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In the paper, we study a generalized Duffin – Kemmer equation for spin 1 particle with
two characteristics, anomalous magnetic moment and polarizability in the presence of an
external uniform electric field. This approach is extended to space-time models with a pseudo-
Riemannian structure, within the tetrad method. We specify the basic equations to the
cylindrical coordinates, after separating the variables, we get the system of 10 first order
partial differential equations for 10 functions fi(r, z). To describe the r-dependence of these
functions, we apply the method by Fedorov – Gronskiy; in this approach, the complete
10-component wave function is decomposed into the sum of three projective constituents,
dependence of each component on the polar coordinate is determined by the only functions
Fi(r), i = 1, 2, 3; the last are constructed in terms of the Bessel functions. After that we
derive a system of 10 ordinary differential equations for 10 functions fA(z). This system is
solved with the use of eliminating method and of special linear combining of the involved
functions; as a result we find three independent solutions for the last system. The types
of solutions for a vector particle with two additional electromagnetic characteristics in the
presence of an external uniform electric field are investigated.
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1. Introduction

Within the general method by Gel’fand –
Yaglom [1], for a spin 1 particle in [2] it was
constructed a relativistic generalized system of
the first order equations for a particle with two
additional characteristics, anomalous magnetic
moment and polarizability (a number of relevant
papers see in [3]—[14]). First, the model was
developed for a free particle, and the system
of spinor equations was obtained; then it was
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‡E-mail: polinasacenok@gmail.com
§E-mail: e.ovsiyuk@mail.ru

transformed to tensor form. In tensor form,
the presence of external electromagnetic fields
was taken into account. After eliminating the
accessory variables of the complete wave function,
it was derived the minimal system of 10 equations,
it contains two additional interaction terms which
are interpreted as related to the anomalous
magnetic moment and polarizability.

In the present paper, we extend this equation
to space-time models with pseudo-Riemannian
structure within the tetrad method, and specify
this generalized Daffin – Kemmer – Petiau
equation in cylindrical coordinates and tetrad,
taking into account the presence of the external
uniform electric field.

After separating the variables, we get the
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system of 10 first order partial differential
equations for 10 functions fi(r, z). To describe
the r-dependence of 10 functions fA(r, z),
A = 1, ..., 10, we apply the method by Fedorov –
Gronskiy [15]; in this approach, the complete 10-
component wave function is decomposed into the
sum of three projective constituents, dependence
of each component on the polar coordinate
is determined by only functions Fi(r), i =
1, 2, 3; they are constructed in terms of Bessel
functions. After that we derive a system of 10
ordinary differential equations for 10 functions
fA(z). This system is solved with the use of
the elimination method and with the help of
special linear combining of the involved functions.
As a result we find three independent solutions
for the last system. Thus, in this paper, the
types of solutions for a vector particle with
two additional electromagnetic characteristics in
presence of external uniform electric field are
found.

2. Matrix equation in Minkowski
space

We start [2] with the following tensor
equations (let Da = ∂a + ieAa)

DbΦab + eµFabΦ
b

+eσDa(F
cdΦcd)−MΦa = 0,

DaΦb −DbΦa −MΦab = 0;

(1)

they may be compared with the ordinary Proca
system

DbΦab −MΦa = 0,

DaΦb −DbΦa −MΦab = 0.
(2)

In (1), we can see two additional interaction
terms, proportional to parameters µ (anomalous
magnetic moment) and σ (polarizability); in the
paper [16], it was proved that parameters µ, σ are
imaginary: µ =⇒ iµ, σ =⇒ iσ (we will take this
into account later on).

We use the 10-dimensional column:

Φ = (Φ0,Φ1,Φ2,Φ3; Φ01,Φ02,Φ03,Φ23,Φ31,Φ12)

= (H1;H2).

Let us recall the matrix form of the Proca system
when µ = 0, σ = 0. The first equation gives
KaDaH2 −MH1 = 0, where

K0 =

∣∣∣∣∣∣∣∣
. . . . . .

−1 . . . . .
. −1 . . . .
. . −1 . . .

∣∣∣∣∣∣∣∣ ,K
1 =

∣∣∣∣∣∣∣∣
−1 . . . . .
. . . . . .
. . . . . 1
. . . . −1 .

∣∣∣∣∣∣∣∣ ,

K2 =

∣∣∣∣∣∣∣∣
. −1 . . . .
. . . . . −1
. . . . . .
. . . +1 . .

∣∣∣∣∣∣∣∣ ,K
3 =

∣∣∣∣∣∣∣∣
. . −1 . . .
. . . . +1 .
. . . −1 . .
. . . . . .

∣∣∣∣∣∣∣∣ .
The second equation in (2) leads to DaL

aH1 −
MH2 = 0, where

L0 =

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
, L1 =

∣∣∣∣∣∣∣∣∣∣∣∣

−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

∣∣∣∣∣∣∣∣∣∣∣∣
,

L2 =

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0
−1 0 0 0

0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
, L3 =

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
−1 0 0 0

0 0 −1 0
0 1 0 0
0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
.

Thus, the system of equations for the ordinary
spin 1 particle is presented in the block form as
follows

KaDaH2 −MH1 = 0,

LaDaH1 −MH2 = 0.
(3)

Let us detail the first additional term in (1)
(taking in mind identities: F01Φ1 = −F01Φ1 =
−E1Φ1, F12Φ2 = −F12Φ2 = B3Φ2, and so on)

eµFabΦ
b =

∣∣∣∣∣∣∣∣
0 −E1 −E2 −E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

Φ0

Φ1

Φ2

Φ3

∣∣∣∣∣∣∣∣ ,
whence allowing for the structure of six
Lorentzian generators for vector field
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j12 = S1 =

∣∣∣∣∣∣∣∣
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

∣∣∣∣∣∣∣∣ , j31 = S2 =

∣∣∣∣∣∣∣∣
0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

∣∣∣∣∣∣∣∣ , j23 = S1 =

∣∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

∣∣∣∣∣∣∣∣ ,

j01 = T1 =

∣∣∣∣∣∣∣∣
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣ , j02 = T2 =

∣∣∣∣∣∣∣∣
0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣ , j03 = T3 =

∣∣∣∣∣∣∣∣
0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

∣∣∣∣∣∣∣∣ ,
we obtain the more short presentation for this interaction term

eµFαβΦβ =⇒ −eµ
(
SB + TE

)
H1.

The second additional term in (1) is

eσDa(F
cdΦcd) = 2eσDa

∣∣∣∣∣∣∣∣∣∣∣∣

E1 0 0 0 0 0
0 E2 0 0 0 0
0 0 E3 0 0 0
0 0 0 −B1 0 0
0 0 0 0 −B2 0
0 0 0 0 0 −B3

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

Φ01

Φ02

Φ03

Φ23

Φ31

Φ12

∣∣∣∣∣∣∣∣∣∣∣∣
.

So we have a generalized Duffin – Kemmer – Petiau equation in the block form

(
KaDaH2

)
c
− eµ

[
(SB + TE)H1

]
c

+ eσDc(F
klΦkl)−M(H1)c = 0,

(
LaDaH1

)
[kl]
−M(H2)[kl] = 0.

3. Extension to curved space-time models

In Riemannian space-time, we start with the tensor covariant equations

DβΦ β
α + eµFαβΦβ + eσ∂̂α(F ρδΦρδ)−MΦα = 0, DαΦβ −DβΦα −MΦαβ = 0; (4)

below two different derivative symbols will be used: Dα = ∇α + ieAα and ∂̂α = ∂α + ieAα. Let us
transform these equations to tetrad form. First, we obtain

Dβ

(
e(a)αe

β
(b)Φ

ab
)

+ eµ e(a)
α F(a)(b)Φ

b

+eσ ∂̂α(F abΦab)−MΦα = 0, Dαe
(b)
β Φb −Dβe

(a)
α Φa −Me(a)αe(b)βΦab = 0;
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whence it follows

e(a)αe
β
(b)∂̂βΦab + (∇βe(a)α)eβ(b)Φ

ab + e(a)α(∇βeβ(b))Φ
ab + eµ e(a)

α F(a)(b)Φ
b

+eσ(∂αF
ab)Φab + eσF ab∂̂αΦab −MΦα = 0,

e
(b)
β ∂̂αΦb − e(b)

α ∂̂βΦb + (∇αe(b)
β )Φb − (∇βe(b)

α )Φb −Me(a)αe(b)βΦab = 0.

