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Abstract

In this paper, we study a generalized Duffin–Kemmer equation for a spin-1 particle with
two characteristics, anomalous magnetic moment and polarizability in the presence of
external uniform magnetic and electric fields. After separating the variables, we obtained a
system of 10 first-order partial differential equations for 10 functions fA(r, z). To resolve
this complicated problem, we first took into account existing symmetry in the structure of
the derived system. The main step consisted of applying a special method for fixing the
r-dependence of ten functions fA(r, z), A = 1, . . . , 10. We used the approach of Fedorov–
Gronskiy, according to which the complete 10-component wave function is decomposed
into the sum of three projective constituents. The dependence of each component on the
polar coordinate r is determined by only one corresponding function, Fi(r), i = 1, 2, 3.
These three basic functions are constructed in terms of confluent hypergeometric functions,
and in this process a quantization rule arises due to the presence of a magnetic field.In
fact, this approach is a step-by-step algebraization of the systems of equations in partial
derivatives. After that, we derived a system of 10 ordinary differential equations for
10 functions fA(z). This system was solved using the elimination method and with the
help of special linear combinined with the involved functions. As a result, we found three
separated second-order differential equations, and their solutions were constructed in the
terms of the confluent hypergeometric functions. Thus, in this paper, the three types of
solutions for a vector particle with two additional electromagnetic characteristics in the
presence of both external uniform magnetic and electric fields.

Keywords: spin-1 particle; anomalous magnetic moment; polarizability; magnetic field;
electric field; cylindrical symmetry; projective operators; systems of equations in partial
derivatives; exact solutions

1. Introduction
The theory of spin-1 particles has an extensive history [1–30], and is closely related

to Lorentz group symmetry. In addition to the classical and simplest model for a vector
particle, there exist more complicated models for spin-1 particles with characteristics
beyond electric charge, such as an anomalous magnetic moment, electrical quadruple
moment, and so on.
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In [29], within the general method of Gel’fand–Yaglom [3], a relativistic generalized
system of first-order equations was constructed for a spin-1 particle with two additional
characteristics: anomalous magnetic moment and polarizability. The primary derivation
of the generalized equation for a spin-1 particle with two characteristics in additional to
electric charge is a separate and rather involved task; therefore, in the present paper we
started from the known result of previous work. In fact, this approach is based on the use of
an extended set of irreducible representations of the proper Lorentz group to produce more
general and complicated equations for a particle with a fixed value of spin. First, the model
was developed for a free particle, and a system of spinor equations was obtained; then it
was transformed into tensor form. In tensor form, the presence of external electromagnetic
fields was taken into account. After eliminating the accessory variables of the complete
wave function, the generalized Proca system of 10 equations was derived; it contains two
additional interaction terms, which are interpreted as corresponding to the anomalous
magnetic moment and polarizability.

In [30], this equation was solved in the presence of a uniform magnetic field.
In the present paper, we considered a situation in which both fields, magnetic and

electric, were presented. After separating the variables, we obtained a system of 10 first-
order partial differential equations for 10 functions fA(r, z). To resolve this complicated
problem, we took into account the specific symmetry in the structure of the derived system.
Accordingly, the complete wave function, consisting of 10 variables fA(r, z), A = 1, . . . , 10
is decomposed into the sum of three projective constituents. The dependence of each
component on the polar coordinate is determined by only one function, Fi(r), i = 1, 2, 3
which are constructed in terms of confluent hypergeometric functions. In this process, a
quantization rule arises due to the presence of a magnetic field.

After that, we derive a system of 10 ordinary differential equations for 10 functions
fA(z). This system is solved, and as the result, we obtain three independent solutions.

We can readily verify that, when polarizability parameter vanishes and the electric field
is absent, the known results for the energy spectra of a vector particle with an anomalous
magnetic moment in the presence of an external uniform magnetic field are recovered.

2. Matrix Equation in Minkowski Space
We start with the following tensor equations (let Da = ∂a + ieAa)

DbΦab + eµFabΦb + eσDa(FcdΦcd)− MΦa = 0, DaΦb − DbΦa − MΦab = 0; (1)

which can be compared with the ordinary Proca system:

DbΦab − MΦa = 0, DaΦb − DbΦa − MΦab = 0. (2)

In Equation (1), we can see two additional interaction terms, proportional to parameters µ

(anomalous magnetic moment) and σ (polarizability); in [29,30], it was proved that both
parameters µ, σ are imaginary: µ =⇒ iµ, σ =⇒ iσ, we will take this into account later on.
Below, we apply the 10-dimensional column:

Φ = (Φ0, Φ1, Φ2, Φ3; Φ01, Φ02, Φ03, Φ23, Φ31, Φ12) = (H1; H2).
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Let us recall the matrix form of the Proca system when µ = 0, σ = 0. The first equation
gives KaDaH2 − MH1 = 0, where

K0 =

∣∣∣∣∣∣∣∣∣
. . . . . .

−1 . . . . .
. −1 . . . .
. . −1 . . .

∣∣∣∣∣∣∣∣∣, K1 =

∣∣∣∣∣∣∣∣∣
−1 . . . . .

. . . . . .

. . . . . 1

. . . . −1 .

∣∣∣∣∣∣∣∣∣,

K2 =

∣∣∣∣∣∣∣∣∣
. −1 . . . .
. . . . . −1
. . . . . .
. . . +1 . .

∣∣∣∣∣∣∣∣∣, K3 =

∣∣∣∣∣∣∣∣∣
. . −1 . . .
. . . . +1 .
. . . −1 . .
. . . . . .

∣∣∣∣∣∣∣∣∣.
The second equation in (2) leads to DaLaH1 − MH2 = 0, where

L0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, L1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, L2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . . .
−1 . . .

. . . .

. . . 1

. . . .

. −1 . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, L3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . . .

. . . .
−1 0 0 .

. . −1 .

. 1 . .

. . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Thus, the system of equations for the ordinary spin-1 particle is presented in block form as

KaDa H2 − MH1 = 0, LaDa H1 − MH2 = 0.

Let us detail the first additional term in (1) (considering identities: F01Φ1 = −E1Φ1,
F12Φ2 = B3Φ2, and so on)

eµFabΦb = eµ

∣∣∣∣∣∣∣∣∣
0 −E1 −E2 −E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
Φ0

Φ1

Φ2

Φ3

∣∣∣∣∣∣∣∣∣,
when allowing for the structure of six Lorentzian generators for a vector field

j23 = S1 =

∣∣∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

∣∣∣∣∣∣∣∣∣, j31 = S2 =

∣∣∣∣∣∣∣∣∣
0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

∣∣∣∣∣∣∣∣∣, j12 = S3 =

∣∣∣∣∣∣∣∣∣
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

∣∣∣∣∣∣∣∣∣,

j01 = T1 =

∣∣∣∣∣∣∣∣∣
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣∣, j02 = T2 =

∣∣∣∣∣∣∣∣∣
0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣∣, j03 = T3 =

∣∣∣∣∣∣∣∣∣
0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

∣∣∣∣∣∣∣∣∣,
we obtain a shorter presentation

eµFαβΦβ =⇒ −eµ
(

S B + T E
)

H1.
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The second additional term in (1) is

eσDa(FcdΦcd) = 2eσDa

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

E1 0 0 0 0 0
0 E2 0 0 0 0
0 0 E3 0 0 0
0 0 0 −B1 0 0
0 0 0 0 −B2 0
0 0 0 0 0 −B3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Φ01

Φ02

Φ03

Φ23

Φ31

Φ12

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

So, we have a generalized Duffin–Kemmer–Petiau equation in block form(
KaDaH2

)
c
− eµ

[
(S B + T E)H1

]
c
+ eσDc(FklΦkl)− M(H1)c = 0,(

LaDa H1

)
[kl]

− M(H2)[kl] = 0,
(3)

where the symbol c denotes the vector index c = (0,1,2,3); the indices [kl] numerate the
independent components of the antisymmetric tensor, [01], [02], [03], [23], [31], [12].

