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Abstract

In this paper, we study a generalized Duffin-Kemmer equation for a spin-1 particle with
two characteristics, anomalous magnetic moment and polarizability in the presence of
external uniform magnetic and electric fields. After separating the variables, we obtained a
system of 10 first-order partial differential equations for 10 functions f4 (7, z). To resolve
this complicated problem, we first took into account existing symmetry in the structure of
the derived system. The main step consisted of applying a special method for fixing the
r-dependence of ten functions f4(r,z), A =1,...,10. We used the approach of Fedorov—
Gronskiy, according to which the complete 10-component wave function is decomposed
into the sum of three projective constituents. The dependence of each component on the
polar coordinate r is determined by only one corresponding function, Fi(r),i = 1,2,3.
These three basic functions are constructed in terms of confluent hypergeometric functions,
and in this process a quantization rule arises due to the presence of a magnetic field.In
fact, this approach is a step-by-step algebraization of the systems of equations in partial
derivatives. After that, we derived a system of 10 ordinary differential equations for
10 functions f4(z). This system was solved using the elimination method and with the
help of special linear combinined with the involved functions. As a result, we found three
separated second-order differential equations, and their solutions were constructed in the
terms of the confluent hypergeometric functions. Thus, in this paper, the three types of
solutions for a vector particle with two additional electromagnetic characteristics in the
presence of both external uniform magnetic and electric fields.

Keywords: spin-1 particle; anomalous magnetic moment; polarizability; magnetic field;
electric field; cylindrical symmetry; projective operators; systems of equations in partial
derivatives; exact solutions

1. Introduction

The theory of spin-1 particles has an extensive history [1-30], and is closely related
to Lorentz group symmetry. In addition to the classical and simplest model for a vector
particle, there exist more complicated models for spin-1 particles with characteristics
beyond electric charge, such as an anomalous magnetic moment, electrical quadruple
moment, and so on.
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In [29], within the general method of Gel’fand—Yaglom [3], a relativistic generalized
system of first-order equations was constructed for a spin-1 particle with two additional
characteristics: anomalous magnetic moment and polarizability. The primary derivation
of the generalized equation for a spin-1 particle with two characteristics in additional to
electric charge is a separate and rather involved task; therefore, in the present paper we
started from the known result of previous work. In fact, this approach is based on the use of
an extended set of irreducible representations of the proper Lorentz group to produce more
general and complicated equations for a particle with a fixed value of spin. First, the model
was developed for a free particle, and a system of spinor equations was obtained; then it
was transformed into tensor form. In tensor form, the presence of external electromagnetic
fields was taken into account. After eliminating the accessory variables of the complete
wave function, the generalized Proca system of 10 equations was derived; it contains two
additional interaction terms, which are interpreted as corresponding to the anomalous
magnetic moment and polarizability.

In [30], this equation was solved in the presence of a uniform magnetic field.

In the present paper, we considered a situation in which both fields, magnetic and
electric, were presented. After separating the variables, we obtained a system of 10 first-
order partial differential equations for 10 functions f,4(r,z). To resolve this complicated
problem, we took into account the specific symmetry in the structure of the derived system.
Accordingly, the complete wave function, consisting of 10 variables f4(r,z),A=1,...,10
is decomposed into the sum of three projective constituents. The dependence of each
component on the polar coordinate is determined by only one function, F;(r),i = 1,2,3
which are constructed in terms of confluent hypergeometric functions. In this process, a
quantization rule arises due to the presence of a magnetic field.

After that, we derive a system of 10 ordinary differential equations for 10 functions
fa(z). This system is solved, and as the result, we obtain three independent solutions.

We can readily verify that, when polarizability parameter vanishes and the electric field
is absent, the known results for the energy spectra of a vector particle with an anomalous
magnetic moment in the presence of an external uniform magnetic field are recovered.

2. Matrix Equation in Minkowski Space
We start with the following tensor equations (let D, = 9, + ieA;)

DY@, + epFp®° + 0Dy (F4® ) — M®, =0, D@, — Dyd, — MD,;, = 0; (1)
which can be compared with the ordinary Proca system:

In Equation (1), we can see two additional interaction terms, proportional to parameters y
(anomalous magnetic moment) and ¢ (polarizability); in [29,30], it was proved that both
parameters y, 0 are imaginary: y = iy, 0 = ic, we will take this into account later on.
Below, we apply the 10-dimensional column:

D = (Og, P, Dy, P3; Po1, Po2, oz, Pz, P31, P12) = (Hy; Ho).
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Let us recall the matrix form of the Proca system when y = 0,0 = 0. The first equation
gives K"D,Hy — MH; = 0, where

. -1
KO — _1 ‘ Kl —
-1 ’ .1y
-1 -1
-1 . -1 .
@ 1| s S|
: ’ -1
+1
The second equation in (2) leads to D,L*H; — MH; = 0, where
01 0 O -1 0 0 0 .
0 01 0 0 0 O 0 -1 .
o 000 1y | 000 0, |10 0
000 0 0 0 O 0/ 1 -1
0 0 0 O 0 0 0 -1 . . 1
0 0 0 O 0 0 1 0 .o —1
Thus, the system of equations for the ordinary spin-1 particle is presented in block form as
K*D,H, — MH, =0, L*D,H; — MH, =0.
Let us detail the first additional term in (1) (considering identities: Fy; o = —Flo,,
F1p®? = B3®,, and s0 on)
0 —E' —E2 —E3|| @
-E' 0 B -B| &
b _ 1
Ha® =et| g poog g, |
—-E®> B> —-B' 0 ds
when allowing for the structure of six Lorentzian generators for a vector field
000 O 0 000 00 00
000 O 0 0 01 00 -1 0
23 31 12
= S = y = S = ’ = S = ’
=1%o 00 17 =270 o007 T2 o1 0o
0 01 0 0 -1 0 O 00 00
0100 0 010 0 0 01
1 000 0 00O 0 00O
01 02 03
= T = , = T = , = T = ,
F=0" 0000 7 72710007 T2 o000
0 00O 0 00O 1 0 00

we obtain a shorter presentation

eyl—",xlgCDﬁ = —ey(SB+TE)H1.
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The second additional term in (1) is