Multiplying the first equation by eα(c):

eα(c)e(a)αe
β
(b)∂̂βΦab + (∇βe(a)α)eα(c)e

β
(b)Φ

ab + eα(c)e(a)α(∇βeβ(b))Φ
ab (5)

+eµ eα(c)e
(a)
α F(a)(b)Φ

b + eσ eα(c)(∂αF
ab)Φab + eσF abeα(c)∂̂αΦab −Meα(c)Φα = 0,

we get (applying the shortening notation eβ(b)(∂β + ieAβ) = ∂̂(b))

∂̂(b)Φ
b
c + e(a)α;βe

α
(c)e

β
(b)Φ

ab + eβ(b);βΦ b
c + eµFcbΦ

b + eσ(∂(c)F
ab)Φab + eσ F ab∂̂(c)Φab −MΦc = 0.

The second equation leads to

∂̂(c)Φd − ∂̂(d)Φc + e(b)β;αe
β
(d)e

α
(c)Φ

b − e(b)α;βe
α
(c)e

β
(d)Φ

b −MΦcd = 0.

Taking into account the definition for Ricci rotation coefficients γabc = −e(a)ρ;σe
ρ
(b)e

σ
(c), e

α
(a);α = γ b

ba , we
can rewrite the above equations in a shorter form

∂̂(b)Φ
b
c − γacbΦab + eβ(b);βΦ b

c + eµFcbΦ
b + eσ(∂(c)F

ab)Φab + eσF ab∂̂(c)Φab −MΦc = 0,

∂̂(c)Φd − ∂̂(d)Φc + γbdcΦ
b − γbcdΦb −MΦcd = 0.

We should recall the known matrix tetrad
form of the ordinary vector particle[

βc
(
eα(c)(x)

∂

∂xα
+

1

2
Jabγabc

)
−M

]
Φ = 0,

Φ =

∣∣∣∣ Φa

Φab

∣∣∣∣ =

∣∣∣∣ H1

H2

∣∣∣∣ ; (6)

two additional interactions terms are

eµ FαβΦβ = eµ
(
SB−TE

)
H1,

eσ∂̂α(F cdΦcd) = eσ

∣∣∣∣∣∣∣∣∣
∂̂(0)(F

cdΦcd)

∂̂(1)(F
cdΦcd)

∂̂(2)(F
cdΦcd)

∂̂(3)(F
cdΦcd)

∣∣∣∣∣∣∣∣∣ .
(7)

Thus, we have the following generalized system of

equations

(
KcD(2)

c H2

)
n
− eµ

[
(SB + TE)H1

]
n

+eσeα(n)∂̂α(F klΦkl)−M(H1)n = 0,(
LcD(1)

c H1

)
[kl]
− (MH2)[kl] = 0.

4. Particle in the electric field

Cylindrical coordinates xα = (t, r, φ, z), the
relevant tetrad, Ricci rotation coefficients, and the
uniform electric field are determined by relations
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dS2 = dt2 − dr2 − r2dφ2 − dz2, gαβ =

∣∣∣∣∣∣∣∣
1 0 0 0
0 −1 0 0
0 0 −r2 0
0 0 0 −1

∣∣∣∣∣∣∣∣ , e
α
(a) =

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 1

r 0
0 0 0 1

∣∣∣∣∣∣∣∣ ,
γ122 = −γ212 = +γ 2

21 = eα(1);α =
1

r
,A0 = −Ez, F03 = et(0)e

z
(3)Ftz = +E, ∂̂0 =⇒ −iε− ieEz.

Correspondingly, the system of equations takes on the form[
K0(∂0 − ieEz) +K1∂r +K2 1

r
(∂φ + j12

2 ) +K3∂z

]
H2

−eµEj03
1 H1 + 2Eeσ

∣∣∣∣∣∣∣∣
∂0 − ieEz

∂r
1
r∂φ
∂z

∣∣∣∣∣∣∣∣E3 −MH1 = 0,

[
L0(∂0 − ieEz) + L1∂r + L2 1

r
(∂φ + j12

1 ) + L3∂z

]
−MH2 = 0.

(8)

5. Cyclic basis

It is more convenient to apply the so called
cyclic basis. It is defined by requirement to have
a diagonal generator j12

1 for the vector field H1 =
(Φl). The needed transformation Φ̄ = UΦ is
determined by the matrix U

U =

∣∣∣∣∣∣∣∣∣
1 0 0 0
0 − 1√

2
i√
2

0

0 0 0 1
0 1√

2
i√
2

0

∣∣∣∣∣∣∣∣∣ , j̄
12 =

∣∣∣∣∣∣∣∣∣
0 0 0 0

0 −i 0 0

0 0 0 0

0 0 0 +i

∣∣∣∣∣∣∣∣∣ .
Correspondingly, vector and tensor generators
transform according to the rules

J̄ab1 = UjabU−1, J̄ab2 = j̄ab ⊗ I + I ⊗ j̄ab. (9)

Let us find a 6-dimensional presentation for tensor
generators

J12
(2) =

∣∣∣∣∣∣∣∣∣∣∣∣

0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
. (10)

We should transform the Duffin – Kemmer
matrices βa to the cyclic basis as well; it is
convenient to apply the block presentation: H̄1 =
C1H1, (C1 = U), H̄2 = (U ⊗ U)H2 = C2H2;
further we obtain

∣∣∣∣ 0 K̄a

L̄a 0

∣∣∣∣ =

∣∣∣∣ 0 C1K
aC−1

2

C2L
aC−1

1 0

∣∣∣∣ .

Taking in mind the formulas

C1 = U =

∣∣∣∣∣∣∣∣∣
1 0 0 0
0 − 1√

2
i√
2

0

0 0 0 1
0 1√

2
i√
2

0

∣∣∣∣∣∣∣∣∣ ,

C−1
1 = U−1 =

∣∣∣∣∣∣∣∣∣
1 0 0 0
0 − 1√

2
0 1√

2

0 − i√
2

0 − i√
2

0 0 1 0

∣∣∣∣∣∣∣∣∣ ,
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we derive explicit form of the matrix C2, U ⊗
U =⇒ C2, H̄2 = C2H2

C2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− 1√
2

i√
2

0 0 0 0

0 0 1 0 0 0
1√
2

i√
2

0 0 0 0

0 0 0 − i√
2

1√
2

0

0 0 0 0 0 i
0 0 0 i√

2
1√
2

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

C−1
2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− 1√
2

0 1√
2

0 0 0

− i√
2

0 − i√
2

0 0 0

0 1 0 0 0 0
0 0 0 i√

2
0 − i√

2

0 0 0 1√
2

0 1√
2

0 0 0 0 −i 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Further, we readily find the needed blocks:

K̄0 =

∣∣∣∣∣∣∣∣
0 0 0 0 0 0
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0

∣∣∣∣∣∣∣∣ ,

K̄1 =

∣∣∣∣∣∣∣∣∣
1√
2

0 − 1√
2

0 0 0

0 0 0 0 1√
2

0

0 0 0 − 1√
2

0 − 1√
2

0 0 0 0 1√
2

0

∣∣∣∣∣∣∣∣∣ ,

K̄2 =

∣∣∣∣∣∣∣∣∣
i√
2

0 i√
2

0 0 0

0 0 0 0 − i√
2

0

0 0 0 i√
2

0 − i√
2

0 0 0 0 i√
2

0

∣∣∣∣∣∣∣∣∣ ,

K̄3 =

∣∣∣∣∣∣∣∣
0 −1 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 1 0 0

∣∣∣∣∣∣∣∣ ,

L̄1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1√
2

0 0 0

0 0 0 0
− 1√

2
0 0 0

0 0 − 1√
2

0

0 1√
2

0 1√
2

0 0 − 1√
2

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

L̄2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− i√
2

0 0 0

0 0 0 0
− i√

2
0 0 0

0 0 − i√
2

0

0 i√
2

0 − i√
2

0 0 i√
2

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

L̄3 =

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0
−1 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
, L̄0 =

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
,

and also expressions for the needed generators

J̄12
1 = i

∣∣∣∣∣∣∣∣∣
0 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 +1

∣∣∣∣∣∣∣∣∣ , j̄03
1 =

∣∣∣∣∣∣∣∣∣
0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

∣∣∣∣∣∣∣∣∣ ,

J̄12
2 = i

∣∣∣∣∣∣∣∣∣∣∣∣

−1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣
.