3. Extension to Curved Space–Time Models
In Riemannian space, we start with more complicated equations

DβΦ β
α + eµFαβΦβ + eσ∂̂α(FρδΦρδ)− MΦα = 0, DαΦβ − DβΦα − MΦαβ = 0;

below, two different derivative symbols will be used: Dα = ∇α + ieAα, ∂̂α = ∂α + ieAα.
Let us transform these equations to tetrad form (apply the notation eβ

(b)(∂β + ieAβ) =

∂̂(b)). Using Ricci rotation coefficients, we present the above equations as follows

∂̂(b)Φ
b

c − γacbΦab + eβ

(b);βΦ b
c + eµFcbΦb + eσ(∂(c)F

ab)Φab + eσFab∂̂(c)Φab − MΦc =0,

∂̂(c)Φd − ∂̂(d)Φc + γbdcΦb − γbcdΦb − MΦcd = 0.

We recall the known matrix tetrad form of the equation for an ordinary vector particle

[
βc
(

eα
(c)(x)

∂

∂xα
+

1
2

Jabγabc

)
− M

]
Φ = 0, Φ =

∣∣∣∣∣ Φa

Φab

∣∣∣∣∣ =
∣∣∣∣∣ H1

H2

∣∣∣∣∣; (4)

The two additional interactions terms are

eµFαβΦβ = eµ
(

S B − T E
)

H1, eσ∂̂α(FcdΦcd) = eσ

∣∣∣∣∣∣∣∣∣
∂̂(0)(FcdΦcd)

∂̂(1)(FcdΦcd)

∂̂(2)(FcdΦcd)

∂̂(3)(FcdΦcd)

∣∣∣∣∣∣∣∣∣.
So, we have the following generalized system of equations(

KcD(2)
c H2

)
n
− eµ

[
(SB + TE)H1

]
n
+ eσeα

(n)∂̂α(FklΦkl)− M(H1)n = 0,(
LcD(1)

c H1

)
[kl]

− (MH2)[kl] = 0.
(5)

4. Particle in the Uniform Magnetic and Electric Fields
It is convenient to use the cylindrical coordinates xα = (t, r, ϕ, z). The relevant tetrad,

Ricci rotation coefficients, and the uniform magnetic and electric fields are determined as
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dS2 = dt2 − dr2 − r2dϕ2 − dz2, eα
(a) =

∣∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 1

r 0
0 0 0 1

∣∣∣∣∣∣∣∣∣,
γ122 =

1
r

, A0 = −Ez, F03 = et
(0)e

z
(3)Ftz = E, ∂̂0 =⇒ −iϵ − ieEz,

Aϕ = −Br2/2, Frϕ = −Br, F12 = er
(1)e

ϕ

(2)Frϕ = −B.

(6)

Correspondingly, the system of equations takes on the form

[
K0(∂0 − ieEz) + K1∂r + K2 1

r

(
∂ϕ +

ieBr2

2
+ j12

2

)
+ K3∂z

]
H2 − MH1

−eµBj12
1 H1−eµEj03

1 H1−2Beσ

∣∣∣∣∣∣∣∣∣
(∂0 − ieEz)

∂r
1
r (∂ϕ + ieBr2

2 )

∂z

∣∣∣∣∣∣∣∣∣Φ12+2Eeσ

∣∣∣∣∣∣∣∣∣
(∂0 − ieEz)

∂r
1
r (∂ϕ + ieBr2

2 )

∂z

∣∣∣∣∣∣∣∣∣Φ03=0,

[
L0(∂0 − ieEz) + L1∂r + L2 1

r
(∂ϕ + ieBr2/2 + j12

1 ) + L3∂z

]
H1 − MH2 = 0.

It is more convenient to apply the so-called cyclic basis. It is defined by requirement to
have a diagonal generator j12

1 for the vector field H1 = (Φl). The necessary transformation
Φ̄ = UΦ is

U =

∣∣∣∣∣∣∣∣∣∣
1 0 0 0
0 − 1√

2
i√
2

0

0 0 0 1
0 1√

2
i√
2

0

∣∣∣∣∣∣∣∣∣∣
, j̄12 =

∣∣∣∣∣∣∣∣∣∣
0 0 0 0

0 −i 0 0

0 0 0 0

0 0 0 +i

∣∣∣∣∣∣∣∣∣∣
. (7)

Vector and tensor generators are transformed ccording to the rules

J̄ab
1 = UjabU−1, J̄ab

2 = j̄ab ⊗ I + I ⊗ j̄ab;

so that

J12
(2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=⇒ J̄12

2 = i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 . . . . .
. 0 . . . .
. . 1 . . .
. . . 1 . .
. . . . 0 .
. . . . . −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We should also transform the Duffin–Kemmer matrices βa to the cyclic basis. It is
convenient to apply the block presentation: H̄1 = C1H1, (C1 = U), H̄2 = (U ⊗ U)H2 =

C2H2; further, we obtain∣∣∣∣∣ 0 K̄a

L̄a 0

∣∣∣∣∣ =
∣∣∣∣∣ 0 C1KaC−1

2
C2LaC−1

1 0

∣∣∣∣∣.
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We derive

C1 = U =

∣∣∣∣∣∣∣∣∣∣
1 0 0 0
0 − 1√

2
i√
2

0

0 0 0 1
0 1√

2
i√
2

0

∣∣∣∣∣∣∣∣∣∣
, C2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− 1√
2

i√
2

0 0 0 0

0 0 1 0 0 0
1√
2

i√
2

0 0 0 0

0 0 0 − i√
2

1√
2

0

0 0 0 0 0 i
0 0 0 i√

2
1√
2

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (8)

Further, we readily find the necessary blocks:

K̄0 =

∣∣∣∣∣∣∣∣∣
0 0 0 0 0 0
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0

∣∣∣∣∣∣∣∣∣, K̄1 =

∣∣∣∣∣∣∣∣∣∣

1√
2

0 − 1√
2

0 0 0

0 0 0 0 1√
2

0

0 0 0 − 1√
2

0 − 1√
2

0 0 0 0 1√
2

0

∣∣∣∣∣∣∣∣∣∣
,

K̄2 =

∣∣∣∣∣∣∣∣∣∣

i√
2

0 i√
2

0 0 0

0 0 0 0 − i√
2

0

0 0 0 i√
2

0 − i√
2

0 0 0 0 i√
2

0

∣∣∣∣∣∣∣∣∣∣
, K̄3 =

∣∣∣∣∣∣∣∣∣
0 −1 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 1 0 0

∣∣∣∣∣∣∣∣∣,

L̄0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, L̄1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1√
2

0 0 0

0 0 0 0
− 1√

2
0 0 0

0 0 − 1√
2

0

0 1√
2

0 1√
2

0 0 − 1√
2

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

L̄2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− i√
2

0 0 0

0 0 0 0
− i√

2
0 0 0

0 0 − i√
2

0

0 i√
2

0 − i√
2

0 0 i√
2

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, L̄3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0
−1 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

and expressions for the necessary generators

J̄12
1 = i

∣∣∣∣∣∣∣∣∣∣
0 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 +1

∣∣∣∣∣∣∣∣∣∣
, j̄03

1 =

∣∣∣∣∣∣∣∣∣∣
0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

∣∣∣∣∣∣∣∣∣∣
.