E'L 0 0 0 0 0 Lo
0 E2 0 0 0 0 Dy
e Da(F9d,) = 2e0D,| °  ° E 0 ) 0 0 Do3
0 0 0 -B 0 0 Dy3
0 0 0 0 -—-B2 0 Dy
0 0 o0 0 0 —-B|| &p

So, we have a generalized Duffin-Kemmer-Petiau equation in block form

(K“DaH2> —ep [(s B+ TE)Hl} + oD (Fdyy) — M(Hy)e = 0,
Cc C (3)
(L”DaHl) | M(Hz) ) = 0,

where the symbol ¢ denotes the vector index ¢ = (0,1,2,3); the indices [kl] numerate the
independent components of the antisymmetric tensor, [01], [02], [03], [23], [31], [12].

3. Extension to Curved Space-Time Models

In Riemannian space, we start with more complicated equations

D/qua‘B + eVFD‘ﬁq)’B + eaé“(Fp5©p5) - Mq)ﬂ( - O/ D,Xq)ﬁ - DﬁCD,x — MCI),Xﬁ = O,

a

below, two different derivative symbols will be used: D, = V; +ieAy, 0y = 0 + i€ A,.
Let us transform these equations to tetrad form (apply the notation efb) (0p +ieAp) =

3( p))- Using Ricci rotation coefficients, we present the above equations as follows

Iy P’ — Y@ + efh);ﬁq%b + euF @ + e0(9(o) ™) Dgp + e F™0 ) Py — MP, =0,

() Pa — 0(a) P + Voac @’ — Ypea®’ — MPy = 0.

We recall the known matrix tetrad form of the equation for an ordinary vector particle

5 (e'gc)(x)% + % I ape) = M| ® =0, ® = ;):b = | 5; ; ()
The two additional interactions terms are
0(0) (F'®cq)
eHE, P = ep (s B— TE) Hi, ecdu(F9®y) = ec gg gzzzz;
9(3) (F1Dcy)

So, we have the following generalized system of equations

(K"D?)Hz)n — e[ (SB+ TE)Hl]n + eoel,, 3y (Fyy) — M(Hy )y =0,

cn(1) _
(LDMm) o~ (MH2) =0,

4. Particle in the Uniform Magnetic and Electric Fields

It is convenient to use the cylindrical coordinates x* = (¢, 7, ¢, z). The relevant tetrad,
Ricci rotation coefficients, and the uniform magnetic and electric fields are determined as
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100 0
dS* = dt* —dr* — r?dgp? —dz?, & = 0 10 0,
@~lo o0 1o
00 0 1 (6)
1 A .
Y122 = ;,Ao = —Ez, Fj3 = 320)8?3)52 =E, dg = —ie —ieEz,

Ap=—Br’/2, Fy=—Br, Fo=e}el,Fp=—B.

Correspondingly, the system of equations takes on the form

. 1 jeBr?
K°(3g —ieEz) + K13, + K2~ (3 + "= + j3?) + K8 | Hp — MH,
(dp — ieEz) (dp — ieEz)
d d
—epBji*Hi—epEj{> H; —2Bec ' D1 +2Ee ' D3 =0,

Loy + 1B7) (3 + 57)
az aZ

<=

1
[LO(aO —ieEz) + L9, + LZ;(aq, +ieBr?/2 + ji2) + L3az] H; — MH, = 0.

It is more convenient to apply the so-called cyclic basis. It is defined by requirement to
have a diagonal generator j}2 for the vector field H; = (®;). The necessary transformation
O=Udis

AR

0

12 0 —i
0
0

S O O
o O O O

V2 +i

Vector and tensor generators are transformed ccording to the rules
]-izb — Ujabll_l, lezb — ]Tah QI+1 ®]Tabl.

so that

]12 —

2) = = ]-%2:1-

S O O O O O

o =R O O O O
o

S O O O o O

O O O O = O

S O O O O

-1
We should also transform the Duffin-Kemmer matrices §* to the cyclic basis. It is

convenient to apply the block presentation: H; = C1H;, (C; = U), H = (U® U)H; =

C, H,; further, we obtain

0 K°

L* 0

_ 0 C1K*C, !
| GLec! 0
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We derive

(8)

Further, we readily find the necessary blocks:

-1 0 0 O

0
-1

0 0O
0
1

-1 0 0 O
0
0
0

0
0
0
0

.