Now let us transform the above system to the cyclic basis. The first equation leads to

[
C1K

0C−1
2 C2(∂0 − ieEz) + (C1K

1C−1
2 C2∂r

+C1K
2C−1

2 C2
1

r
∂φ + j12

2 + C1K
3C−1

2 C2∂z

]
C−1

2 C2H2 −MC1H1
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+eµE(C1j
03
1 C−1

1 )C1H1 − 2Eeσ

∣∣∣∣∣∣∣∣∣
1 0 0 0
0 − 1√

2
i√
2

0

0 0 0 1
0 1√

2
i√
2

0

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

∂0 − ieEz

∂r

1/r ∂φ

∂z

∣∣∣∣∣∣∣∣∣∣∣
Φ̄02 = 0;

whence allowing for the identity∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− 1√
2

i√
2

0 0 0 0

0 0 1 0 0 0
1√
2

i√
2

0 0 0 0

0 0 0 − i√
2

1√
2

0

0 0 0 0 0 i
0 0 0 i√

2
1√
2

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

0
0

Φ03

0
0
0

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

0
Φ̄02 = Φ03

0
0
0
0

∣∣∣∣∣∣∣∣∣∣∣∣
,

the first equation is transformed to the form[
K̄0(−iε− ieEz) + K̄1∂r + K̄2 1

r
(∂φ + j̄12

2 ) + K̄3∂z

]
H̄2 + eµEj̄03

1 H̄1

+2Eeσ

∣∣∣∣∣∣∣∣∣
1 0 0 0
0 − 1√

2
i√
2

0

0 0 0 1
0 1√

2
i√
2

0

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

∂0 − ieEz

∂r

1/r ∂φ

∂z

∣∣∣∣∣∣∣∣∣∣∣
Φ̄02 −MH̄1 = 0,

(11)

The second equation transforms as follows[
L̄0(∂0 − ieEz) + L̄1∂r + L̄2 1

r
(∂φ + j̄12

1 ) + L̄3∂z

]
H̄1 −MH̄2 = 0. (12)

Now let us perform the separation of the variables in cyclic basis. Taking in mind the substitution

H̄1 = e−iεteimφ

∣∣∣∣∣∣∣∣
Φ̄0(r, z)
Φ̄1(r, z)
Φ̄2(r, z)
Φ̄3(r, z)

∣∣∣∣∣∣∣∣ , H̄2 = e−iεteimφ

∣∣∣∣∣∣∣∣∣∣∣∣

Ē1(r, z)
Ē2(r, z)
Ē3(r, z)
B̄1(r, z)
B̄2(r, z)
B̄3(r, z)

∣∣∣∣∣∣∣∣∣∣∣∣
, (13)

we get [
K̄0(−iε− ieEz) + K̄1∂r + K̄2 1

r
(im+ j̄12

2 ) + K̄3∂z

]
H̄2 −MH̄1

+eµEj̄03
1 H̄1 + 2Eeσ

∣∣∣∣∣∣∣∣∣
1 0 0 0
0 − 1√

2
i√
2

0

0 0 0 1
0 1√

2
i√
2

0

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

−iε− ieEz

∂r

im/r

∂z

∣∣∣∣∣∣∣∣∣∣∣
Φ̄02 = 0,

[
L̄0(−iε− ieEz) + L̄1∂r + L̄2 1

r
(im+ j̄12

1 ) + L̄3∂z

]
H̄1 −MH̄2 = 0.
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Let us specify separately two additional terms:

+eµEj̄03
1 H̄1(r) = +eµE

∣∣∣∣∣∣∣∣∣
0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

Φ̄0

Φ̄1

Φ̄2

Φ̄3

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
+eµEΦ̄2

0
+eµEΦ̄0

0

∣∣∣∣∣∣∣∣ ,

+2Eeσ

∣∣∣∣∣∣∣∣∣
1 0 0 0
0 − 1√

2
i√
2

0

0 0 0 1
0 1√

2
i√
2

0

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

−iε− ieEz

∂r

im/r

∂z

∣∣∣∣∣∣∣∣∣∣∣
Φ̄02 =

∣∣∣∣∣∣∣∣
2Eeσ (−iε− ieEz)
−
√

2Eeσ (∂r + m/r)
2Eeσ ∂z√

2Eeσ (∂r − m/r)

∣∣∣∣∣∣∣∣ Φ̄02 .

so we arrive at [
K̄0(−iε− ieEz) + K̄1∂r + K̄2 1

r
(im+ j̄12

2 ) + K̄3∂z

]
H̄2 −MH̄1

+

∣∣∣∣∣∣∣∣
eµEΦ̄2

0
+eµEΦ̄0

0

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
2Eeσ (−iε− ieEz)Ē2

−
√

2Eeσ (∂r + m/r)Ē2

2Eeσ ∂zĒ2√
2Eeσ (∂r − m/r)Ē2

∣∣∣∣∣∣∣∣ = 0,

L̄c
[
(−iε− ieEz) + ∂r +

1

r
(im+ j̄12

1 ) + ∂z

]
H̄1 −MH̄2 = 0.

(14)

Whence we obtain the following 10 equations

1
1√
2

( ∂
∂r
− m− 1

r

)
Ē1(r, z)− 1√

2

( ∂
∂r

+
m+ 1

r

)
Ē3(r, z)− ∂zĒ2

+eµEΦ̄2(r, z)− 2 iEeσ (ε+ eEz) Ē2(r, z) = M Φ̄0(r, z) ,

2 i (ε+ eEz) Ē1(r, z) +
1√
2

( ∂
∂r

+
m

r

)
B̄2(r, z)− ∂zB̄3(r, z)−

√
2Eeσ

( ∂
∂r

+
m

r

)
Ē2(r, z) = M Φ̄1(r, z),

3 + i (ε+ eEz) Ē2(r, z)− 1√
2

( ∂
∂r

+
m+ 1

r

)
B̄1(r, z)− 1√

2

( ∂
∂r
− m− 1

r

)
B̄3(r, z)

+eµEΦ̄0(r, z) + 2Eeσ ∂zĒ2(r, z) = M Φ̄2(r, z) ,

4 i (ε+ eEz) Ē3(r, z) +
1√
2

( ∂
∂r
− m

r

)
B̄2(r, z) + ∂zB̄1(r, z) +

√
2Eeσ

( ∂
∂r
− m

r

)
Ē2(r, z) = M Φ̄3(r, z),

5
1√
2

( ∂
∂r

+
m

r

)
Φ̄0(r, z)− i (ε+ eEz) Φ̄1(r, z) = MĒ1(r, z) ,

6 − ∂zΦ̄0(r, z)− i (ε+ eEz) Φ̄2(r, z) = MĒ2(r, z) ,

7 − 1√
2

( ∂
∂r
− m

r

)
Φ̄0(r, z)− i (ε+ eEz) Φ̄3(r, z) = MĒ3(r, z) ,

8 − 1√
2

( ∂
∂r
− m

r

)
Φ̄2(r, z) + ∂zΦ̄3(r, z) = MB̄1(r, z) ,

9
1√
2

( ∂
∂r
− m− 1

r

)
Φ̄1(r, z) +

1√
2

( ∂
∂r

+
m+ 1

r

)
Φ̄3(r, z) = MB̄2(r, z) ,

10 − 1√
2

( ∂
∂r

+
m

r

)
Φ̄2(r, z)− ∂zΦ̄1(r, z) = MB̄3(r, z) .
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With the use of the shortening notations

am =
∂

∂r
+
m

r
, am+1 =

∂

∂r
+
m+ 1

r
,

bm =
∂

∂r
− m

r
, bm−1 =

∂

∂r
− m− 1

r
,

(15)

the above 10 equations read as follows

1
1√
2
bm−1Ē1(r, z)− 1√

2
am+1Ē3(r, z)− ∂zĒ2

+eµEΦ̄2(r, z)− 2 iEeσ (ε+ eEz) Ē2(r, z)

= M Φ̄0(r, z) ,

2 i (ε+ eEz) Ē1(r, z) +
1√
2
amB̄2(r, z)

−∂zB̄3(r, z)−
√

2Eeσ amĒ2(r, z) = M Φ̄1(r, z) ,

3 i (ε+ eEz) Ē2(r, z)− 1√
2
am+1B̄1(r, z)

− 1√
2
bm−1B̄3(r, z) + eµEΦ̄0(r, z)

+2Eeσ ∂zĒ2(r, z) = M Φ̄2(r, z) ,

4 i (ε+ eEz) Ē3(r, z) +
1√
2
bmB̄2(r, z)

+∂zB̄1(r, z) +
√

2EeσbmĒ2(r, z) = M Φ̄3(r, z) ,

5
1√
2
am Φ̄0(r, z)− i (ε+ eEz) Φ̄1(r, z)

= MĒ1(r, z) ,

6 − ∂zΦ̄0(r, z)− i (ε+ eEz) Φ̄2(r, z)

= MĒ2(r, z) ,

7 − 1√
2
bmΦ̄0(r, z)− i (ε+ eEz) Φ̄3(r, z)

= MĒ3(r, z) ,

8 − 1√
2
bmΦ̄2(r, z) + ∂zΦ̄3(r, z) = MB̄1(r, z) ,

9
1√
2
bm−1Φ̄1(r, z) +

1√
2
am+1Φ̄3(r, z)

= MB̄2(r, z) ,

10 − 1√
2
amΦ̄2(r, z)− ∂zΦ̄1(r, z) = MB̄3(r, z) .