Considering this, we can transform the above two equations to the cyclic basis; so we obtain

[
K̄0(∂0 − ieEz) + K̄1∂r + K̄2 1

r

(
∂ϕ +

ieBr2

2
+ j̄12

2

)
+ K̄3∂z

]
H̄2 − MH̄1
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−eµBj̄12
1 H̄1 − eµEj̄03

1 H̄1 − 2Beσ

∣∣∣∣∣∣∣∣∣∣
1 0 0 0
0 − 1√

2
i√
2

0

0 0 0 1
0 1√

2
i√
2

0

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
(∂0 − ieEz)

∂r
1
r (∂ϕ + ieBr2

2 )

∂z

∣∣∣∣∣∣∣∣∣(−iΦ̄31)

+2Eeσ

∣∣∣∣∣∣∣∣∣∣
1 0 0 0
0 − 1√

2
i√
2

0

0 0 0 1
0 1√

2
i√
2

0

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
(∂0 − ieEz)

∂r
1
r (∂ϕ + ieBr2

2 )

∂z

∣∣∣∣∣∣∣∣∣Φ̄02 = 0,

so that [
L̄0(∂0 − ieEz) + L̄1∂r + L̄2 1

r
(∂ϕ +

ieBr2

2
+ j̄12

1 ) + L̄3∂z

]
H̄1 − MH̄2 = 0, (9)

[
L̄0(∂0 − ieEz) + L̄1∂r + L̄2 1

r
(∂ϕ + j̄12

1 ) + L̄3∂z

]
H̄1 − MH̄2 = 0. (10)

Now, let us perform separation of the variables, applying the substitution

H̄1 = e−iϵteimϕ

∣∣∣∣∣∣∣∣∣
Φ̄0(r, z)
Φ̄1(r, z)
Φ̄2(r, z)
Φ̄3(r, z)

∣∣∣∣∣∣∣∣∣, H̄2 = e−iϵteimϕ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Φ̄01(r, z)
Φ̄02(r, z)
Φ̄03(r, z)
Φ̄23(r, z)
Φ̄31(r, z)
Φ̄12(r, z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= e−iϵteimϕ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ē1(r, z)
Ē2(r, z)
Ē3(r, z)
B̄1(r, z)
B̄2(r, z)
B̄3(r, z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

in this way, we obtain (for brevity let as make the change in notations: eB ⇒ B, eE ⇒ E)

[
K̄0(−iϵ − iEz) + K̄1∂r + K̄2 1

r

(
im +

iBr2

2
+ j̄12

2

)
+ K̄3∂z

]
H̄2 − MH̄1

−µBj̄12
1 H̄1 − 2Bσ

∣∣∣∣∣∣∣∣∣∣
1 0 0 0
0 − 1√

2
i√
2

0

0 0 0 1
0 1√

2
i√
2

0

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
(−iϵ − iEz)

∂r
1
r (im + iBr2

2 )

∂z

∣∣∣∣∣∣∣∣∣(−iB̄2)

−µEj̄03
1 H̄1 + 2Eσ

∣∣∣∣∣∣∣∣∣∣
1 0 0 0
0 − 1√

2
i√
2

0

0 0 0 1
0 1√

2
i√
2

0

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
(−iϵ − iEz)

∂r
1
r (im + iBr2

2 )

∂z

∣∣∣∣∣∣∣∣∣Ē2 = 0,

[
L̄0(−iϵ − iEz) + L̄1∂r + L̄2 1

r
(im +

iBr2

2
+ j̄12

1 ) + L̄3∂z

]
H̄1 − MH̄2 = 0.

Further, we obtain the explicit form of 10 equations (for brevity, we will omit the
overline symbol). With the use of shortening notations

am =
∂

∂r
+

Br
2

+
m
r

, am+1 =
∂

∂r
+

Br
2

+
m + 1

r
,

bm =
∂

∂r
− Br

2
− m

r
, bm−1 =

∂

∂r
− Br

2
− m − 1

r
,

(11)
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these equations read

1
1√
2

bm−1E1−
1√
2

am+1E3 − ∂zE2 + µEΦ2 − 2iEσ(ϵ + Ez)E2+2Bσ(Ez+ϵ)B2 =MΦ0,

2 i(ϵ + Ez)E1 +
1√
2
(1 − 2iBσ)amB2 − ∂zB3

√
2EσamE2+iBµΦ1 = MΦ1,

3 i(ϵ + Ez)E2 −
1√
2

am+1B1 −
1√
2

bm−1B3 − µEΦ0 + 2Eσ∂zE2+2iBσ∂zB2 = MΦ2,

4 i(ϵ + Ez)E3 +
1√
2

i(2Bσ − i)bmB2 + ∂zB1 +
√

2EσbmE2−iBµΦ3 = MΦ3,

5
1√
2

amΦ0 − i(ϵ + Ez)Φ1 = ME1, 6 − ∂zΦ0 − i(ϵ + Ez)Φ2 = ME2,

7 − 1√
2

bmΦ0 − i(ϵ + Ez)Φ3 = ME3, 8 − 1√
2

bmΦ2 + ∂zΦ3 = MB1,

9
1√
2

bm−1Φ1 +
1√
2

am+1Φ3 = MB2, 10 − 1√
2

amΦ2 − ∂zΦ1 = MB3.

5. Projective Operators Method
To analyze the system of equations, we will use the method of projective operators

(following the method of Fedorov and Gronskiy [31]). To this end, we consider the third
spin projection Y = −i J̄12, and make sure that it satisfies the minimal equation Y(Y −
1)(Y + 1) = 0. This minimal equation allows us to introduce three projective operators

P0 = 1 − Y2, P+1 =
1
2

Y(Y + 1), P−1 =
1
2

Y(Y − 1), (12)

with the necessary properties

P2
0 = P0, P2

+1 = P+1, P2
−1 = P−1, P0 + P+1 + P−1 = 1.