0100

0010

00 00

0000

©C O O —H O O
[N eNeNoNoNo)
i
OOOOO_
i
© | oo oo
Il
(sp]
~J
N
o O o o Mfo

and expressions for the necessary generators

0 010

0 0 0O
1 000
0 0 0O

i

712
]1 =

+1

Considering this, we can transform the above two equations to the cyclic basis; so we obtain

+¥)+W@F5—Mm

ieBr?
2

(a¢-+

_ 1
+W@+ﬁ;

(99 — ieEz)

K
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1 0 0 0 (99 — ieEz)
712 17 203 17 0 _% ﬁ 0 Or 3
—euBj;“Hy — epEjy°Hy — 2Bec 00 0 1 %(84, N #) (—iD31)
1 i
0 & L0 3
1 0 0 0 (99 — ieEz)
0 —L i 0 P)
2F V2 ov2 g dpp =0,
+2Eec 0 0 0 1 %(a +"f’§’2) 02
1 i
0 &K 5o 3,
so that
=0 . =1 =2 1 ieBTZ 12 =3 — _
[L (80 —ieEz) + L'3, + L~ (3 + +) 4L aZ]Hl—Mszo, 9)
- - 51 - _ _
[LO(BO —ieEz) + L'9, + L2;(a4, +713) + L3az} H, — MH, = 0. (10)

Now, let us perform separation of the variables, applying the substitution

Dy (r,z) Eq(r,2)
Dy (r,z) Dy (1, z) Ex(r,2)
H o let pime c?l (7’,2) , ‘2 — pletpime c?03(”/2) — pletpime ]?3(7’/Z> ,
D, (r,2) Dy3(1,2) Bi(r,2)
D5(r,z) D3 (r,2) By(r,2)
@15(r,2) Bs(r,2)

in this way, we obtain (for brevity let as make the change in notations: eB = B, ¢E = E)

—0 . . —1 —21 . iBi’z 12 —3 — —
[RO(~ie - iEz) + K'9, + K ;(zm+T+]2 ) + K| Fp — My
10 0 0] (—ie—iEz)
0 -L L ¢ 9
—uBf2H, — 2Bo V2 V2 " —iB
HDb]q 1 0 0 0 1 %(1m+%) ( Z2)
1 i
0o L 40 3
1 0 0 0| (—ie—iEz)
0 -L L ¢ 9
—uEf®H, + 2E0 vz V2 " E, =0,
RETERTEET g 07 0 1 || Lms B2y |72
1 i
0o L 40 3
_ - 51 Br? _ _ _
[LO(—ie — iEz) + L3, + L2 (im + % +712) 4 L3az] Ay — MH, = 0.

Further, we obtain the explicit form of 10 equations (for brevity, we will omit the
overline symbol). With the use of shortening notations

L_d B o B e
meor T2 Ty T T r (1)
W 2 Bm o B med
N N N L ) r
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these equations read
1 1 .
1 ﬁbm_lEl - ﬁﬂm_HEg — 0;Ey + uE®p — 2iEo (e + Ez)Ex;+2Bo(Ez+€)By = M®y,

1
2 i(e+Ez)Ef+ —
(e+E)Er + 5

(1 —2iB0)ay, By — 3,B3V2Eca, Ex+iBud; = M,
. 1 1 .
3 i(e+Ez)Ep — T“mﬂBl — ﬁbm,l& — WE®y + 2E09,Ep+2iBod, By = MDy,
1
4 1(6 + EZ)E3 + \ﬁl(ZBU’ - i)mez +9,By + \/EEO’b;nEz—iB]ch3 = M®;,
—0,Dp — I(E + EZ)CI)Z = ME,,

LI i(e + Ez)®; = ME;, 6
1
8§ —

5 R
V2
1
by — 1(6 + EZ)q>3 = ME;,
\/’

7
V2
1
- 7%«,,,(1)2 - E)zd>1 = MB3.

1 1
9 —b,_ 191+ —=a d3 = MBy, 10
ﬁml 1 \/Em-&-l 3 2 \/E

5. Projective Operators Method
To analyze the system of equations, we will use the method of projective operators

(following the method of Fedorov and Gronskiy [31]). To this end, we consider the third
spin projection Y = —iJ'2, and make sure that it satisfies the minimal equation Y (Y —

1)(Y + 1) = 0. This minimal equation allows us to introduce three projective operators

zbmq)z + 9,P3 = MBq,

Pop=1-Y2 P, = %Y(Yﬂ), P = %Y(Y— 1), (12)

with the necessary properties
P$ =P, P} =P,,P2,=P4, Py+Py+P =1

Accordingly, the complete wave function can be expanded in the sum of three parts
(13)

®I®0+®+1+q_>_1, Cbgngcb, c=0,+1, —1.
These components have the following dependence on the variable r (in accordance with
the Fedorov-Gronsky method, each projective component should be determined by only

one function of the polar coordinate r):

<i>0 (Z) 0 0
0 0 é)l (Z)
@ (2) 0 0
0 &, 0
%= oty RO @ =] 0 R0, 0= | B RE) (19
0 _3(2) 0
0 _1 (Z) 0
By(z) 0 0
0 0 B3 (Z)
1 \%El ()b 1 Es(r) — %Eg(z)aerle(r) C0E () ()
—UE®y(z)F(r) — 2iEc(e + Ez)Ex(z)Fy (7)

+2Bo(Ez+ €)By(2)Fy (1) = M®Pg(z)Fi (),
L (1 2 2iBo)By(2)amFy (r) — 9:Bs(2) s (r)

2 i(e+Ez)E1(z)F3(r)+\/§
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—V2E0Ey (2)amFy (r)+iBu®y (z) F3(r) = M® (2)F5(r),

3 e+ E2)Ex(2)Fy(r) — %Buz)ammm - %Bﬂz)bm_wg(r)

—UE®D)(2)Fy(r) +2E00;,Ey(z)Fy (r)+2iBoo, By (z)Fy (r) = M®Py(z)Fi(r),
4 e+ Ez)Es(2)Ba(r) + \i@i
+V2ETEy ()b Fy (r)—iBu®3(z) B2 (r) = M®3(z)Fa(r),

(2B — i) Ba(z) by Fy (1) + 02B1 (2) F2(7)

5 %Cbo(z)amﬂ(r) —i(e+ Ez)®1(2)F3(r) = ME (2)F3(r),

6 —0:Po(z)F(r) —i(e + Ez)®y(z)F1(r) = MEy(z)Fy (7),

7 — L dy(2)buF () — i + E2)®3(2)Ba(r) = MEs(2)Ba(r),

V2
8~ S5 ®abuFi (1) + 2:03(2Fa(r) = MBI ()Far),
9 SO aF(0) + @) Ealr) = MBa(2)R (1),
10 - %Cbz(z)amﬁ(r) 3,1 (2)Fa(r) = MBs(2)Es(r).