6. Projective operators and the
Fedorov – Gronskiy method

To analyze the system of equations, we will
use the method of projective operators. To this
end, we consider the third spin projection Y =
−iJ̄12, and make sure that it satisfies the minimal
equation Y (Y − 1)(Y + 1) = 0. This minimal
equation allows us to introduce three projective
operators

P0 = 1− Y 2, P+1 =
Y (Y + 1)

2
, P−1 =

Y (Y − 1)

2
,

with the needed properties

P 2
0 = P0, P

2
+1 = P+1, P

2
−1 = P−1.

Accordingly, the complete wave function can be
expanded into the sum of three parts

Φ̄ = Φ̄0 + Φ̄+1 + Φ̄−1, Φ̄σ = PσΦ̄, σ = 0,+1,−1.

These components have the following dependence
on the variable r (in accordance with the
Fedorov – Gronsky method [15], each projective
component should be determined by only one
function of r):

Φ̄0(r, z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Φ̄0(z)
0

Φ̄2(z)
0
0

Ē2(z)
0
0

B̄2(z)
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F1(r),

Φ̄+1(r) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
0
0

Φ̄3

0
0

Ē3(z)
B̄1(z)

0
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F2(r),
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Φ−1(r, z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
Φ̄1(z)

0
0

Ē1(z)
0
0
0
0

B̄3(z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F3(r)

the columns are made up of yet unknown
numerical coefficients. Taking this into account,
we can rewrite the previous systems of equations
differently

1)
1√
2
Ē1(z)bm−1F3(r)− 1√

2
Ē3(z)am+1F2(r)

−∂zĒ2(z)F1(r) + eµEΦ̄2(z)F1(r)

−2 iEeσ (ε+ eEz) Ē2(z)F1(r) = M Φ̄0(z)F1(r) ,

2) i (ε+ eEz) Ē1(z)F3(r) +
1√
2
B̄2(z)amF1(r)

−∂zB̄3(z)F3(r)−
√

2Eeσ Ē2(z)amF1(r)

= M Φ̄1(z)F3(r) ,

3) i (ε+ eEz) Ē2(z)F1(r)− 1√
2
B̄1(z)am+1F2(r)

− 1√
2
B̄3(z)bm−1F3(r) + eµEΦ̄0(z)F1(r)

+2Eeσ ∂zĒ2(z)F1(r) = M Φ̄2(z)F1(r) ,

4) i (ε+ eEz) Ē3(z)(z)F2(r) +
1√
2
B̄2(z)bmF1(r)

+∂zB̄1(z)F2(r) +
√

2EeσbmĒ2(z)F1(r)

= M Φ̄3(z)F2(r) ,

5)
1√
2

Φ̄0(z)amF1(r)− i (ε+ eEz) Φ̄1(z)F3(r)

= MĒ1(z)F3(r) ,

6) − ∂zΦ̄0(z)F1(r)− i (ε+ eEz) Φ̄2(z)F1(r)

= MĒ2(z)F1(r) ,

7) − 1√
2

Φ̄0(z)bmF1(r)

−i (ε+ eEz) Φ̄3(z)F2(r) = MĒ3(z)F2(r) ,

8) − 1√
2

Φ̄2(z)bmF1(r) + ∂zΦ̄3(z)F2(r)

= MB̄1(z)F2(r) ,

9)
1√
2

Φ̄1(z)bm−1F3(r) +
1√
2

Φ̄3(z)am+1F2(r)

= MB̄2(z)F1(r) ,

10) − 1√
2

Φ̄2(z)amF1(r)− ∂zΦ̄1(z)F3(r)

= MB̄3(z)F3(r) .

In order to obtain differential equations in
the variable z, we should impose the following
constraints

bm−1F3 = C1F1, amF1 = C4F3,

am+1F2 = C2F1, bmF1 = C3F2,
(16)

in this way we arrive at
1√
2
C1Ē1(z)− 1√

2
C2Ē3(z)− ∂zĒ2(z)

+eµEΦ̄2(z)− 2iEeσ(ε+ eEz)Ē2(z) = M Φ̄0(z),

+i(ε+ eEz)Ē1(z) +
1√
2
C4B̄2(z)− ∂zB̄3(z)

−
√

2Eeσ C4Ē2(z) = M Φ̄1(z) ,

+i(ε+ eEz)Ē2(z)− 1√
2
C2B̄1(z)− 1√

2
C1B̄3(z)

+eµEΦ̄0(z) + 2Eeσ ∂zĒ2(z) = M Φ̄2(z) ,

+i (ε+ eEz) Ē3(z)(z) +
1√
2
C3B̄2(z)

+∂zB̄1(z) +
√

2EeσC3Ē2(z) = M Φ̄3(z) ;

1√
2
C4Φ̄0(z)− i (ε+ eEz) Φ̄1(z) = MĒ1(z) ,

−∂zΦ̄0(z)− i (ε+ eEz) Φ̄2(z) = MĒ2(z) ,

− 1√
2
C3Φ̄0(z)− i (ε+ eEz) Φ̄3(z) = MĒ3(z) ,

− 1√
2
C3Φ̄2(z) + ∂zΦ̄3(z) = MB̄1(z) ,

1√
2
C1Φ̄1(z) +

1√
2
C2Φ̄3(z) = MB̄2(z) ,

− 1√
2
C4Φ̄2(z)− ∂zΦ̄1(z) = MB̄3(z) .
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7. Explicit form of three basic
functions

From the differential constraints
bm−1F3 = C1F1, amF1 = C4F3,

am+1F2 = C2F1, bmF1 = C3F2,
(17)

it is obvious that the parameters in each pair
can be chosen the same: C4 = C1, C3 = C2.
Therefore, we obtain the second-order equations

(bm−1am − C2
1 )F1 = 0, (ambm−1 − C2

1 )F3 = 0,

(am+1bm − C2
2 )F1 = 0, (bmam+1 − C2

2 )F2 = 0.

Further we obtain the explicit form of the second-
order equations( d2

dr2
+

1

r

d

dr
− m2

r2
− C2

1

)
F1 = 0,( d2

dr2
+

1

r

d

dr
− m2

r2
− C2

2

)
F1 = 0

(18)

=⇒ C2
2 = C2

1 = C2;

and( d2

dr2
+

1

r

d

dr
− (m+ 1)2

r2
− C2

2

)
F2 = 0,( d2

dr2
+

1

r

d

dr
− (m− 1)2

r2
− C2

2

)
F3 = 0.

Thus, we have only three different equations (and
the constraint C2

2 = C2
1 = C2):( d2

dr2
+

1

r

d

dr
− m2

r2
− C2

)
F1 = 0,( d2

dr2
+

1

r

d

dr
− (m+ 1)2

r2
− C2

)
F2 = 0,( d2

dr2
+

1

r

d

dr
− (m− 1)2

r2
− C2

)
F3 = 0.

(19)

In the variable x = iCr, they take the Bessel form(d2

d2
+

1

x

d

dx
+ 1− m2

x2

)
F1 = 0,

F1(x) ∼ J±m(x),( d2

dx2
+

1

x

d

dx
− (m+ 1)2

x2

)
F2 = 0,

F2(x) ∼ J±(m+1)(x),( d2

dx2
+

1

x

d

dx
+ 1− (m− 1)2

x2

)
F3 = 0,

F3(x) ∼ J±(m−1)(x).