Accordingly, the complete wave function can be expanded in the sum of three parts

Φ̄ = Φ̄0 + Φ̄+1 + Φ̄−1, Φ̄σ = PσΦ̄, σ = 0, +1, −1. (13)

These components have the following dependence on the variable r (in accordance with
the Fedorov–Gronsky method, each projective component should be determined by only
one function of the polar coordinate r):

Φ̄0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Φ̄0(z)
0

Φ̄2(z)
0
0

Ē2(z)
0
0

B̄2(z)
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F1(r), Φ̄+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
0
0

Φ̄3

0
0

Ē3(z)
B̄1(z)

0
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F2(r), Φ−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
Φ̄1(z)

0
0

Ē1(z)
0
0
0
0

B̄3(z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F3(r); (14)

1
1√
2

E1(z)bm−1F3(r)−
1√
2

E3(z)am+1F2(r)− ∂zE2(z)F1(r)

−µEΦ2(z)F1(r)− 2iEσ(ϵ + Ez)E2(z)F1(r)

+2Bσ(Ez + ϵ)B2(z)F1(r) = MΦ0(z)F1(r),

2 i(ϵ + Ez)E1(z)F3(r) +
1√
2
(1 − 2iBσ)B2(z)amF1(r)− ∂zB3(z)F3(r)
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−
√

2EσE2(z)amF1(r)+iBµΦ1(z)F3(r) = MΦ1(z)F3(r),

3 i(ϵ + Ez)E2(z)F1(r)−
1√
2

B1(z)am+1F2(r)−
1√
2

B3(z)bm−1F3(r)

−µEΦ0(z)F1(r) + 2Eσ∂zE2(z)F1(r)+2iBσ∂zB2(z)F1(r) = MΦ2(z)F1(r),

4 i(ϵ + Ez)E3(z)F2(r) +
1√
2

i(2Bσ − i)B2(z)bmF1(r) + ∂zB1(z)F2(r)

+
√

2EσE2(z)bmF1(r)−iBµΦ3(z)F2(r) = MΦ3(z)F2(r),

5
1√
2

Φ0(z)amF1(r)− i(ϵ + Ez)Φ1(z)F3(r) = ME1(z)F3(r),

6 − ∂zΦ0(z)F1(r)− i(ϵ + Ez)Φ2(z)F1(r) = ME2(z)F1(r),

7 − 1√
2

Φ0(z)bmF1(r)− i(ϵ + Ez)Φ3(z)F2(r) = ME3(z)F2(r),

8 − 1√
2

Φ2(z)bmF1(r) + ∂zΦ3(z)F2(r) = MB1(z)F2(r),

9
1√
2

Φ1(z)bm−1F3(r) +
1√
2

Φ3(z)F2(r) = MB2(z)F1(r),

10 − 1√
2

Φ2(z)amF1(r)− ∂zΦ1(z)F3(r) = MB3(z)F3(r).

In order to obtain equations in the variable z, we impose the following constraints

bm−1F3 = C1F1, amF1 = C4F3, am+1F2 = C2F1, bmF1 = C3F2, (15)

so, we obtain
1

1√
2

E1(z)C1 −
1√
2

E3(z)C2 − ∂zE2(z)

−µEΦ2(z)− 2iEσ(ϵ + Ez)E2(z)+2Bσ(Ez + ϵ)B2(z) = MΦ0(z),

2 i(ϵ + Ez)E1(z) +
1√
2
(1 − 2iBσ)B2(z)C4 − ∂zB3(z)

−
√

2EσE2(z)C4+iBµΦ1(z) = MΦ1(z),

3 + i(ϵ + Ez)E2(z)−
1√
2

B1(z)C2 −
1√
2

B3(z)C1

−µEΦ0(z) + 2Eσ∂zE2(z)+2iBσ∂zB2(z) = MΦ2(z),

4 i(ϵ + Ez)E3(z) +
1√
2

i(2Bσ − i)B2(z)C3 + ∂zB1(z)

+
√

2EσE2(z)C3−iBµΦ3(z) = MΦ3(z),

5
1√
2

Φ0(z)C4 − i(ϵ + Ez)Φ1(z)=ME1(z), 6 − ∂zΦ0(z)− i(ϵ + Ez)Φ2(z)=ME2(z),

7 − 1√
2

Φ0(z)C3 − i(ϵ + Ez)Φ3(z)=ME3(z), 8 − 1√
2

Φ2(z)C3 + ∂zΦ3(z)=MB1(z),

9
1√
2

Φ1(z)C1 +
1√
2

Φ3(z)C2 = MB2(z),

10 − 1√
2

Φ2(z)C4 − ∂zΦ1(z) = MB3(z).

6. Explicit Form of Three Basic Functions
In the differential constraints

bm−1F3(r) = C1F1(r), amF1(r) = C4F3(r),

am+1F2(r) = C2F1(r), bmF1(r) = C3F2(r),

the parameters in each pair can be chosen to be the same: C4 = C1, C3 = C2. So, we obtain
the following constraints
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bm−1F3(r) = C1F1(r), amF1(r) = C1F3(r),

am+1F2(r) = C2F1(r), bmF1(r) = C2F2(r);

and the resulting second-order equations read

(bm−1am − C2
1)F1 = 0, (ambm−1 − C2

1)F3 = 0,

(am+1bm − C2
2)F1 = 0, (bmam+1 − C2

2)F2 = 0.

These equations explicitly read

( d2

dr2 +
1
r

d
dr

− B2r2

4
− m2

r2 − Bm+B − C2
1

)
F1 = 0,

( d2

dr2 +
1
r

d
dr

− B2r2

4
− m2

r2 − Bm−B − C2
2

)
F1 = 0,

therefore, C2
2 = C2

1 − 2B and

( d2

dr2 +
1
r

d
dr

− B2r2

4
− (m − 1)2

r2 − Bm − C2
1

)
F3 = 0,

( d2

dr2 +
1
r

d
dr

− B2r2

4
− (m + 1)2

r2 − Bm − C2
2

)
F2 = 0.

Thus, we have only three equations and the constraint C2
2 = C2

1 − 2B:

1,
( d2

dr2 +
1
r

d
dr

− B2r2

4
− m2

r2 − Bm + B − C2
1

)
F1 = 0,

2,
( d2

dr2 +
1
r

d
dr

− B2r2

4
− (m + 1)2

r2 − Bm − C2
1 + 2B

)
F2 = 0,

3,
( d2

dr2 +
1
r

d
dr

− B2r2

4
− (m − 1)2

r2 − Bm − C2
1

)
F3 = 0.

With the notation B − C2
1 = X, the equations take on the form

1,
( d2

dr2 +
1
r

d
dr

− B2r2

4
− m2

r2 − Bm + X
)

F1 = 0,

2,
( d2

dr2 +
1
r

d
dr

− B2r2

4
− (m + 1)2

r2 − B(m − 1) + X
)

F2 = 0,

3,
( d2

dr2 +
1
r

d
dr

− B2r2

4
− (m − 1)2

r2 − B(m + 1) + X
)

F3 = 0.

In the variable x = Br2

2 , we readily find their solutions

1, F1(x) = x+
|m|
2 e−x/2F1(x), F1(x) = Φ(−n1, |m|+ 1, x),

X = 2B
( |m|+ m

2
+

1
2
+ n1

)
> B, n1 = 0, 1, 2, . . . ;

2, F2(x) = x+
|m+1|

2 e−x/2F3(x), F3(x) = Φ(−n3, |m + 1|+ 1, x),

X = 2B
( |m + 1|+ m − 1

2
+

1
2
+ n2

)
> B, n2 = 0, 1, 2, . . . ;

3, F3(x) = x+
|m−1|

2 e−x/2F2(x), F2(x) = Φ(−n2, |m − 1|+ 1, x),
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X = 2B
( |m − 1|+ m + 1

2
+

1
2
+ n3

)
> B, n3 = 0, 1, 2, . . . .