In order to obtain equations in the variable z, we impose the following constraints
bp-1F3 =Cik, anh = GF,  apb = GF, bnF = Gh, (15)

so, we obtain

1 %a(z)q - %Ea(z)cz _3.E5(2)

—UE®,(z) — 2iEc(e + Ez)Ep(z)+2Bo(Ez + €)By(z) = M®Py(z),

2 e+ E2)Ey(2) + %(1 — 2iB0)By(2)Cy — 9,B5(2)
—V2ECE, (2)Cy+iBud; (z) = MPy(z),

%31(2)Cz - %Bs(z)Q

—UE®((z) + 2E00;Ex(2)4+2iBod;By(z) = M®P;y(z),

3 +i(e+Ez)Ex(z) —

4 i(le+Ez)Ez(z) + \%i(ZBU' —1)By(z)C3 + 9:B1(z)

+V2E0Ey(z)C3—iBuds(z) = MP3(z),

5 \%QJO (z)Cy —i(e + E2)®1(2) =ME1(z), 6 —0;Pp(z) —i(e + Ez)DP,(z) = MEy(z),
7 - %@Q(Z)Cf‘, —i(e+ Ez)®3(z) =MEs(z), 8 — \%@2(2)03 +0;P3(z) = MBi(z),
9 %q)l (2)C + %q%(z)cz = MBs(z),

0 - %@Z(z)q 3,y (2) = MBs(2).

6. Explicit Form of Three Basic Functions

In the differential constraints
byu_1F3(r) = C1F(r), amFi(r) = C4F3(r),

am+1F2 (7’) = C2F1 (7’), bmFl (T) = C3F2(r),

the parameters in each pair can be chosen to be the same: C4 = C;, C3 = C,. So, we obtain
the following constraints
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bm,1F3<l’) = Cll:l(l’), ﬂml:l(l’) = C]Fg,(?’),
aer]Fz(T’) = C2F1(r>, bml:l(l’) = C2F2(7’);

and the resulting second-order equations read

(by—1am — CFL =0, (amby_1—C3)F3 =0,

(ami1bm —C3)FL =0, (bmam1 —C3)F = 0.

These equations explicitly read

d? 1d B%r2  m?

g e P M BuyB-C?)R =
(dr2+rdr 4 2 Bm+ Cl) 1=0,
2 1d B%? wm?

— 4+ -——-—— — —Bm—-B—-C3)F =0,
(drz+rdr 4 72 " 2) 1

therefore, C% = C% — 2B and

(&

(& +

1d B (m—1)? 2

_——_— — —_ — F g
rdr 4 r2 Bm C1> 3=0,
1d B> (m+1)? )

g - — Bm — C2)E, = 0.
rdr 4 72 " 2) 2

Thus, we have only three equations and the constraint C3 = C? — 2B:

a2 1d B m?
Z 4,2 2 T B B—C2\F =
L (drz trar T 72 mt C1> !
2 1d B (m+1)? )
- - —Bm—C}+2B)F, =0,
2 (derrrdr 4 r2 m-Ct ) 2
& 1d B (m—-1)7?
— - — — Bm — C?)F; = 0.
3 (dr2+rdr 4 r2 " 1) 3

With the notation B — C? = X, the equations take on the form

o
2, (;—; +
3, (;722 +

Br?

d2 1d B%r2  m?

— 4 -—————— —Bm+X)F =0,
dr2+rdr 4 2 m+ )1

1d B> (m+1)?

vaa g Bm-D+X)E
1d B (m—1)?

- - ~B 1)+ X)F; =0.
rdr 4 r2 (m+1)+ )3 0

In the variable x = =5-, we readily find their solutions

L, F(x)=x"3e 2R (x), Fi(x) =D(—n, [m|+1,x),
B |m|+m 1 B .
X_zB( > +§+n1>>B, m=01,2...;

2, B(x)=xt"72 e *?RK(x), F(x)=d(—ns, [m+1[+1,x),

X:ZB(

3, Lx)= x*Te*X/ze(x), F(x) =®(—ny, Im—1|+1,x),

|m+1]

-1 1
M+7+n2>>3, n,=20,1,2,...;

2 2

|m—1]
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X:ZB(M%H—F%—H@) >B, n3=01,2,....
In all three cases, the quantity X is the same; below, we apply the variant
X =2BN >0, N:M—i—f%—n, n=20,12,..., (16)
where the parameter N takes half-integer values; note the formulas
Ci=C =iVX—B, C3=0C,=iVX+B. (17)

7. Solving Equations in z-Variable

Let us turn to the system in the z-variable, allowing for (17). It is convenient to divide
the resulting equations into two groups:
Subsystem I (it is algebraic with respect to the variables ®(, ®,, E;, E3, By, B3)

1 éEl(z)im - \253@)1\/)( + B —9:E5(z)