8. Solving equations in z-variable

Taking in mind the identities C1 = C2 =
C3 = C4 = C, we get the following system in
z-variable:

1√
2
CĒ1(z)− 1√

2
CĒ3(z)− ∂zĒ2(z)

+eµEΦ̄2(z)− 2 iEeσ(ε+ eEz)Ē2(z) = M Φ̄0(z) ,

i(ε+ eEz)Ē1(z) +
1√
2
CB̄2(z)− ∂zB̄3(z)

−
√

2Eeσ CĒ2(z) = M Φ̄1(z) ,

i(ε+ eEz)Ē2(z)− 1√
2
CB̄1(z)− 1√

2
CB̄3(z)

+eµEΦ̄0(z) + 2Eeσ ∂zĒ2(z) = M Φ̄2(z) ,

i (ε+ eEz) Ē3(z)(z) +
1√
2
CB̄2(z)

+∂zB̄1(z) +
√

2EeσCĒ2(z) = M Φ̄3(z) ,

1√
2
CΦ̄0(z)− i (ε+ eEz) Φ̄1(z) = MĒ1(z) ,

−∂zΦ̄0(z)− i (ε+ eEz) Φ̄2(z) = MĒ2(z) ,

− 1√
2
CΦ̄0(z)− i (ε+ eEz) Φ̄3(z) = MĒ3(z) ,

− 1√
2
CΦ̄2(z) + ∂zΦ̄3(z) = MB̄1(z) ,

1√
2
CΦ̄1(z) +

1√
2
CΦ̄3(z) = MB̄2(z) ,

− 1√
2
CΦ̄2(z)− ∂zΦ̄1(z) = MB̄3(z) .

For shortness, we change the notations:

eE =⇒ E, eEµ =⇒ Eµ, eEσ =⇒ Eσ,

ε+ Ez = W (z), W ′ = E.

Let us divide equations into two groups:
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I

1√
2
CĒ1(z)− 1√

2
CĒ3(z)− ∂zĒ2(z)

+µEΦ̄2(z)− 2 iEσW (z)Ē2(z) = M Φ̄0(z) ,

iW (z)Ē2(z)− 1√
2
CB̄1(z)− 1√

2
CB̄3(z)

+µEΦ̄0(z) + 2Eσ ∂zĒ2(z) = M Φ̄2(z) ,

1√
2
CΦ̄0(z)− iW (z)Φ̄1(z) = MĒ1(z) ,

− 1√
2
CΦ̄0(z)− iW (z)Φ̄3(z) = MĒ3(z) ,

− 1√
2
CΦ̄2(z) + ∂zΦ̄3(z) = MB̄1(z) ,

− 1√
2
CΦ̄2(z)− ∂zΦ̄1(z) = MB̄3(z) ;

II

iW (z)Ē1(z) +
1√
2
CB̄2(z)− ∂zB̄3(z)

−
√

2EσCĒ2(z) = M Φ̄1(z) ,

iW (z)Ē3(z) +
1√
2
CB̄2(z) + ∂zB̄1(z)

+
√

2EσCĒ2(z) = M Φ̄3(z) ,

−∂zΦ̄0(z)− iW (z)Φ̄2(z) = MĒ2(z) ,

1√
2
CΦ̄1(z) +

1√
2
CΦ̄3(z) = MB̄2(z) .

The system I can be solved with respect to
six variables Φ̄0, Φ̄2, Ē1, Ē3, B̄1, B̄3; so we obtain

Φ0 =
1

2
((
C2 −M2

)2 −M2E2µ2
)[2M((∂z + 2iE(Ez + ε)σ)C2 +M

(
iE(Ez + ε)(µ− 2Mσ)

−∂z
(
M − 2E2µσ

)))
E2 + i

√
2C((C2 −M2)(Ez + ε)− i∂zMEµ)

(
Φ1 − Φ3

)]
,

Φ2 = − 1

2
((
C2 −M2

)2 −M2E2µ2
)[2iM((Ez + ε− 2i∂zEσ)C2 −M(MEz +Mε+ i∂zEµ)

+2ME(i∂zM + E(Ez + ε)µ)σ
)
E2 +

√
2C(∂z(C2 −M2) + iME(Ez + ε)µ)

(
Φ1 − Φ3

)]
,

E1 =
1

2
(
M
(
C2 −M2

)2 −M3E2µ2
)[√2CM

(
(∂z + 2iE(Ez + ε)σ)C2

+M
(
iE(Ez + ε)(µ− 2Mσ)− ∂z

(
M − 2E2µσ

)))
E2

−i
(
((C2−M2)(Ez+ε)−i∂zMEµ)Φ3C

2+
(
i∂zMEµC2−2M2E2(Ez+ε)µ2+

(
C4−3M2C2+2M4

)
(Ez+ε)

)
Φ1

)]
,

E3 = − 1

2
(
M
(
C2 −M2

)2 −M3E2µ2
)[√2CM

(
(∂z + 2iE(Ez + ε)σ)C2

+M
(
iE(Ez + ε)(µ− 2Mσ)− ∂z

(
M − 2E2µσ

)))
E2 + i

(
((C2 −M2)(Ez + ε)

−i∂zMEµ)Φ1C
2 +

(
i∂zMEµC2 − 2M2E2(Ez + ε)µ2 +

(
C4 − 3M2C2 + 2M4

)
(Ez + ε)

)
Φ3

)]
,

B1 =
1

2M
(
C2 −M2

)2 − 2M3E2µ2

[
(∂z(C −M)(C +M) + iME(Ez + ε)µ)Φ1C

2

+i
√

2M
(
(Ez + ε− 2i∂zEσ)C2 −M(MEz +Mε+ i∂zEµ) + 2ME(i∂zM + E(Ez + ε)µ)σ

)
CE2

+
(
∂zC

4 +M(−3∂zM − iE(Ez + ε)µ)C2 + 2∂zM
2(M − Eµ)(M + Eµ)

)
Φ3

]
,
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B3 = − 1

2M
(
C2 −M2

)2 − 2M3E2µ2

[(
(∂z(C2 −M2) + iME(Ez + ε)µ)Φ3C

2
)

+i
√

2M
(
(Ez + ε− 2i∂zEσ)C2 −M(MEz +Mε+ i∂zEµ) + 2ME(i∂zM + E(Ez + ε)µ)σ

)
CE2

+
(
− ∂zC4 +M(3∂zM + iE(Ez + ε)µ)C2 − 2∂zM

2(M − Eµ)(M + Eµ)
)
Φ1

]
.

Now, we substitute these expressions into four remaining equations; in this way, we get four
equations for the variables Φ̄1, Φ̄3, Ē2, B̄2:

1)
B2C√

2
+ E2

(
−
C∂2zE

(
2C2σ +M(µ− 2Mσ)

)
√

2
((
C2 −M2

)2 − µ2M2E2
)

+
1

√
2
((
C2 −M2

)2 − µ2M2E2
))[CE(− 2σ

(
(C2 −M2)

(
C2 − (M − Ez − ε)(M + Ez + ε)

)
+µ2

(
−M2

)
E2 + iµME2

)
− i(C2 −M2) + µ(−M)(Ez + ε)2

)]
+Φ3

( C2∂2z (C2 −M2)

2M
(
C2 −M2

)2 − 2µ2M3E2
+
C2
(
(C2 −M2)(Ez + ε)2 + iµME2

)
2M
(
C2 −M2

)2 − 2µ2M3E2

)

+Φ1

(∂2z(C4 − 3C2M2 + 2M2(M − µE)(M + µE)
)

2M
(
C2 −M2

)2 − 2µ2M3E2

+
1

2M
(
C2 −M2

)2 − 2µ2M3E2

[
C4
(
(Ez + ε)2 − 2M2

)
+ C2M

(
4M3 − 3M(Ez + ε)2 − iµE2

)
−2M2(M − µE)(M + µE)(M − Ez − ε)(M + Ez + ε)

])
= 0,

2)
B2C√

2
+ Φ1

( C2∂2z (C2 −M2)

2M
(
C2 −M2

)2 − 2µ2M3E2
+
C2
(
(C2 −M2)(Ez + ε)2 + iµME2

)
2M
(
C2 −M2

)2 − 2µ2M3E2

)

+E2

(C∂2zE(2C2σ +M(µ− 2Mσ)
)

√
2
((
C2 −M2

)2 − µ2M2E2
)

+
1

√
2
((
C2 −M2

)2 − µ2M2E2
)[CE(2C4σ + C2

(
− 4M2σ + 2σ(Ez + ε)2 + i

)
+M

(
2M3σ +M

(
− 2σ

(
µ2E2 + (Ez + ε)2

)
− i
)

+ µ
(
(Ez + ε)2 + 2iσE2

)))])
+Φ3

(∂2z(C4 − 3C2M2 + 2M2(M − µE)(M + µE)
)

2M
(
C2 −M2

)2 − 2µ2M3E2

+
1

2M
(
C2 −M2

)2 − 2µ2M3E2

[
C4
(
(Ez + ε)2 − 2M2

)
+ C2M

(
4M3 − 3M(Ez + ε)2 − iµE2

)
−2M2(M − µE)(M + µE)(M − Ez − ε)(M + Ez + ε)

])
= 0,
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3) E2

(∂2zM(M(M − 2µσE2
)
− C2

)(
C2 −M2

)2 − µ2M2E2

+
1(

C2 −M2
)2 − µ2M2E2

[
M
(
2iσE2

(
− C2 +M

(
M + iµ(Ez + ε)2

))
−(C2 −M2)

(
C2 − (M − Ez − ε)(M + Ez + ε)

)
+ µ2M2E2 − iµME2

)])
+Φ1

(
− C∂2zµME
√

2
((
C2 −M2

)2 − µ2M2E2
) +

CE
(
µ(−M)(Ez + ε)2 − i(C −M)(C +M)

)
√

2
((
C2 −M2

)2 − µ2M2E2
) )

Φ3

( C∂2zµME
√

2
((
C2 −M2

)2 − µ2M2E2
) +

CE
(
µM(Ez + ε)2 + i(C −M)(C +M)

)
√

2
((
C2 −M2

)2 − µ2M2E2
) )

= 0,

4) B2(−M) +
CΦ1√

2
+
CΦ3√

2
= 0.

