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In the paper, we study a generalized Duffin — Kemmer equation for spin 1 particle with
two characteristics, anomalous magnetic moment and polarizability in the presence of an
external uniform electric field. This approach is extended to space-time models with a pseudo-
Riemannian structure, within the tetrad method. We specify the basic equations to the
cylindrical coordinates, after separating the variables, we get the system of 10 first order
partial differential equations for 10 functions f;(r, z). To describe the r-dependence of these
functions, we apply the method by Fedorov — Gronskiy; in this approach, the complete
10-component wave function is decomposed into the sum of three projective constituents,
dependence of each component on the polar coordinate is determined by the only functions
F;(r),i = 1,2,3; the last are constructed in terms of the Bessel functions. After that we
derive a system of 10 ordinary differential equations for 10 functions fa(z). This system is
solved with the use of eliminating method and of special linear combining of the involved
functions; as a result we find three independent solutions for the last system. The types
of solutions for a vector particle with two additional electromagnetic characteristics in the
presence of an external uniform electric field are investigated.
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Introduction

transformed to tensor form. In tensor form,

Within the general method by Gel’fand —
Yaglom [1], for a spin 1 particle in [2] it was
constructed a relativistic generalized system of
the first order equations for a particle with two
additional characteristics, anomalous magnetic
moment and polarizability (a number of relevant
papers see in [3]—[14]). First, the model was
developed for a free particle, and the system
of spinor equations was obtained; then it was
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the presence of external electromagnetic fields
was taken into account. After eliminating the
accessory variables of the complete wave function,
it was derived the minimal system of 10 equations,
it contains two additional interaction terms which
are interpreted as related to the anomalous
magnetic moment and polarizability.

In the present paper, we extend this equation
to space-time models with pseudo-Riemannian
structure within the tetrad method, and specify
this generalized Daffin — Kemmer — Petiau
equation in cylindrical coordinates and tetrad,
taking into account the presence of the external
uniform electric field.

After separating the variables, we get the
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system of 10 first order partial differential
equations for 10 functions f;(r,z). To describe
the r-dependence of 10 functions fa(r,z),
A = 1,...,10, we apply the method by Fedorov —
Gronskiy [15]; in this approach, the complete 10-
component wave function is decomposed into the
sum of three projective constituents, dependence
of each component on the polar coordinate
is determined by only functions Fj(r), ¢ =
1,2,3; they are constructed in terms of Bessel
functions. After that we derive a system of 10
ordinary differential equations for 10 functions
fa(z). This system is solved with the use of
the elimination method and with the help of
special linear combining of the involved functions.
As a result we find three independent solutions
for the last system. Thus, in this paper, the
types of solutions for a vector particle with
two additional electromagnetic characteristics in
presence of external uniform electric field are
found.

2. DMatrix equation in Minkowski
space

We start [2] with the following tensor
equations (let D, = 0, + ieA,)
Db®y, + epuFy,®°
+e0Do(F4®,5) — M®, =0, (1)
Dy®y — Dyd, — M®yy = 0

they may be compared with the ordinary Proca
system

DY®, — M®, =0,

B (2)
Do®y — Dy®y — M,y = 0.

In (1), we can see two additional interaction
terms, proportional to parameters p (anomalous
magnetic moment) and o (polarizability); in the
paper [16], it was proved that parameters u, o are
imaginary: p = iu,0 = io (we will take this
into account later on).

We use the 10-dimensional column:

O = (Dg, D1, Po, P3; Po1, Po2, Poz, Pog, P31, P12)
= (Hl;HQ).

Let us recall the matrix form of the Proca system
when © = 0,0 = 0. The first equation gives
K*D,Hy — M Hy =0, where

L+
The second equation in (2) leads to D,L*H; —
MH, =0, where

0100 ~100 0
0010 000 0

o 0001 4 | 000 0
E=looool" =] 000 of
0000 000 —1
0000 001 0

0 000 00 00

-1 000 00 00
> | 0 000 5 |=10 00
=10 001 =] 0010
0 000 01 00
0-100 00 00

Thus, the system of equations for the ordinary
spin 1 particle is presented in the block form as
follows

KD, Hy — MH; =0, )
LD, Hy — M Hsy = 0.