—UE®,(z) — 2iEc(e + Ez)Ex(z)+2Bo(Ez + €)By(z) = M®Py(z),

3 ie+E2)Ea(2) — ——By(2)ivX + B — —=Bs(2)ivX — B

V2 V2
UE®o(2) + 2E09. Ey(2)+2iB0d.By () = My (2),
5 \}Edbo(z)i X =B — i(e + E2)®1(z) = MEy(2),
7 - é@o(z)i\/m _i(e 4+ E2)®3(z) = MEs(2),
g — é@z(z)i\/m +9,®4(2) = MBy(2),
1

10 — —=®y(z)ivX — B —0,P1(z) = MB;3(z);
V2
Subsystem 11

1

V2
—V2EGE;(2)ivX — B+iBu®d,(z) = M®1(z),

2 i(e+E2z)Eq(2) + —=(1 — 2iBo)By(2)ivX — B — 0.B3(2)

4 i(e+ E2)Es(2) + \21’(280 — )By(2)ivX ¥ B+ 3:B1(2)

+V2E0E;(z)ivX + B—iBu®s3(z) = M®3(z),

6 —0:Py(z) —i(e+ Ez)Py(z) = MEy(z),
1 1
9 —®1(2)ivX—-B+—
\/i 1( ) \/E
Equation (9) permits eliminating the variable B, from the previous three.
Let us resolve the system I with respect to the variables &, ®,, E;, E3, By, B3:

®3(z)ivVX + B = MBj(z);

1
2(<M2 + X>2 - M2E2y2>

by =
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x [4BM((M2 + x) (Ez+e)— iazMEy>(rBz - 2M<iE(Ez +e) <M;4 + 2(1\/12 + X) a)
4o, (M2+ 2E2;wM+X>> Er+V2 ((M2+X) (Ez +¢€) —iazMEy> (\/ﬂ% —\/BJTX%)},

1
2((M2 +X>2 - M2E2y2>

D, = [i 4BM(E)Z <M2 + X) +iME(Ez + e)y)aBz

+2M(EzM2 +eM? — i9,EuM + EXz + Xe +2E (ME(EZ +e)u
—id, (M2+X>> 0)Ea+V2 (az (M2+X) +iME(Ez +e) y) (\/ﬂopl - \/B+7Xq>3))},

1
- 2M<M2 — EuM + X) <M2 +EuM +X)

x [iE\/Xz ~ B2zd3 M2 + i/ X2 — BZeds M?

—21\@Bm< (M2 + X) (Ez+e¢)— iazMEy) 0B, M

Ei =

+v2vX = B(id: (M? + 2E24oM + X)) — E(Ez + ) (Mp +2(M? + X)) ) E2M
+0:EVX — BVB + Xp®3M + i — 2M2E? (Ez + €)i?
i ME(X — B)p + <M2 + X) (ZM2 +B+ X) (Ez+ e))cpl
TEXV/X2 — B22ds + iX\/me%},

1
- 2M<M2 — EuM + X)) (MZ + EpM + X)

X {iE\/XZ — B2, M? + iv/X2 — B2e®; M? + 2iv/2Bv/B + X

X <<M2+X> (Ez+e¢) —iaZMEy> oBy M+ ﬁVm(E(EZ—I—e) (My+2 (M2—|—X> (7)

E; =

—id; (M2 +2E2u0M + X) ) ExM + 3.EV/X2 — B2udy M
HEXV/X2 — B22®; +iX\/X2 — B2ed; — iB((MZ + X) (Ez+e€) — iazMEy>d>3
i — 2M2E2(Ez + &) + id: MEXp + <M2 + X) <2M2 + X) (Ez + e))q>3],

1
- 2M (M2 — EuM + X) (M2 + Eum + X)

x [az VX2~ B2 M2 + 2ﬁ3m(az (M2 + X) +iME(Ez + e)y>0B2M

+V2VB + X (EzM? + eM? — id, EuM + EXz + Xe

By

+2E(ME(EZ e —id. (M2 4 x) )(7) ExM +iE2\/X2 — B2zud; M
HEV/ X2 Bep®y M+9. X v/ X2~ B2y — B (0; (M? + X) + iME(Ez + €)1 ) &3
+((— 20:M2E%? — iMEX(Ez + €) +9: (M2 + X)) (2M? + X ) ) @3],

1
- 2M<M2 — EpM + X) (MZ +EuM + X)

x [aZ\/XZ — B2y M2 — 2ﬁ3m(az (M2 + X) +iME(Ez + e)y)aBzM

—V2VX—B (EZMZ +eM? — 9, EuM + EXz + Xe +2E <ME(EZ te)u—id, (M2+X)) a) E;M

B3 =
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+iE2V/X — BV/B + Xzu®3M + iEVX — BVB + Xep®3;M
+(~20:M2E22 + iME(B—X) (Ez + )t + 9 (M?+X) (2M?+ B+ X)) @1+ X v/ X2~ B23 .

Now, substitute these expressions in equations of the group II. This results in
1

(  V2BZoyX — B(M?+X) N X—B
(M2+X)2,F2M2E2 ﬁ((M2+X)2_y2M2E2)
x ((ZBU +1) (M2 — uME + X)(M? + uME + X) — 2Bo(M? + X)(Ez + €)* — 2iByM¢7E2> B,
<ia§E\/x — BQ2o(M* + X) +uM) iEV/X — B
V2((M2? + X)? — u2M2E?) V2((M2 + X)2? — p2M2E?)