Eliminating the variable B2, we obtain the system of three equations (let us change the notations,
G = Φ1, H = Φ3, F = E2) :

1)
(
−
√

2C∂2zME
(
2C2σ +M(µ− 2Mσ)

)
+
√

2CME
(
− 2σ

(
(C2 −M2)

(
C2 −M2 + (Ez + ε)2

)
+ µ2

(
−M2

)
E2 + iµME2

)
−i(C2 −M2) + µ(−M)(Ez + ε)2

))
+G

(
µ2M2E2

(
2(M − Ez − ε)(M + Ez + ε)− C2

)
−iC2µME2 + ∂2z

(
C4 − 3C2M2 + 2M2(M − µE)(M + µE)

)
+
(
C4 − 3C2M2 + 2M4

)(
C2 − (M − Ez − ε)(M + Ez + ε)

))
F

+
(
C6 + C4

(
(Ez + ε)2 − 2M2

)
+ C2∂2z (C2 −M2) + C2M

(
M3 − µ2ME2 −M(Ez + ε)2 + iµE2

))
= 0,

2)
(√

2C∂2zME
(
2C2σ +M(µ− 2Mσ)

)
+
√

2CME
(
2C4σ + C2

(
− 4M2σ + 2σ(Ez + ε)2 + i

)
+M

(
2M3σ

+M
(
− 2σ

(
µ2E2 + (Ez + ε)2

)
− i
)

+ µ
(
(Ez + ε)2 + 2iσE2

))))
F

+
(
µ2M2E2

(
2(M − Ez − ε)(M + Ez + ε)− C2

)
− iC2µME2

+∂2z
(
C4 − 3C2M2 + 2M2(M − µE)(M + µE)

)
+
(
C4 − 3C2M2 + 2M4

)(
C2 − (M − Ez − ε)(M + Ez + ε)

))
H

+
(
C6 + C4

(
(Ez + ε)2 − 2M2

)
+ C2∂2z (C2 −M2) + C2M

(
M3 − µ2ME2 −M(Ez + ε)2 + iµE2

))
G = 0,

3)
(

2∂2zM
2
(
M
(
M − 2µσE2

)
− C2

)
+2M2

(
− (C2 −M2)

(
C2 −M2 + (Ez + ε)2

)
+ 2iσE2

(
− C2 +M

(
M + iµ(Ez + ε)2

))
+ µ2M2E2 − iµME2

))
F

+
(
−
√

2C∂2zµM
2E +

√
2CME

(
µ(−M)(Ez + ε)2 − i(C2 −M2)

))
H

+
(√

2C∂2zµM
2E +

√
2CME

(
µM(Ez + ε)2 + i(C2 −M2)

))
G = 0,
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Let us sum and subtract the first two equations as

1 + 2)
((
C2 −M2

)2 − µ2M2E2
)(
C2 + ∂2z − (M2 − (Ez + ε)2)

)
(G+H) = 0,

1− 2) M
(
− 2
√

2C5σE −
√

2C3E
(
2σ
(
∂2z − 2M2 + (Ez + ε)2

)
+ i
)

−
√

2CME
(
M
(
− 2σ

(
∂2z + µ2E2 + (Ez + ε)2

)
− i
)

+ µ
(
∂2z + 2iσE2 + (Ez + ε)2

)
+ 2M3σ

))
F

+M
(
C4M − C2

(
∂2zM − 2M3 +M(Ez + ε)2 + iµE2

)
+M(M − µE)(M + µE)

(
∂2z −M2 + (Ez + ε)2

))
(H −G) = 0,

3) M
(
i
√

2CME
(
M + iµ

(
∂2z + (Ez + ε)2

))
− i
√

2C3E
)

(G−H)

+M
(
− 2C4M − 2C2M

(
∂2z − 2M2 + 2iσE2 + (Ez + ε)2

)
+

+2M2
(
∂2z
(
M − 2µσE2

)
−M3 +M

(
E2
(
µ2 + 2iσ + z2

)
+ 2Ezε+ ε2

)
+ µE2

(
− 2σ(Ez + ε)2 − i

)))
F = 0.

It is convenient to introduce new notations

G+H = V, G−H = U ; (20)

then we get

1)
(
∂2z + (Ez + ε)2 + C2 −M2

)
V (z) = 0, (21)

2)
(
−
√

2C∂2zME
(
2C2σ +M(µ− 2Mσ)

)
+
√

2CME
(
− 2σ

(
(C2 −M2)

(
C2 − (M − (Ez + ε)2)

)
+µ2

(
−M2

)
E2 + iµME2

)
− iC2 +M

(
− µ(Ez + ε)2 + iM

)))
F

+
(
∂2zM

2
(
− C2 +M2 − µ2E2

)
+M

(
C4(−M) + C2

(
2M3 −M(Ez + ε)2 − iµE2

)
−M(M − µE)(M + µE)

(
M2 − (Ez + ε)2

)))
U = 0,

3)
(
−
√

2C∂2zµM
2E +

√
2CME

(
M
(
− µ(Ez + ε)2 + iM

)
− iC2

))
U

+
(

2∂2zM
2
(
M
(
M − 2µσE2

)
− C2

)
+ 2M2

(
− C4 + C2

(
2M2 − 2iσE2 − (Ez + ε)2

)
+M

(
−M3 +M

(
E2
(
µ2 + 2iσ + z2

)
+ 2Ezε+ ε2

)
+ µE2

(
− 2σ(Ez + ε)2 − i

))))
F = 0.

Let us consider the system of two linked second and third equations as

2) A2U
′′ +B2(z)U +K2F

′′ + L2(z)F = 0, 3) A3U
′′ +B3(z)U +K3F

′′ + L3(z)F = 0.
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Let us combine last two equations as follows. Multiplying equation marked as "2)"with β and multiplying
equation marked as "3)"with γ and add these together we get

(βA2 + γA3)U ′′ + (βB2 + γB3)U + (βK2 + γK3)F ′′ + (βL2 + γL3)F = 0.

Let us consider two different variant:
the first one

1) (βA2 + γA3)=1U ′′ + (βB2 + γB3)U + (βK2 + γK3)=0F ′′ + (βL2 + γL3)F = 0 =⇒

βA2 + γA3 = 1 βK2 + γK3 = 0,

solution of the linear system is

β =
M
(
M − 2µσW 2

)
− C2

M
(

(C2 −M2)2 − µ2M2W 2
)

(M − 2µσW 2)
,

γ =
CW

(
2C2σ +M(µ− 2Mσ)

)
√

2M2
(

(C2 −M2)2 − µ2M2W 2
)

(M − 2µσW 2)
,

so that

1) U ′′ +
(C2

(
M2 − 2iσE2

)
M (M − 2µσE2)

−M2 + (Ez + ε)2
)
U +

√
2CE(µM − i)

(
4σ2E2 − 1

)
M − 2µσE2

F = 0

the second one is

2) + (βB2 + γB3)U + (βK2 + γK3)=1F ′′ + (βL2 + γL3)F = 0 =⇒

βK2 + γK3 = 1, βA2 + γA3 = 0,

solution of the linear system is

β =
CµE

√
2M

(
(C2 −M2)2 − µ2M2E2

)
(M − 2µσE2)

,

γ = − C2 −M2 + µ2E2

2M
(

(C2 −M2)2 − µ2M2E2
)

(M − 2µσE2)
,

so that

2) F ′′ +
C2
(
M − 2µσE2

)
−M3 +M

(
E2
(
µ2 + 2iσ + z2

)
+ 2Ezε+ ε2

)
+ µE2

(
−2σ(Ez + ε)2 − i

)
M − 2µσE2

F

+
CE(−µM + i)√
2 (M − 2µσE2)

U = 0
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Thus, after this transformation we arrive at the following much more simple equations

U ′′ +
(C2

(
M2 − 2iσE2

)
M (M − 2µσE2)

−M2 + (Ez + ε)2
)
U +

√
2CE(µM − i)

(
4σ2E2 − 1

)
M − 2µσE2

F = 0,

F ′′ +

(
C2
(
M − 2µσE2

)
−M3 +M

(
E2
(
µ2 + 2iσ + z2

)
+ 2Ezε+ ε2

)
+ µE2

(
−2σ(Ez + ε)2 − i

))
M − 2µσE2

F

+
CE(−µM + i)√
2 (M − 2µσE2)

U = 0.