In all three cases, the quantity X is the same; below, we apply the variant

X = 2BN > 0, N =
|m|+ m

2
+

1
2
+ n, n = 0, 1, 2, . . . , (16)

where the parameter N takes half-integer values; note the formulas

C4 = C1 = i
√

X − B, C3 = C2 = i
√

X + B. (17)

7. Solving Equations in z-Variable
Let us turn to the system in the z-variable, allowing for (17). It is convenient to divide

the resulting equations into two groups:
Subsystem I (it is algebraic with respect to the variables Φ̄0, Φ̄2, Ē1, Ē3, B̄1, B̄3)

1
1√
2

E1(z)i
√

X − B − 1√
2

E3(z)i
√

X + B − ∂zE2(z)

−µEΦ2(z)− 2iEσ(ϵ + Ez)E2(z)+2Bσ(Ez + ϵ)B2(z) = MΦ0(z),

3 i(ϵ + Ez)E2(z)−
1√
2

B1(z)i
√

X + B − 1√
2

B3(z)i
√

X − B

−µEΦ0(z) + 2Eσ∂zE2(z)+2iBσ∂zB2(z) = MΦ2(z),

5
1√
2

Φ0(z)i
√

X − B − i(ϵ + Ez)Φ1(z) = ME1(z),

7 − 1√
2

Φ0(z)i
√

X + B − i(ϵ + Ez)Φ3(z) = ME3(z),

8 − 1√
2

Φ2(z)i
√

X + B + ∂zΦ3(z) = MB1(z),

10 − 1√
2

Φ2(z)i
√

X − B − ∂zΦ1(z) = MB3(z);

Subsystem I I

2 i(ϵ + Ez)E1(z) +
1√
2
(1 − 2iBσ)B2(z)i

√
X − B − ∂zB3(z)

−
√

2EσE2(z)i
√

X − B+iBµΦ1(z) = MΦ1(z),

4 i(ϵ + Ez)E3(z) +
1√
2

i(2Bσ − i)B2(z)i
√

X + B + ∂zB1(z)

+
√

2EσE2(z)i
√

X + B−iBµΦ3(z) = MΦ3(z),

6 − ∂zΦ0(z)− i(ϵ + Ez)Φ2(z) = ME2(z),

9
1√
2

Φ1(z)i
√

X − B +
1√
2

Φ3(z)i
√

X + B = MB2(z);

Equation (9) permits eliminating the variable B2 from the previous three.
Let us resolve the system I with respect to the variables Φ̄0, Φ̄2, Ē1, Ē3, B̄1, B̄3:

Φ0 =
1

2
((

M2 + X
)2

− M2E2µ2
)
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×
[
4BM

((
M2 + X

)
(Ez + ϵ)− i∂z MEµ

)
σB2 − 2M

(
iE(Ez + ϵ)

(
Mµ + 2

(
M2 + X

)
σ
)

+∂z

(
M2+ 2E2µσM+X

))
E2 +

√
2
((

M2+X
)
(Ez + ϵ)−i∂z MEµ

)(√
X−BΦ1−

√
B+XΦ3

)]
,

Φ2 =
1

2
((

M2 + X
)2

− M2E2µ2
)[

i
(

4BM
(

∂z

(
M2 + X

)
+ iME(Ez + ϵ)µ

)
σB2

+2M
(

EzM2 + ϵM2 − i∂zEµM + EXz + Xϵ + 2E
(

ME(Ez + ϵ)µ

−i∂z

(
M2+X

))
σ
)

E2 +
√

2
(

∂z

(
M2+X

)
+iME(Ez + ϵ)µ

)(√
X−BΦ1 −

√
B+XΦ3

))]
,

E1 = − 1

2M
(

M2 − EµM + X
)(

M2 + EµM + X
)

×
[
iE
√

X2 − B2zΦ3 M2 + i
√

X2 − B2ϵΦ3 M2

−2i
√

2B
√

X − B
((

M2 + X
)
(Ez + ϵ)− i∂z MEµ

)
σB2 M

+
√

2
√

X − B
(

i∂z

(
M2 + 2E2µσM + X

)
− E(Ez + ϵ)

(
Mµ + 2

(
M2 + X

)
σ
))

E2 M

+∂zE
√

X − B
√

B + XµΦ3 M + i
(
− 2M2E2(Ez + ϵ)µ2

+i∂z ME(X − B)µ +
(

M2 + X
)(

2M2 + B + X
)
(Ez + ϵ)

)
Φ1

+iEX
√

X2 − B2zΦ3 + iX
√

X2 − B2ϵΦ3

]
,

E3 = − 1

2M
(

M2 − EµM + X
)(

M2 + EµM + X
)

×
[
iE
√

X2 − B2zΦ1 M2 + i
√

X2 − B2ϵΦ1 M2 + 2i
√

2B
√

B + X

×
((

M2+X
)
(Ez + ϵ)−i∂z MEµ

)
σB2 M+

√
2
√

B+X
(

E(Ez+ϵ)
(

Mµ+2
(

M2+X
)

σ
)

−i∂z

(
M2 + 2E2µσM + X

))
E2 M + ∂zE

√
X2 − B2µΦ1 M

+iEX
√

X2 − B2zΦ1 + iX
√

X2 − B2ϵΦ1 − iB
((

M2 + X
)
(Ez + ϵ)− i∂z MEµ

)
Φ3

+i
(
− 2M2E2(Ez + ϵ)µ2 + i∂z MEXµ +

(
M2 + X

)(
2M2 + X

)
(Ez + ϵ)

)
Φ3

]
,

B1 =
1

2M
(

M2 − EµM + X
)(

M2 + EµM + X
)

×
[
∂z
√

X2 − B2Φ1 M2 + 2
√

2B
√

B + X
(

∂z

(
M2 + X

)
+ iME(Ez + ϵ)µ

)
σB2 M

+
√

2
√

B + X
(

EzM2 + ϵM2 − i∂zEµM + EXz + Xϵ

+2E
(

ME(Ez + ϵ)µ − i∂z

(
M2 + X

))
σ
)

E2 M + iE2
√

X2 − B2zµΦ1 M

+iE
√

X2−B2ϵµΦ1 M+∂zX
√

X2−B2Φ1−B
(

∂z

(
M2 + X

)
+ iME(Ez + ϵ)µ

)
Φ3

+
(
− 2∂z M2E2µ2 − iMEX(Ez + ϵ)µ + ∂z

(
M2 + X

)(
2M2 + X

))
Φ3

]
,

B3 = − 1

2M
(

M2 − EµM + X
)(

M2 + EµM + X
)

×
[
∂z
√

X2 − B2Φ3 M2 − 2
√

2B
√

X − B
(

∂z

(
M2 + X

)
+ iME(Ez + ϵ)µ

)
σB2 M

−
√

2
√

X−B
(

EzM2 + ϵM2 − i∂zEµM + EXz + Xϵ + 2E
(

ME(Ez + ϵ)µ − i∂z

(
M2+X

))
σ
)

E2 M
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+iE2√X − B
√

B + XzµΦ3 M + iE
√

X − B
√

B + XϵµΦ3 M

+
(
−2∂z M2E2µ2 + iME(B−X)(Ez + ϵ)µ + ∂z

(
M2+X

)(
2M2+B+X

))
Φ1+∂zX

√
X2−B2Φ3

]
.