X (—i(M? + 2uM0oE? + X) + 20(M? — uME + X)(M? + uME + X)
~((Ez+€)(20(M? + X) + uM))) ) Ex

+( 02V X2 — B2(M? + X) VX2 — B2((M? + X)(Ez + €)? + inME?) )cb
2M(M2 — uME + X) (M2 + uME + X) = 2M(M2 — uME + X)(M2 + uME + X) / >

(ag((M2+X)(B +2M? + X)—2u> M2E?) 1
T OM(ME — iME + X) (M2 + pME+ X) T 2M(MZ — uME + X) (M2 + #ME + X)

x [ZiByM(MZ — uME + X)(M? 4+ uME + X) + (M2 + X) (B 4+ 2M? + X)(Ez + €)*

+iuME?(B — X) + 2u> M*E? — 24> M?E?(Ez + €)* — 2M*(M? + X)Z] )@1 =0,

(\@Bagm/}a + X(M? +X)
(M2 + X)2 _ yZMZEZ
N VB+X (ZBa(yZMZEZ — (M? + X)(M? — (Ez + €)% + X) + iuME?)
\@ (M2+X)2,H2M2E2

+i))32

+( EvB+ X
V2((M? + X)2 — u2M2E?)
—i(Ez + €)*(20(M? + X) + uM) + M? + 2uMcE* + X)

i02EVB+ X(20(M? + X) + yM))
V2((M2 + X)2 — u2M2E?)

(2ic(M? — uME + X)(M? 4+ uME + X)

+( 02/ X2 — B2(M? + X) VX2 -~ B2((M2+X)(Ez+e)2+inE2))q)
2M(MZ — uME + X)(M2 + uME + X) ' 2M(M2 — uME + X)(MZ + uME + X) /!
+(ia2(4— 2(B+ X)(M? + X) )+ 1
AM7FY T (M2 + X)2 — 12M2E2’ T 2M(M2 = uME + X) (M2 + uME + X)

x [2iBy3M3E2 — iuM(B(2(M? + X)? + E2) + E2X) + (M2 + X)(—(B — X)(Ez + €)*

—OM* 4+ 2MP((Ez + €)? — X)) + 21> M2E2(M — Ez — ) (M + Ez+e)])q>3 =0,

3
( 2iBa2uM?cE _ 2BMoE(M? — iuM(Ez +¢€)* + X) )B
(M2 + X)2 — i2M2E? (M2 + X)2 — i2M2E? 2
( i02uMEv/X — B _ EVX—B(M? fin(Ez+e)2+X))q>
V(M2 X2~ 12M2ER) - VA((M2XP - 2MREY)
(E\/B+X(M2 —ipM(Ez+€)* +X) i02uME+\/B + X >q>
V(M X2 2VPE) V(MR X)? - MR

1
+( (M2 + X)2 — j2M2E2
M

(M2 + X)Z _ ‘MZMZEZ

2M(M? 4 2uMcE? + X)

+ (—M* + M?(E?(4? 4 2i0 + 2%) + 2Eze — 2X + €?)
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FUME?(20(Ez + €)2 + i) + X (2102 + (Ez + €)% — X)))E2 =0,

i®VX—B i®3VB+X
V2 V2

With the help of the fourth equation, we can eliminate the variable B, from the three

+ By(—M) = 0.

remaining equations (let us change the notations ®; = G, ®3 = H, E; = F); in order to
remove the fractions, we multiply each equation by

2M(M? + X — MEp)(M? + X + MEp) ((M? + X)? — M2E*?),

so, we obtain the following three equations
1
[i\/ﬁagME\/X —B(M? — uME + X)(M? + uME + X) (20(M2 + X) + uM)

—ivV2MEVX — B(M? — uME + X)(M? + uME + X)(—i(M? + 2uMcE?* + X)
+20(M2 — uME + X)(M? + uME + X) — ((Ez + €)2(20(M? + X) + VM)))} F

+[02(M? — uME + X)(M? + uME + X) (2iBe(B — X) (M? + X)
+BM? + BX +2M* — 2p> M?E? + 3M?X + X?) + (M? — uME + X)
X (M? 4 uME + X) (i(X — B)((2Bo +i)(M? — uME + X)(M? + uME + X)
—2Bo(M? + X)(Ez + €)* — 2iBuMcE?) 4 2iBuM(M? — uME + X)
x (M2 4+ uME + X) + (M? + X)(B + 2M? + X)(Ez + €)? + iuME*(B — X)
F2U2MAE? — 202 M2E2(Ez + €)? — 2M2(M? + X)Z)] G

+[2(1 - 2iBo) /X2 = BA(M? + X) (M2 — uME + X) (M + pME + X)
+i(2Bo + i)V X2 — B2((M? + X)? — u® M?E?) (u*(—M?)E? + (M? + X)
x (M2 — (Ez+€)2+X) — inEZ)] H=0,
2

V2MEVB + X(M?—uME + X)(M?+uME + X)(2ic(M?—uME + X)(M?+uME+X)
Z Z Z

—i(Ez + €)*(20(M? + X) + uM) + M? + 2uMcE* + X)
—iV20*MEV/B + X(M? — uME + X)(M2 + uME + X) (20 (M? + X) + yM)] F

+ {65(1 +2iBor) /X2 — B2(M? + X)(M? — uME + X)(M? + uME + X)

—i(2Bo — i)/ X2 — B2((M? + X)?
—i2MPE2) (43 (— MP)E? + (M2 + X) (M2 — (Ez +€)? + X) — ipME?)| G