They can be reduced to more convenient form

F ′′ +
(
C2 + (Ez + ε)2

)
F +

[µ(Mµ− i) + 2iσM ]E2 −M3

M − 2µσE2
F +

CE(−µM + i)√
2 (M − 2µσE2)

U = 0,

U ′′ +
(
−M2 + (Ez + ε)2

)
U +

C2
(
M2 − 2iσE2

)
M (M − 2µσE2)

U +

√
2CE(µM − i)(4σ2E2 − 1)

M − 2µσE2
F = 0.

(22)

For additional checking, let us fix the
physical dimensions of the quantities

[M ] =
1

L
, [C] =

1

L
, [ε] =

1

L
,

[E] =
1

L2
, [µ] = L, [σ] = L2.

Let us present the system in matrix form

∆ =
d2

dz2
+ (ε+ Ez)2, ∆

∣∣∣∣ FU
∣∣∣∣ = T

∣∣∣∣ FU
∣∣∣∣ ,

∆Ψ(z) = TΨ(z), T =

∣∣∣∣ A K
L B

∣∣∣∣ .
Now we will find the transformations which
diagonalizes the system

Ψ′ = SΨ, ∆Ψ̄(z) = T̄ Ψ̄(z),

T̄ = STS−1 =

∣∣∣∣ λ1 0
0 λ2

∣∣∣∣ , S =

∣∣∣∣ s11 s12

s21 s22

∣∣∣∣

so that

ST = T̄ S,∣∣∣∣ s11 s12

s21 s22

∣∣∣∣ ∣∣∣∣ A K
L B

∣∣∣∣ =

∣∣∣∣ λ1 0
0 λ2

∣∣∣∣ ∣∣∣∣ s11 s12

s21 s22

∣∣∣∣ ;
whence follow two similar subsystems{

(A− λ1)s11 + Ls12 = 0
Ks11 + (B − λ1)s12 = 0

,{
(A− λ2)s21 + Ls22 = 0
Ks21 + (B − λ2)s22 = 0

.

From vanishing the determinant we get

λ2 − (A+B)λ+AB − LK = 0,

λ =
A+B

2
±
√

(A+B)2

4
− (AB − LK). (23)

Explicitly, the involved parameters read

A+B

2
=
M
(
−2C2M + 2M3 − µ2ME2 + iµE2

)
+ 2σE2(C2 −M2)(µM + i)

2M (M − 2µσE2)
,

(A+B)2

4
=

(
M
(
2C2M − 2M3 + µ2ME2 − iµE2

)
− 2σE2(C2 −M2)(µM + i)

)2
4M2 (M − 2µσE2)

2 ,

Nonlinear Phenomena in Complex Systems Vol. 28, no. 1, 2025



58 A. V. Ivashkevich, A. M. Kuzmich, P. O. Sachenok, and E. M. Ovsiyuk

−(AB − LK) =

= −
C4M2 − 2C2M4 − 2iσE2

(
C2 −M2

)2
+ iC2µME2 + C2E2 +M6 − µ2M4E2 + iµM3E2

M (M − 2µσE2)
.

Solutions of eq. (23) have the form

λ =
1

2M(M − 2µσE2)

×
[

2C2
(
−M2 + µMσE2 + iσE2

)
+ 2M4 + E2

(
− 2µM3σ − µ2M2 − 2iM2σ + iµM

)
±
√
E2(µM − i)2

(
4C4σ2E2 + 4C2M (−2Mσ2E2 +M − µσE2) +M2E2(µ− 2Mσ)2

) ]
. (24)

Let us take into account that two parameters are imaginary, σ ⇒ iσ, µ⇒ iµ; then we get

λ =
1

2M (M + 2µσE2)

×
[
2M2

(
M2 − C2

)
+ E2

(
2σ(M2 − C2)(µM + 1) + µM(µM − 1)

)
±
√
E2(µM − 1)2

(
4C4σ2E2 − 4C2M (2Mσ2E2 +M + µσE2) +M2E2(µ− 2Mσ)2

)]
(25)

If C = M , we obtain

λ =
1

2M (M + 2µσE2)

[
µME2(µM − 1)±

√
−M2E2(µM − 1)2 (4M (M + 2µσE2)− µ2E2)

]
; (26)

correspondingly we have two separate equations( d2

dz2
+ (ε+ Ez)2 − λ1

)
F̄ = 0,

( d2

dz2
+ (ε+ Ez)2 − λ2

)
Ū = 0. (27)

Let us impose an additional restriction A+B = 0, this permits us to get fixed parameter C:

C = ±
i
√
M
√

2M3 − µ2ME2 − 2MσE2(µM + i) + iµE2√
−2M2 + 2σE2(µM + i)

;

let σ ⇒ iσ, µ⇒ iµ, then

C = ±
i
√
M
√

2M3 + µ2ME2 + 2MσE2(µM + 1)− µE2

√
2
√
−M2 − σE2(µM + 1)

and we get two roots different only in sign:

λ(M,E, µ, σ) = ± i(1− µM)E

2
√
M + 2µσE2

(
M2 + σE2(µM + 1)

)
×
[

2σE2
(

4M3 + µM4 − µE2
)

+M2
(

4M3 + µ2ME2 − 2µE2
)

+ 4Mσ2E4
(

1 + µM
)2 ]1/2

. (28)

correspondingly we have two separate equations( d2

dz2
+ (ε+ Ez)2 + λ

)
F̄ = 0,

( d2

dz2
+ (ε+ Ez)2 − λ

)
Ū = 0. (29)
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9. Solving the differential equation

The derived equation has the same structure as for a scalar particle in the uniform electric field
(we transform the equation to the new variable, assuming that E > 0)( d2

dz2
+ (Ez + ε)2 −m2

)
Φ(z) = 0, Z = i

(Ez + ε)2

E
, Λ =

m2

4E
; (30)

then we get the confluent hypergeometric equation [17]( d2

dZ2
+

1/2

Z

d

dZ
− 1

4
+
iΛ

Z

)
Φ(Z) = 0 . (31)

This equation has two singular points. The
point Z = 0 is regular, behavior of solutions near
this point is given by the formulas Z → 0, Φ(Z) =
ZA, A = 0, 1/2 . The point Z = ∞ is irregular
point of the rank 2. Indeed, in the inverse variable
y = Z−1 we get the equation

( d2

dy2
+

3

2y

d

dy
− 1

4y4
+
iΛ

y3

)
Φ = 0 . (32)

Asymptotic of solutions at y → 0 should have the
structure Φ = yCeD/y. Further we arrive at

D2 − 1

4
= 0,

−2CD + 2D − 3

2
D + iΛ = 0 ;

D1 = +
1

2
, C1 =

1

4
+ iΛ ;

D2 = −1

2
, C2 =

1

4
− iΛ .

(33)

Therefore, in infinity there are possible two
behaviors

Z →∞,

Φ = Z−CeDZ =

{
Z−C1eD1Z = Z−1/4−iΛe+Z/2,

Z−C2eD2Z = Z−1/4+iΛe−Z/2,

where (we use the main branch of the logarithmic

function)

Z = i
(ε+ Ez)2

E
= iZ0, Z0 > 0 ,

e±Z/2 = e±iZ0/2 ,

Z−1/4∓iΛ =
(
eln iZ0

)−1/4∓iΛ

=
(
elnZ0+iπ/2

)−1/4∓iΛ
.

