm

Let us additionally study the linear relationships between the angular parameters.
In the first place, we can eliminate the variables « and s:

a—t=p =— pPH+17—-t—p=0,
f—s=06 = pP—-t—o—-0=0,
a—s=u = PH+17—t—0—p=0, p—-t=v;
in this way we derive the linear constraints
p=v+T1, d=v—0, u=v+T17—0, (65)

where v = 8 —t. Therefore, there exists only one independent parameter v/; however
we have two different expressions for this parameter:

(1) n=p-7, (2) rr=0+o;
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in explicit form they read

523 _ 502 531 +SOl 531 —l—SOl
1 — — — —1 — = -
Dwy=p1—71 arg( St 5, i So1 5, ) T,tan p; 23 _ oo’ o
523 + 502 .531 _ 501 531 _ S(Jl
(2) I/2:52+U:arg( 50_53 +1 50—83 )+O‘,tan(52:+w.
For parameters p and § we have expressions
) arg <S23 _ 502 isSl +501)
1= — ,
So+S3 So+ S3
(1) 523 _ 502 1531 —I—SOI (67)
0 = arg ( ST S —i 501 S, ) —T—0o=p—(T+0);
S23 4 SOQ 831 o SOI
dg = ar +1 ,
) 2 g( So—95  Sp—9s ) 68)
523 _|_502 »S“}l _ SOl
pgzarg< S5, +1i S5, )+U+T:52+U+T.

Let us turn two non-used relations

503 — %\/Sg—Sg(—sinu—i—sinl/), S512 = %\/Sg—Sg(cosu—cosu). (69)

Taking in mind v = p— 7, = p— o, we rewrite system (69) in the form

03 _ 255(5%% +523) — /S — S2(S% — §31)(coso —cosT)

2(So—S3) ’ (70)
g2 _ _ \/W(SO2 +523)(cosa — cosT) +255(S — §31) '
2(S0—S3)
Substituting (cosT —coso) and (—sin7 +sino) from (48):
S = %\/Sg — S2(cosT —cosa), Sy = %\/Sg — S3(—sinT +sino),
we obtain

503: 51(501 _531) +SQ(502—|—523)
So—S3 ’ 1)

512: 52(531 _501) +Sl(502+523)
So—S3 '

The last formulas allow us to calculate the components S% and S'? through four
components S01 631602 623 and the known Sy, Si, Sa, Ss.
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9. NUMERICAL SIMULATION

Example 1. For given a,b, 7,01 (see (47)):

) T ™
(\Iﬂlnm) azl,b:2, 7-1:§7 0'1267
we find (see (48))
5 3 1 1
So 5 S3 5 S1 2( V3), S 2( V3);

the corresponding degree of polarization equals
VSi+S2+82 1
p=YOLEOIEOS L\ 1743~ 0.635;
So 5
so, the Stokes 4-vector reads
(S0,51,52, 85 ) ~ (2.5,-0.366,~0.366,~1.5). (72)
In order to determine the Stokes tensor, we should fix two additional parameters
4, p (they do not influence the Stokes 4-vector); let they be
%8 s
(5 - 57 P = _57
then we find four main components of Stokes tensor (see (61))

C543VB gy 3VB-b 5 5V3-3 g 3+5V3

SOl = b b ) = .
4v/2 44/2 42 42
and calculate two remaining ones (see (71))
503: 2_\/3 SIQZ\/g_s.
2 ’ 2v/2

Thus, the Stokes tensor is given as
S~ —1.802, S ~1.001,
S92 ~0.0347, 53! ~2.061, (73)
S9 ~0.259, S12~ —0.448.

Let us consider the second alternative case (see (52)):
(Wi a=1, b=2, ngg—l-ﬁ, 02=g+7ﬁ
we readily verify that these parameters lead to the same Stokes vector and the same
Stokes tensor.
Example 2. For given a,b, 7,01 (see (47)):

WPy a=1, b=z, m=—, 01 =



21 Jones type bispinors in polarization optics Article no. 202
we find (see (48))
5 1 1 3
SO = g, Sl = é(\/?—2cosg), SQ = §(2Slng — \/5), 53 = g
Thus, the components of Stokes vector are
So=0.625, S1~ —0.054, So~ —0.081, S3=0.375, (74)
and degree polarization is
1
p=—4/17— 2\f2(:scE = 0.620.
) 8
In order to determine the Stokes tensor, we fix two additional parameters, let they be
0= Lﬂ, = -2
12 12
further we obtain (see (61), (71))
G0 — 3V3-5 o _ 345v3 23 _ 5+3v3 _ 5v3-3
16v2 16v2 16v2 16v2
and
03 _ 2+Vv2-V3-1 g12 _ (\/6"’\/5_2)‘3“(%) —4v3
8 ’ 32 '
So the Stokes tensor is given as
S ~0.009, S*~0.451,
§% ~ —0.515, S°! ~0.250, (75)
S9 ~0.073, S'2~ —0.064.