+ [ag(Mz — pME + X)(M?* + uME + X)(2iBo (B + X)(M? + X)
—BM? — BX + 2M* — 2)> M?E? + 3M?X + X?) + (M? — uME + X)
x (M2 4+ uME + X)(2iBu> MPE? — iuM(B(2(M? + X)? + E?) + E2X)+
+i(B + X) (i(M?* 4+ X)? — u>M2E?) — 2Bo(y?(—M?)E?
+(M? + X)(M? — (Ez + €)* + X) — iuME?))
+(M? + X)(—(B — X)(Ez + €)* — 2M* + 2M?((Ez 4 €)? — X))
+2§2M2E*(M — Ez — €)(M + Ez +€)) | H = 0,
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[2a§M2(M2 — UME + X)(M? + uME + X)(M? + 2uMcE? + X)
+2M?(M? — uME + X)(M? + uME + X)
X (—M* + M?(E?(4® + 2i0 + 2°) 4+ 2Eze — 2X + €?)
+UME2(20(Ez + €)% + i) + X(20E2 + (Ez + €)* — x))] F
+[ = V202uM?E(2B0 — i)V/X = B(M? — uME + X) (M + pME + X)

—iV2ME(2Bo—i)v/X—B(M?*~ uME+X) (M2+yME+X)(Mz—in(Ez)erx)] G

+ [ V2ME(1-2iBo) VBFX(M? - uME+X) (M?+ i ME-+ X) (M2~ iuM(Ez+€)? + X)

—V202uME(2B0 + i)V/B + X(M? — uME + X)(M? + uME + X)|H = 0,
Let us write the last system in symbolical form

1 aiF" +bF+c:G"+d1G+11H" +nmH =0,

2 IZQF// + by F + CzGU +drG+ le// +n,H =0,

3 113F// + b3F + C3G// +d3G + l3H// +n3H = 0.
We will combine equations

(1) -a+(2)-p+(3)-7=0;
in this way, we obtain the following equation
(aay + Paz + yas) F" + (aby + By + vb3) F

(e + Bea + ve3)G" + (ady + Bdz + vd3)G
(aly + Blo + vI3)H" + (any + pna + ynz)H = 0.
We will distinguish three different cases:
a1ay + Brag + a3 =1,

I wajer + B+ 713 =0,
a1l + Bl +11l3 = 0;

&1 + Boay + yoaz =0, azay + Pzar + ysaz = 0,
Il wocy + Pocy +92c3 =1, Il azcq + Bacy + y3c3 =0,
asly + Balp + 2l3 = 0; azly + Bsly +y3l3 = 1;

the corresponding three solutions have the form

= yE(ZBafi)z X—B ,
2ﬁ<(M2+X)2—;¢2M2E2) (2iB20+M2+2uMoE?)
B1 = iyE(172iB(72)\/B+7X )
2V2((M24X)* 2 MPE2) " (2iB20+ M2+ 2uMoE?)
_ M?(M?—p?E>+X)+2iB%0 (M?+X) )
mn= 2M2(M2—yME+X)* (M2 +uME+X)?(2iB20+M2 421 MoE2)”
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2iB%0+B(—1+2i0X)+2M( M+2u0E2) + X
4((M2+X)2—yZMZEZ)Z(2iBZU+M2+2yMaEZ) ’
By = i(zBa+i)\/)2<fB\/B+7X )
4((M2+X)27y2M2E2> (2iB20+M2 42, Mo E?)
iEv/X—B(20(M?+X)+uM) )
2VaM (V24 X)* 12 M2E2) (2iBP0 4 M2 4 2uMoE?)

Ny =

11

T2 =

i(—2Bo+i)vX—BvB+X
4((M2+X)27 ¢2M2E2>2(2iBZU+M2+2yML7E2) ’
2iB?0—2iBo X+B+2M(M+2u0E?)+X
4 ((M2+X)27 yZMZEZ) * (2iB20+ M2 42uMoE?)
_ iEv/B+X(20(M?4+X)+1M)
B ZﬁM<(M2+X)2—;42M2E2>2(2iB20+M2+2yMUE2) '

N3 —

111 B3 =

73
So, the above equations can be written
(1) F' + (a1by + B1ba + 11b3)F
+(aqdy + Prdz + 71d3)G + (a1m1 + prna + 1inz)H = 0,
(2) G"+ (a2b1 + Paba + 712b3)F
+(a2dy + Pods + 72d3)G + (aany + Pang + 7213)H = 0,
(3) H"+ (asby + Baby + 73b3)F

+(aady + B3da + v3d3)G + (agng + Bana + y3nz)H = 0.

Let us make the necessary change o = ic, 4 = iy. So, we obtain (also it is convenient

to apply the designation (Ez + €) = X):

(1)  F'+3%2F

N —M?(—2B%0 + W% +20) +X) +uMW? (20 (2B%0 4 X) —1) +2B%c (20 W? + X ) — M*

M?2—20(B2+puMW?)
N W(2Bo — 1)vX — B(M(—Byu + uM(Bu + M) + M) — 2B?c(uM + 1))
V2(M3 — 2Mo (B2 + uMW2))
W(2Bo +1)v/B + X(M(Bu + pM(M — Bu) + M) — 2B?c(uM + 1))
V2(M3 — 2Mo (B2 + uMW2))

1
2M2 — 40(B2 + uMW?2)

G+

n H=0,

(2) G"+2*G+

X [283a(yM — 1) + B2(20(2M? + uMX + X) + uM — 42 W2(uM + 1) — 1)
+B(—(uM — 1)(2M? + X) + 20W? (uM(2uM — 1) + 1) + 40° W2 X (uM + 1))
+20W2(2uM? + X (uM - 1)) — 2MA(M? + X) | G-

_ MWVX —B(uM +1)(40*W? +1) F
V2(M2 —20(B2 + uMW?2))