(34)

Let us find solutions in the whole region
of the variable Z. To this end, we apply the
substitution Φ(Z) = ZA eBZ f(Z); taking in mind
the constraints A = 0 , 1/2 , B = −1/2 we get the
equation[

Z
d2

dZ2
+ (2A+ 1/2− Z)

d

dZ

−(A+ 1/4− iΛ)
]
f(Z) = 0 ,

which can be recognized as the confluent
hypergeometric equation with parameters

a = A+ 1/4− iΛ , c = 2A+ 1/2 ,

f(Z) = ZA e−Z/2 F (a, c;Z) .

Without loss of generality we can use the value
A = 0:

A = 0, a = 1/4− iΛ , c = +1/2 ,

Φ(Z) = e−Z/2 f(Z) . (35)

The confluent hypergeometric equation has
different sets of linearly independent solutions.
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First, consider the following ones

Y1(Z) = F (a, c;Z) = eZF (c− a, c;−Z),

Y2(Z) = Z1−cF (a− c+ 1, 2− c;Z)

= Z1−ceZF (1− a, 2− c;−Z) .

(36)

They lead to the complete functions

Φ1 = e−Z/2F (a, c;Z) = e+Z/2F (c− a, c;−Z),

Φ2 = e−Z/2Z1−cF (a− c+ 1, 2− c;Z)

= Z1−ce+Z/2F (1− a, 2− c;−Z) .

Taking in mind the identities

c =
1

2
, a =

1

4
− iΛ, c− a =

1

4
+ iΛ = a∗,

c = c∗ =
1

2
, Z∗ = −Z ,

a− c+ 1 =
3

4
− iΛ = (1− a)∗,

(2− c) = (2− c)∗ =
3

2
,

we can conclude that the solution Φ1(Z) is given
by the real-valued function, the second Φ2(Z) has
a definite symmetry under complex conjugation:

Φ1(Z) = +[Φ1(Z)]∗, Φ2(Z) = i[Φ2(Z)]∗. (37)

This property of the function Φ2(Z) may
be presented differently when using other
normalization

Φ̄2(Z) =
1− i√

2
Φ2(Z)

=
(1− i√

2
Φ2(Z)

)∗
= (Φ̄2(Z))∗ .

At small Z the above solutions behave

Y1(Z) ≈ 1,

Y2(Z) ≈
√
Z =

√
iZ0 =

√
i

eE
(ε+ eEz) ;

Φ1(Z) ≈ 1,

Φ2(Z) ≈
√
Z =

√
iZ0 =

√
i

eE
(ε+ eEz) .

At large Z = iZ0, Z0 → +∞ we can apply the
asymptotic formula (see in [17])

F (a, c, Z) =

(
Γ(c)

Γ(c− a)
(−Z)−a + ...

)
+

(
Γ(c)

Γ(a)
eZZa−c + ...

)
.

(38)

Taking into account identities

(−Z)−a = (−iZ0)−1/4+iΛ =
(
elnZ0−iπ/2

)−1/4+iΛ

= e−(−1/4+iΛ)iπ/2 e(−1/4+iΛ) lnZ0 ,

Za−c = (iZ0)−1/4−iΛ =
(
elnZ0+iπ/2

)−1/4−iΛ

= e+(−1/4−iΛ)iπ/2 e(−1/4−iΛ) lnZ0 ,

Γ(c)

Γ(c− a)
=

Γ(1/2)

Γ(1/4 + iΛ)
,

Γ(c)

Γ(a)
=

Γ(1/2)

Γ(1/4− iΛ)

we find the following behavior of the solutions

Y1(Z) = F (a, c, Z) = eiZ0/2

{
Γ(1/2)

Γ(1/4 + iΛ)
e−(−1/4+iΛ)iπ/2 e(−1/4+iΛ) lnZ0e−iZ0/2

+
Γ(1/2)

Γ(1/4− iΛ)
e+(−1/4−iΛ)iπ/2 e(−1/4−iΛ) lnZ0e+iZ0/2

}
. (39)
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Whence after transition to the variable Φ1(Z) we get

Φ1(Z) =

{
Γ(1/2)

Γ(1/4 + iΛ)
e−(−1/4+iΛ)iπ/2 e(−1/4+iΛ) lnZ0e−iZ0/2

+
Γ(1/2)

Γ(1/4− iΛ)
e+(−1/4−iΛ)iπ/2 e(−1/4−iΛ) lnZ0e+iZ0/2

}
, (40)

where we can see the sum of two conjugate terms. Similarly, we can examine behavior in infinity of the
second solution F (a− c+ 1, 2− c;Z):

F (a− c+ 1, 2− c, Z) =
Γ(2− c)
Γ(1− a)

(−Z)−a+c−1 +
Γ(2− c)

Γ(a− c+ 1)
eZZa−1 .

Whence taking into account the identities

(−Z)−a+c−1 = (−iZ0)−3/4+iΛ

=
(
elnZ0−iπ/2

)−3/4+iΛ
= e−(−3/4+iΛ)iπ/2 e(−3/4+iΛ) lnZ0 ,

Za−1 =
(
elnZ0+iπ/2

)−3/4−iΛ
= e+(−3/4−iΛ)iπ/2 e(−3/4−iΛ) lnZ0 ,

Γ(2− c)
Γ(1− a)

=
Γ(3/2)

Γ(3/4 + iΛ)
,

Γ(2− c)
Γ(a− c+ 1)

=
Γ(3/2)

Γ(3/4− iΛ)
,

we find the following behavior in infinity

F (a− c+ 1, 2− c, Z) = eiZ0/2

×
{

Γ(3/2)

Γ(3/4 + iΛ)
e−(−3/4+iΛ)iπ/2 e(−3/4+iΛ) lnZ0e−iZ0/2

+
Γ(3/2)

Γ(3/4− iΛ)
e+(−3/4−iΛ)iπ/2 e(−3/4−iΛ) lnZ0e+iZ0/2

}
. (41)

Whence for the function Φ2(Z) we derive (allowing for
√
Z = e(1/2)(lnZ0+iπ/2))

Φ2(Z) =
√
ZF (a− c+ 1, 2− c, Z)

= eiπ/4
{ Γ(3/2)

Γ(3/4 + iΛ)
e−(−3/4+iΛ)iπ/2 e(−1/4+iΛ) lnZ0e−iZ0/2

+
Γ(3/2)

Γ(3/4− iΛ)
e+(−3/4−iΛ)iπ/2 e(−1/4−iΛ) lnZ0e+iZ0/2

}
. (42)

It is possible to construct two solutions
which at infinity behave as conjugate functions.
To this end, we should use other pair of

independent solutions (see in [17])

Y5(Z) = Ψ(a, c;Z), Y7(Z) = eZΨ(c− a, c;−Z) .
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Two pairs {Y5, Y7} and {Y1, Y2} are related by
Kummer formulas (see in [17])

Y5 =
Γ(1− c)

Γ(a− c+ 1)
Y1 +

Γ(c− 1)

Γ(a)
Y2 ,

Y7 =
Γ(1− c)
Γ(1− a)

Y1 −
Γ(c− 1)

Γ(c− a)
eiπcY2 .

(43)

Whence we can derive asymptotic relations in the
region | Z |→ ∞

Y5(Z) = (iZ0)−1/4+iΛ =
(
elnZ0+iπ/2

)−1/4+iΛ
,

Y7(Z) = eZΨ(c− a, c;−Z) = eZ(−iZ0)a−c

= eiZ0(−iZ0)−1/4−iΛ = eiZ0

(
elnZ0−iπ/2

)−1/4−iΛ
.

The last formulas after translating them to
variables Φ(Z) take on the form

Φ5(Z) = e−Z/2 Y5(Z)

= e−iZ0/2
(
elnZ0+iπ/2

)−1/4+iΛ
,

Φ7(Z) = e−Z/2 Y7(Z)

= e+iZ0/2
(
elnZ0−iπ/2

)−1/4−iΛ
.

(44)

These functions are conjugate to each other, they

are presented in the combinations (40) and (42).

10. Conclusion

The generalized Duffin – Kemmer equation
for a spin 1 particle with anomalous magnetic
moment and polarizability is studied in presence
of external uniform electric field. After separating
the variables, we derive the system of 10 first
order differential equations in polar coordinate.
To resolve this system, we apply the method
by Fedorov – Gronskiy. Within this approach,
the complete 10-component wave function is
decomposed in three projective constituents,
dependence of each on the polar coordinates
is determined by only one function. We find
expressions for this basic function Fi(r) in terms
of Bessel functions. After this, the system of
10 equations in z-variable is obtained. Three
independent solutions of this system are found.
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