Now, substitute these expressions in equations of the group I I. This results in
1 (

−
√

2B∂2
zσ
√

X − B(M2 + X)

(M2 + X)2 − µ2 M2E2 +

√
X − B√

2((M2 + X)2 − µ2 M2E2)

×
(
(2Bσ + i)(M2 − µME + X)(M2 + µME + X)− 2Bσ(M2 + X)(Ez + ϵ)2 − 2iBµMσE2

)
B2

+
( i∂2

z E
√

X − B(2σ(M2 + X) + µM)√
2((M2 + X)2 − µ2 M2E2)

− iE
√

X − B√
2((M2 + X)2 − µ2 M2E2)

×(−i(M2 + 2µMσE2 + X) + 2σ(M2 − µME + X)(M2 + µME + X)

−((Ez + ϵ)2(2σ(M2 + X) + µM)))
)

E2

+
( ∂2

z
√

X2 − B2(M2 + X)

2M(M2 − µME + X)(M2 + µME + X)
+

√
X2 − B2((M2 + X)(Ez + ϵ)2 + iµME2)

2M(M2 − µME + X)(M2 + µME + X)

)
Φ3

+

(
∂2

z((M2+X)(B + 2M2 + X)−2µ2 M2E2)

2M(M2 − µME + X)(M2 + µME + X)
+

1
2M(M2 − µME + X)(M2 + µME + X)

×
[
2iBµM(M2 − µME + X)(M2 + µME + X) + (M2 + X)(B + 2M2 + X)(Ez + ϵ)2

+iµME2(B − X) + 2µ2 M4E2 − 2µ2 M2E2(Ez + ϵ)2 − 2M2(M2 + X)2
])

Φ1 = 0,

2

(√2B∂2
zσ
√

B + X(M2 + X)

(M2 + X)2 − µ2 M2E2

+

√
B + X√

2
(

2Bσ(µ2 M2E2 − (M2 + X)(M2 − (Ez + ϵ)2 + X) + iµME2)

(M2 + X)2 − µ2 M2E2 + i)
)

B2

+
( E

√
B + X√

2((M2 + X)2 − µ2 M2E2)
(2iσ(M2 − µME + X)(M2 + µME + X)

−i(Ez + ϵ)2(2σ(M2 + X) + µM) + M2 + 2µMσE2 + X)

− i∂2
z E

√
B + X(2σ(M2 + X) + µM)√

2((M2 + X)2 − µ2 M2E2)

)
E2

+
( ∂2

z
√

X2 − B2(M2 + X)

2M(M2 − µME + X)(M2 + µME + X)
+

√
X2 − B2((M2 + X)(Ez + ϵ)2 + iµME2)

2M(M2 − µME + X)(M2 + µME + X)

)
Φ1

+
( 1

4M
∂2

z(4 −
2(B + X)(M2 + X)

(M2 + X)2 − µ2 M2E2 ) +
1

2M(M2 − µME + X)(M2 + µME + X)

×
[
2iBµ3 M3E2 − iµM(B(2(M2 + X)2 + E2) + E2X) + (M2 + X)(−(B − X)(Ez + ϵ)2

−2M4 + 2M2((Ez + ϵ)2 − X)) + 2µ2 M2E2(M − Ez − ϵ)(M + Ez + ϵ)
])

Φ3 = 0,

3 ( 2iB∂2
zµM2σE

(M2 + X)2 − µ2 M2E2 − 2BMσE(M2 − iµM(Ez + ϵ)2 + X)

(M2 + X)2 − µ2 M2E2

)
B2

+
( i∂2

zµME
√

X − B√
2((M2 + X)2 − µ2 M2E2)

− E
√

X − B(M2 − iµM(Ez + ϵ)2 + X)√
2((M2 + X)2 − µ2 M2E2)

)
Φ1

+
(E

√
B + X(M2 − iµM(Ez + ϵ)2 + X)√

2((M2 + X)2 − µ2 M2E2)
− i∂2

zµME
√

B + X√
2((M2 + X)2 − µ2 M2E2)

)
Φ3

+
( 1
(M2 + X)2 − µ2 M2E2 ∂2

z M(M2 + 2µMσE2 + X)

+
M

(M2 + X)2 − µ2 M2E2 (−M4 + M2(E2(µ2 + 2iσ + z2) + 2Ezϵ − 2X + ϵ2)
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+µME2(2σ(Ez + ϵ)2 + i) + X(2iσE2 + (Ez + ϵ)2 − X))
)

E2 = 0,

4
iΦ1

√
X − B√
2

+
iΦ3

√
B + X√
2

+ B2(−M) = 0.

With the help of the fourth equation, we can eliminate the variable B2 from the three
remaining equations (let us change the notations Φ1 = G, Φ3 = H, E2 = F); in order to
remove the fractions, we multiply each equation by

2M(M2 + X − MEµ)(M2 + X + MEµ)((M2 + X)2 − M2E2µ2),

so, we obtain the following three equations
1 [

i
√

2∂2
z ME

√
X − B(M2 − µME + X)(M2 + µME + X)(2σ(M2 + X) + µM)

−i
√

2ME
√

X − B(M2 − µME + X)(M2 + µME + X)(−i(M2 + 2µMσE2 + X)

+2σ(M2 − µME + X)(M2 + µME + X)− ((Ez + ϵ)2(2σ(M2 + X) + µM)))
]

F

+
[
∂2

z(M2 − µME + X)(M2 + µME + X)(2iBσ(B − X)(M2 + X)

+BM2 + BX + 2M4 − 2µ2 M2E2 + 3M2X + X2) + (M2 − µME + X)

×(M2 + µME + X)(i(X − B)((2Bσ + i)(M2 − µME + X)(M2 + µME + X)

−2Bσ(M2 + X)(Ez + ϵ)2 − 2iBµMσE2) + 2iBµM(M2 − µME + X)

×(M2 + µME + X) + (M2 + X)(B + 2M2 + X)(Ez + ϵ)2 + iµME2(B − X)

+2µ2 M4E2 − 2µ2 M2E2(Ez + ϵ)2 − 2M2(M2 + X)2)
]

G

+
[
∂2

z(1 − 2iBσ)
√

X2 − B2(M2 + X)(M2 − µME + X)(M2 + µME + X)

+i(2Bσ + i)
√

X2 − B2((M2 + X)2 − µ2 M2E2)(µ2(−M2)E2 + (M2 + X)

×(M2 − (Ez + ϵ)2 + X)− iµME2)
]

H = 0,

2[√
2ME

√
B + X(M2−µME + X)(M2+µME + X)(2iσ(M2−µME + X)(M2+µME+X)