N (2Bo +1)vX — By/B + X(B(uM — 1) — 20W?(uM + 1))

H=0,
40(B? + uMW?2) — 2M?2 0

(3) H'+x?H

1
2M?2 — 40(B? + uMW?)
—40?W2(uM 41) — 1) + B((uM — 1) 2M? + X) 4+ 20W? (uM(1 — 2uM) — 1)

+

[f 2B3¢(uM — 1) + B2(20(2M? + uMX + X) + uM

F



Symmetry 2025, 17, 1465

17 of 20

—4PPW2X (UM + 1)) + 20W2(2uM? + X (uM — 1)) — 2M>(M? + X)] H

MWV/B+ X(uM + 1) (40°W? +1)
V2(M2 —20(B2 + uMW?2))
2Bo — 1)y X — BB+ X(B(uM — 1) + 20 W2 (uM + 1))
40(B% + uMW?2) — 2M?

Let us present the system in matrix form

N

2 F F A
A=— +3%(2),Al G |=A| G|, A¥(z) = A¥(2),A=| A,
H H As
Now, we will find the transformation that diagonalizes the system
A] 0 0 S11
Y=SY, A¥(z) = A¥(z), A=SAS™'=| 0 Ay 0 |, S=] sy
0 0 Ag 531
we must find solutions for equation SA = AS; explicitly, it reads
s;1 s12 si3 || A1 Br G At 0 0 || s11 s12
S21 2 s3 || A2 By G |=| 0 Ay 0 || ;1 s»
s31 s» s || A3 Bz G 0 0 Az || s31 s32
with the following three similar subsystems
(A1 — A1)s11 + Azsip + Azsi3 =0
Bisi1 + (B2 — Aq)si2 + Bssiz =0
Cis11 + Cos12 + (C3 — Ag)s13 =0
(A1 — Ap)so1 + Apsyy + Azsps =0
Bisy1 + (By — A2)syo 4+ B3spz =0,
Ci1521 + Cos22 + (C3 — A2)s3 = 0
(A1 — A3)s31 + Apszp + Azszz =0
Bisz1 + (B2 — A3)ssp + B3ssz3 =0
Cis31 + Coszp + (C3 — A3)s33 =0
or differently
(A1 —A) Ap Az si1
Bq (Bz —A) Bs sip | =0, i=1,2,3.
C1 G (C3—A) || si3

From vanishing the determinant

(A1 —=A) Ay A3
det| By (Bp—A) Bs =0
C C (C3 — )\)

we derive the cubic equation
A3 —A2(A; + By +C3)+

+/\(A231 — A1By + A3C; — A1C3 + B3Cy — BzC3)

G=0.

512
522
532

513
523
533

+A3ByCqy — ApB3Cy — A3B1Cy + A1B3Cy + AyB1C3 — A1B,C3 = 0.

6))
G

513
523
533

(18)
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Let us write down equations with solutions that determine the elements of the matrix

(A1 —Aq)s11+ As1o+ Az =0

, assuming si3 = 1;
Bist + (By — A1)s1a+ By = 0 &

(A1 —Ap)sp1 + Agspp + Az =0

, assuming sp3 = 1;
Bys1 + (B2 — A2)sa2 + B3 =0 &

(A1 —Az)s31 + Agszp + Az =0

, assuming s3z3 = 1.
Bysz1 + (B2 — A3)s2 + B3 =0 &

After performing this transformation, we obtain three separate equations

d—22+(Ez+e)2—)\1 F=o0, d—zz—l—(Ez—l-G)z—)\z G=0,
dz dz

(;—;—F(Ez—ke)z—)g)ﬂzo.

These equations have the same structure as a scalar particle in the uniform electric field

42
(@ + (Ez+¢€)? - A)CD(Z) =0. (19)

We can transform Equation (19) to the new variable (assuming that E > 0)

(Ez +€)? Al 20)

Z=i—p 4E’

then, we obtain the confluent hypergeometric equation

(fi 1/2.d 1 iA
dz2' 7 dz 4 Z

)cp(z) ~0; (21)
its solutions were given in [32].

8. Conclusions

We studied a generalized Duffin—-Kemmer-Petiau equation for spin-1 particles with
two additional characteristics besides electric charge, namely anomalous magnetic moment
and polarizability, in the presence of both external uniform magnetic and electric fields.

After separating the variables, we obtain a system of 10 first-order partial differential
equations for 10 functions f;(r, z).

To describe the r-dependence of the 10 functions f4(r,z), A =1,...,10, we applied
the method of Fedorov—Gronskiy [31]. Thus, the complete 10-component wave function is
decomposed into the sum of three projective constituents. The dependence of each com-
ponent on the polar coordinate r is determined by only one corresponding function, F;(r),
i=1,2,3.

These three basic functions are constructed in terms of confluent hypergeometric func-
tions, and in this process a quantization rule arises due to the presence of a magnetic field.

After that, we derived a system of 10 ordinary differential equations for 10 functions
fa(z). This system was solved using the elimination method and through special linear
combinations of the involved functions.

As the result, we obtain three separate second-order differential equations, whose
solutions can be constructed in the terms of confluent hypergeometric functions.

Due to the spin value of S = 1, we should expect in advance the existence of three
types of solutions, 25 4+ 1 = 3; these are precisely the ones found as the main result. Further,
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the constructed solutions depend on a quantized parameter arising from the presence of
a magnetic field, so the radiation spectra of such a particle depend on the magnitude of
the external magnetic field. Moreover, the wave functions and spectra depend on two
additional characteristics of the particle.

These solutions may be helpful for experimental testing of the intrinsic structure of
vector bosons.
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