Let us detail the first additional term in (1)
(taking in mind identities: Fp1®' = —Fy®1 =
—El®y, F19®? = —F15®5 = B3®,, and so on)

0 —E' —E? —E3|| ®

-E' 0 B® -B?||®

b _ 1

ba® =1 g2 s o pl||a,|
—E3* B* —-B' 0 ||®;

whence allowing for the structure of six

Lorentzian generators for vector field
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00 00 0 000 000 0
2 . _|00-10 a1 1o o001 2 looo o
FT=5=101 o0l I =%=]g go00l" T =000 1|
00 00 0-100 001 0
0100 0010 0001
ol (1000 02 . 0000 03 o000
=T =000l 7 T 1000 7B 0000]
0000 0000 1000

we obtain the more short presentation for this interaction term
euFa5<DB = —GM(SB —I-TE)Hl.

The second additional term in (1) is

Et o 0 0 0 0 izl
0 E20 0 0 0 g

0 0 E3 0 0 0 i)
cd _ 03
ea Dy (F“®.y) = 2e0 D, 0 0 0 -B' o 0 By
0 0 0 0 —-B* 0 3
0 0 0 0 0 -B¥||®p

[
So we have a generalized Duffin — Kemmer — Petiau equation in the block form

J

(KCLDQHQ)c - e,u[(S B+TE)H| +eoDe(F0y) — M(Hy): =0, (LaDaHl) o~ M) =0

3. Extension to curved space-time models
In Riemannian space-time, we start with the tensor covariant equations
Dg® P + epFop®® + €00, (FP®,5) — M®, =0, Do®s — Dby — MPyp = 0; (4)

below two different derivative symbols will be used: D, = V4 + ieA, and éa = Oy + ieA,. Let us
transform these equations to tetrad form. First, we obtain

B Fab a b
DB (e(a)ae(b)@ ) +eu 6& )F(a)(b)q)

€0 Do F*0 ) = MBy = 0, Dyl @ — Del) Dy — Me(ayaep®” = 0;
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whence it follows

e(a)ae(ﬂb)(%(bab + (Vge(a)a)e(ﬁb)i)ab + e(a)a(v[ge(ﬂb))@ab + el e((f) (a)(b)cbb
+€0 (0 F™) Dy, + o F®0y By — M, = 0,
6(Bb)éa(1)b — egf’)égq)b + (Vaeg’))(bb - (Vgeg)))(l)b - Me(a)ae(b)ﬁq)ab =0.

«

Multiplying the first equation by €l

e?‘c)e(a)ae(ﬁb)agfbab + (Vge(a)a)e?c)e’(gb)q)“b + e?‘c)e(a)a(vf;e?b))@“b (5)
+eu e?‘c)e(g“)F(a)(b)(I)b + eo e?‘c)((‘)aF“b)@ab + eaF“be?c)éaq)ab — Me?c)q)a =0,

we get (applying the shortening notation e?b) (0 +iedp) = 3(1,))

é(b)q)cb + €(a)a;ﬁ€?c)€(ﬁb)‘bab + €(Bb);5q)cb -+ e,uFd,qu + 60’(8(6)Fab)q)ab +eo Fabé(c)q)ab —M®,=0.

The second equation leads to
Oey®a = Doy e + eyl ® = el ® — MPea =0.

o (0%

Taking into account the definition for Ricci rotation coefficients Yape = —€(q) p;gefb)e(c), laya = ’ybab , We

can rewrite the above equations in a shorter form

é(b)q)cb — ,yacbq)ab + e(ﬁb)ﬂ(f[)cb + echthDb + 60(8(6)Fab)¢)ab + GUFabé(c)(I)ab — Mo, =0,
O(ey®a — Oy e + Vbac®” — Ypea®® — My = 0.