−i(Ez + ϵ)2(2σ(M2 + X) + µM) + M2 + 2µMσE2 + X)

−i
√

2∂2
z ME

√
B + X(M2 − µME + X)(M2 + µME + X)(2σ(M2 + X) + µM)

]
F

+
[
∂2

z(1 + 2iBσ)
√

X2 − B2(M2 + X)(M2 − µME + X)(M2 + µME + X)

−i(2Bσ − i)
√

X2 − B2((M2 + X)2

−µ2 M2E2)(µ2(−M2)E2 + (M2 + X)(M2 − (Ez + ϵ)2 + X)− iµME2)
]

G

+
[
∂2

z(M2 − µME + X)(M2 + µME + X)(2iBσ(B + X)(M2 + X)

−BM2 − BX + 2M4 − 2µ2 M2E2 + 3M2X + X2) + (M2 − µME + X)

×(M2 + µME + X)(2iBµ3 M3E2 − iµM(B(2(M2 + X)2 + E2) + E2X)+

+i(B + X)(i((M2 + X)2 − µ2 M2E2)− 2Bσ(µ2(−M2)E2

+(M2 + X)(M2 − (Ez + ϵ)2 + X)− iµME2))

+(M2 + X)(−(B − X)(Ez + ϵ)2 − 2M4 + 2M2((Ez + ϵ)2 − X))

+2µ2 M2E2(M − Ez − ϵ)(M + Ez + ϵ))
]

H = 0,
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3 [
2∂2

z M2(M2 − µME + X)(M2 + µME + X)(M2 + 2µMσE2 + X)

+2M2(M2 − µME + X)(M2 + µME + X)

×(−M4 + M2(E2(µ2 + 2iσ + z2) + 2Ezϵ − 2X + ϵ2)

+µME2(2σ(Ez + ϵ)2 + i) + X(2iσE2 + (Ez + ϵ)2 − X))
]

F

+
[
−
√

2∂2
zµM2E(2Bσ − i)

√
X − B(M2 − µME + X)(M2 + µME + X)

−i
√

2ME(2Bσ−i)
√

X−B(M2−µME+X)(M2+µME+X)(M2−iµM(Ezϵ)2+X)
]

G

+
[√

2ME(1−2iBσ)
√

B+X(M2−µME+X)(M2+µME+X)(M2−iµM(Ez+ϵ)2+X)

−
√

2∂2
zµM2E(2Bσ + i)

√
B + X(M2 − µME + X)(M2 + µME + X)

]
H = 0,

Let us write the last system in symbolical form

1 a1F′′ + b1F + c1G′′ + d1G + l1H′′ + n1H = 0,

2 a2F′′ + b2F + c2G′′ + d2G + l2H′′ + n2H = 0,

3 a3F′′ + b3F + c3G′′ + d3G + l3H′′ + n3H = 0.

We will combine equations

(1) · α + (2) · β + (3) · γ = 0;

in this way, we obtain the following equation

(αa1 + βa2 + γa3)F′′ + (αb1 + βb2 + γb3)F

(αc1 + βc2 + γc3)G′′ + (αd1 + βd2 + γd3)G

(αl1 + βl2 + γl3)H′′ + (αn1 + βn2 + γn3)H = 0.

We will distinguish three different cases:

I
α1a1 + β1a2 + γ1a3 = 1,
α1c1 + β1c2 + γ1c3 = 0,
α1l1 + β1l2 + γ1l3 = 0;

I I
α2a1 + β2a2 + γ2a3 = 0,
α2c1 + β2c2 + γ2c3 = 1,
α2l1 + β2l2 + γ2l3 = 0;

I I I
α3a1 + β3a2 + γ3a3 = 0,
α3c1 + β3c2 + γ3c3 = 0,
α3l1 + β3l2 + γ3l3 = 1;

the corresponding three solutions have the form

I

α1 = µE(2Bσ−i)
√

X−B

2
√

2
(
(M2+X)

2−µ2 M2E2
)2

(2iB2σ+M2+2µMσE2)
,

β1 = iµE(1−2iBσ)
√

B+X

2
√

2
(
(M2+X)

2−µ2 M2E2
)2

(2iB2σ+M2+2µMσE2)
,

γ1 =
M2(M2−µ2E2+X)+2iB2σ(M2+X)

2M2(M2−µME+X)
2
(M2+µME+X)

2
(2iB2σ+M2+2µMσE2)

;
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I I

α2 =
2iB2σ+B(−1+2iσX)+2M(M+2µσE2)+X

4
(
(M2+X)

2−µ2 M2E2
)2

(2iB2σ+M2+2µMσE2)
,

β2 = i(2Bσ+i)
√

X−B
√

B+X

4
(
(M2+X)

2−µ2 M2E2
)2

(2iB2σ+M2+2µMσE2)
,

γ2 = − iE
√

X−B(2σ(M2+X)+µM)

2
√

2M
(
(M2+X)

2−µ2 M2E2
)2

(2iB2σ+M2+2µMσE2)
;

I I I

α3 = i(−2Bσ+i)
√

X−B
√

B+X

4
(
(M2+X)

2−µ2 M2E2
)2

(2iB2σ+M2+2µMσE2)
,

β3 =
2iB2σ−2iBσX+B+2M(M+2µσE2)+X

4
(
(M2+X)

2−µ2 M2E2
)2

(2iB2σ+M2+2µMσE2)
,

γ3 =
iE
√

B+X(2σ(M2+X)+µM)

2
√

2M
(
(M2+X)

2−µ2 M2E2
)2

(2iB2σ+M2+2µMσE2)
.

So, the above equations can be written

(1) F′′ + (α1b1 + β1b2 + γ1b3)F

+(α1d1 + β1d2 + γ1d3)G + (α1n1 + β1n2 + γ1n3)H = 0,

(2) G′′ + (α2b1 + β2b2 + γ2b3)F

+(α2d1 + β2d2 + γ2d3)G + (α2n1 + β2n2 + γ2n3)H = 0,

(3) H′′ + (α3b1 + β3b2 + γ3b3)F

+(α3d1 + β3d2 + γ3d3)G + (α3n1 + β3n2 + γ3n3)H = 0.