Let us consider the second alternative case (see (52)):

(T3 a=1, b=2,

s ™
7'2:§+7T, 0—2:7—’_71-7

4

we readily verify that this parameters lead to the same Stokes vector and the same

Stokes tensor.

10. PLOTS FOR STOKES VECTORS

We start with the general formulas

1
SO:Q

1
S1= iw/Sg—Sg(COSO'—COST),

(a2 +b%),

S3 = (a2 - b2)7

Sy = =1/52 —53(coso +cosT).

N~ N~



Atrticle no. 202 A.V. Ivashkevich et al. 22

Case 1. Let
a=b=1, 1€ (-m+mn), o€ (—m +m),

then Sp = 1, S3 = 0, and the component Sy (7,0) = %(cosa —cosT) (Fig. 1), the

component S5(7,0) = 3 (sino —sin7) (Fig. 2), the degree of polarization p(7,0) =

L /2= 2cos(0 —7) (Fig. 3).

Fig. 2 - Sa(7,0), So =1, S3=0.
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Fig. 3 -p(7,0), So =1, S3=0.

Case 2. Let
a€l0,1], bel0,1], 7=0, o =7/6.

Then in the case 2 we have

1 1 1 ab
So =3 (@ +?), S =3 (a® 1), Slz—z(\/g—2)ab, So=.

Then the degree of polarization is given as (Fig. 4)

Vat —/3a2b2 + b
a? 4 b2 '

Fig. 4 -p(a,b), 7=0, o0 = 7 /6.
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11. PARAMETRIZATION OF STOKES TENSOR

As shown in the above, the Stokes vector is parameterized by four independent
parameters S, <= a,b,T,0; whereas the Stokes tensor is parameterized by five
independent parameters

S® —  ab,71,0,p (6=p—0c—1). (76)

Therefore, we can assume that the Stokes tensor S% contains more information
about the partially polarized light than the Stokes vector S,. In order to make
numerical study, let us fix for parameters (see Example 1)

: m s
(P7™") a=1, b=2, =3, O1=¢
Using the formulas (61), (65), (71), we obtain (see Figs. 5-6)
0 1 ind
SO = —25in(8) — %, 502 = §(sin5—|—4cosé), 523 = 2cosd — %,
) 1—+/3 1—+/3
531 = 2gind — %, S03 = J(cosd—siné), Si2 = f(sind%—cosé);
801 SOZ
2+
1 1
‘ . /s ‘ . - 6
o 2 D 2 " o /2 y 2 "
2 -2
SZ3 831
of
1 1L
= 6 = -6
o 2 b 2 " 2 "
20

Fig. 5 - Plots 5°1(4),5°%(58),523(8),5%1(8), a = 1,b=2,7 = 7/3,0 = 7 /6.

12. CONCLUSIONS

We have detailed some facts of the theory of the Lorentz group which can be
relevant for solving several problems of light polarization in the frames of the vector
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SO3 812

04+ 041

Fig. 6 — Plots $°3(6),5'%(8),a=1,b=2,7 =7/3,0 = 7/6.

approach by Stokes, and by the spinor approach by Jones.

The concept of 4-dimensional Jones spinor has been introduced, first for a
completely polarized light. They determine corresponding 4-vector and antisymmetric
two-rank tensor of Stokes type. They both are isotropic. The antisymmetric tensor is
equivalent to a complex three-dimensional vector, which in the frames of the Lorentz
symmetry is the vector representation of the complex rotation group SO(3,C).

This approach is extended to the partially polarized light. We have introduced
the concept of Jones-type 4-spinor, and have found expressions for Stokes vector and
Stokes antisymmetric tensor. The analytical results are illustrated by several numerical
examples.

Stokes vector depends on four parameters, whereas the Stokes tensor depends
on five parameters. By this reason, we assume that the Stokes tensor contains more
information about the partially polarized light than the Stokes vector.

It should be noted that in the paper we used some arguments related to the theory
of the Lorentz group, however because the main results were obtained within the
algebraic calculations, they are partly applicable for much more general situations in
which the Lorentz symmetry does not play any role. For those cases, the combinations
like S¢S,, S8, are not invariant ones.

We shortly discuss relationships between the Jones type 4-spinor and the concept
of space models with spinor structure.
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