Let us make the necessary change σ ⇒ iσ, µ ⇒ iµ. So, we obtain (also it is convenient
to apply the designation (Ez + ϵ) = Σ):

(1) F′′ + Σ2F

+
−M2(−2B2σ + W2(µ2+2σ)+X)+µMW2(2σ(2B2σ+X)−1)+2B2σ(2σW2+X)− M4

M2−2σ(B2+µMW2)
F

+
W(2Bσ − 1)

√
X − B(M(−Bµ + µM(Bµ + M) + M)− 2B2σ(µM + 1))√

2(M3 − 2Mσ(B2 + µMW2))
G+

+
W(2Bσ + 1)

√
B + X(M(Bµ + µM(M − Bµ) + M)− 2B2σ(µM + 1))√

2(M3 − 2Mσ(B2 + µMW2))
H = 0,

(2) G′′ + Σ2G +
1

2M2 − 4σ(B2 + µMW2)

×
[
2B3σ(µM − 1) + B2(2σ(2M2 + µMX + X) + µM − 4σ2W2(µM + 1)− 1)

+B(−(µM − 1)(2M2 + X) + 2σW2(µM(2µM − 1) + 1) + 4σ2W2X(µM + 1))

+2σW2(2µM3 + X(µM − 1))− 2M2(M2 + X)
]

G−

− MW
√

X − B(µM + 1)(4σ2W2 + 1)√
2(M2 − 2σ(B2 + µMW2))

F

+
(2Bσ + 1)

√
X − B

√
B + X(B(µM − 1)− 2σW2(µM + 1))

4σ(B2 + µMW2)− 2M2 H = 0,

(3) H′′ + Σ2H

+
1

2M2 − 4σ(B2 + µMW2)

[
− 2B3σ(µM − 1) + B2(2σ(2M2 + µMX + X) + µM

−4σ2W2(µM + 1)− 1) + B((µM − 1)(2M2 + X) + 2σW2(µM(1 − 2µM)− 1)
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−4σ2W2X(µM + 1)) + 2σW2(2µM3 + X(µM − 1))− 2M2(M2 + X)
]

H

+
MW

√
B + X(µM + 1)(4σ2W2 + 1)√

2(M2 − 2σ(B2 + µMW2))
F

+
(2Bσ − 1)

√
X − B

√
B + X(B(µM − 1) + 2σW2(µM + 1))

4σ(B2 + µMW2)− 2M2 G = 0.

Let us present the system in matrix form

∆ =
d2

dz2 + Σ2(z), ∆

∣∣∣∣∣∣∣
F
G
H

∣∣∣∣∣∣∣ = A

∣∣∣∣∣∣∣
F
G
H

∣∣∣∣∣∣∣, ∆Ψ(z) = AΨ(z), A =

∣∣∣∣∣∣∣
A1 B1 C1

A2 B2 C2

A3 B3 C3

∣∣∣∣∣∣∣.
Now, we will find the transformation that diagonalizes the system

Ψ̄=SΨ, ∆Ψ̄(z) = ĀΨ̄(z), Ā=SAS−1=

∣∣∣∣∣∣∣
λ1 0 0
0 λ2 0
0 0 λ3

∣∣∣∣∣∣∣, S=

∣∣∣∣∣∣∣
s11 s12 s13

s21 s22 s23

s31 s32 s33

∣∣∣∣∣∣∣,
we must find solutions for equation SA = ĀS; explicitly, it reads∣∣∣∣∣∣∣

s11 s12 s13

s21 s22 s23

s31 s32 s33

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

A1 B1 C1

A2 B2 C2

A3 B3 C3

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

λ1 0 0
0 λ2 0
0 0 λ3

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

s11 s12 s13

s21 s22 s23

s31 s32 s33

∣∣∣∣∣∣∣;
with the following three similar subsystems

(A1 − λ1)s11 + A2s12 + A3s13 = 0
B1s11 + (B2 − λ1)s12 + B3s13 = 0
C1s11 + C2s12 + (C3 − λ1)s13 = 0

,


(A1 − λ2)s21 + A2s22 + A3s23 = 0
B1s21 + (B2 − λ2)s22 + B3s23 = 0
C1s21 + C2s22 + (C3 − λ2)s23 = 0

,


(A1 − λ3)s31 + A2s32 + A3s33 = 0
B1s31 + (B2 − λ3)s32 + B3s33 = 0
C1s31 + C2s32 + (C3 − λ3)s33 = 0

,

or differently∣∣∣∣∣∣∣
(A1 − λ) A2 A3

B1 (B2 − λ) B3

C1 C2 (C3 − λ)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

si1

si2

si3

∣∣∣∣∣∣∣ = 0, i = 1, 2, 3. (18)

From vanishing the determinant

det

∣∣∣∣∣∣∣
(A1 − λ) A2 A3

B1 (B2 − λ) B3

C1 C2 (C3 − λ)

∣∣∣∣∣∣∣ = 0

we derive the cubic equation
λ3 − λ2(A1 + B2 + C3)+

+λ(A2B1 − A1B2 + A3C1 − A1C3 + B3C2 − B2C3)

+A3B2C1 − A2B3C1 − A3B1C2 + A1B3C2 + A2B1C3 − A1B2C3 = 0.
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Let us write down equations with solutions that determine the elements of the matrix
S:

(A1 − λ1)s11 + A2s12 + A3 = 0
B1s11 + (B2 − λ1)s12 + B3 = 0

, assuming s13 = 1;

(A1 − λ2)s21 + A2s22 + A3 = 0
B1s21 + (B2 − λ2)s22 + B3 = 0

, assuming s23 = 1;

(A1 − λ3)s31 + A2s32 + A3 = 0
B1s31 + (B2 − λ3)s32 + B3 = 0

, assuming s33 = 1.

After performing this transformation, we obtain three separate equations

( d2

dz2 + (Ez + ϵ)2 − λ1

)
F̄ = 0 ,

( d2

dz2 + (Ez + ϵ)2 − λ2

)
Ḡ = 0 ,

( d2

dz2 + (Ez + ϵ)2 − λ3

)
H̄ = 0 .

These equations have the same structure as a scalar particle in the uniform electric field

( d2

dz2 + (Ez + ϵ)2 − λ
)

Φ(z) = 0 . (19)

We can transform Equation (19) to the new variable (assuming that E > 0)

Z = i
(Ez + ϵ)2

E
, Λ =

λ

4E
, (20)

then, we obtain the confluent hypergeometric equation

( d2

dZ2 +
1/2
Z

d
dZ

− 1
4
+

iΛ
Z

)
Φ(Z) = 0 ; (21)

its solutions were given in [32].

8. Conclusions
We studied a generalized Duffin–Kemmer–Petiau equation for spin-1 particles with

two additional characteristics besides electric charge, namely anomalous magnetic moment
and polarizability, in the presence of both external uniform magnetic and electric fields.

After separating the variables, we obtain a system of 10 first-order partial differential
equations for 10 functions fi(r, z).

To describe the r-dependence of the 10 functions fA(r, z), A = 1, . . . , 10, we applied
the method of Fedorov–Gronskiy [31]. Thus, the complete 10-component wave function is
decomposed into the sum of three projective constituents. The dependence of each com-
ponent on the polar coordinate r is determined by only one corresponding function, Fi(r),
i = 1, 2, 3.

These three basic functions are constructed in terms of confluent hypergeometric func-
tions, and in this process a quantization rule arises due to the presence of a magnetic field.

After that, we derived a system of 10 ordinary differential equations for 10 functions
fA(z). This system was solved using the elimination method and through special linear
combinations of the involved functions.

As the result, we obtain three separate second-order differential equations, whose
solutions can be constructed in the terms of confluent hypergeometric functions.

Due to the spin value of S = 1, we should expect in advance the existence of three
types of solutions, 2S + 1 = 3; these are precisely the ones found as the main result. Further,



Symmetry 2025, 17, 1465 19 of 20

the constructed solutions depend on a quantized parameter arising from the presence of
a magnetic field, so the radiation spectra of such a particle depend on the magnitude of
the external magnetic field. Moreover, the wave functions and spectra depend on two
additional characteristics of the particle.

These solutions may be helpful for experimental testing of the intrinsic structure of
vector bosons.
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