(

We should recall the known matrix tetrad equations
form of the ordinary vector particle

C o a 1 al
[ﬁ (€<c>($)*axa +5J b%bc) - M]‘P =0, o (KCD§2>H2) - eu[(SB + TE)Hl]
6 . n n
o | a|_|Hi] +eoel D (FF®y) — M(Hy), =0,
(I)ab HZ ’ ) (1)
(LoDt H1>W] — (M Hz)py = 0.

two additional interactions terms are

(o) (F1.q) o
) cd 4. Particle in the electric field
eo—aa(FCd¢cd) — eo (?(1) (FCd(I)cd)
02y (F ' ®¢y)
é(g) (Feid,y) Cylindrical coordinates =% = (¢t,7, ¢, z), the
relevant tetrad, Ricci rotation coefficients, and the
Thus, we have the following generalized system of uniform electric field are determined by relations
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10 0 O 1000
0-1 0 0 0100
2 _ 32 32 23,2 ;2 _ a  _
dS* = dt* —dr® — r°d¢” — dz", gap 00 —2 o |’ %@ 00%0
00 0 -1 0001
1 A .
Y22 = —212 = +Yor’ = €ya = o Ag = —Ez, Fp3 = €fo)€f3)th =+F,0) = —ie —ieEz.
Correspondingly, the system of equations takes on the form
1
K%y — ieEz) + K'0, + K2~ (9 + j12) + K3az] Hy
T
Oy —ieFz
—epEjBHy 4+ 2Eec 185 E3— MH; =0, (8)
rYo
T
0.
1
L%(0y —ieEz) + L'0, + L*=(9y + ji%) + L0,| — M Hy = 0.
r
[
5. Cyeclic basis We should transform the Duffin — Kemmer
matrices 8% to the cyclic basis as well; it is
It is more convenient to apply the so called convenient to apply t_he block presentation: H; =
cyclic basis. It is defined by requirement to have C1H,, (C1 = U), Hy = (U® U)Hy = CyHy;

a diagonal generator j12 for the vector field Hy = further we obtain
(®;). The needed transformation ® = U®P is
determined by the matrix U

1 0 00 0000 0 K¢ 0 C1K°Cy !
U:O—%%O’TZ:O—Z'OO ’L“ 0 _’CgLaCl_l 0
0 0 1 0 00O
0 L o .
V2 V2 0 0 0 44
Correspondingly, vector and tensor generators Taking in mind the formulas
transform according to the rules
jilb — UjabU_l, jgb — jab @I+ I®jab. (9)
Let us find a 6-dimensional presentation for tensor 1 01 9 0
generators C,=U= 0 V2 V2 0
0 0 01
0-100 00 o L i
1 000 00 V2oV
b |0 000 00 10 00
& =10 000 -10 (10) 0 |0-50 5
cil=vu"1'= vZoV2
0 001 00 ! 0 —75 0~
0 000 0O 0 0 1 0
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we derive explicit form of the matrix Cs, U ®

U— CQ,HQ = CQHQ

1 i
~swn? 0
0 01 O
1 7
cy=| 2 3?0
0 0 0—%
0 0 0 O
0 0 0 ﬁ
1 1
—WO 72 0O 0
_ﬁo_ﬁ 0O 0
0O 1 0 0 O
C2_1: i
0O 0 O ? 0
0O 0 O 7 0
0O 0 O 0 —2

O O O O

oo Shothoo o
O =

C’&\“ﬁ\@.

Further, we readily find the needed blocks:

0
_ -1
0 _
K_O
0
1 1
nV-u
e 0 0 O
10 0 0
0 0 O
s 0%
7 0 0 O
10 00
0 0 O
0
- 0
3 _
K_O
0

" Ok © s osk o

o oo O%‘s o O
o o o o
oS O O O

L

o O O O
o o @0 oo
o O O O

s Sy = Sy

1
75 0 0 0
0O 0 0 0
1
El—_ﬁo 0 0
“l 0o o0 —-L o0
V2

o L o L
Vit V2

0 0 -5 0

-5 0 0 0

0 0 0 0

LQZ_WO oi 0

00 -5 0
0 % 0

0 0 45 0
0 0 00 0100
-1 0 00 0010
_ 0 0 00| - 0001
3 _ 0 __

L_0001’L_0000
0 0 00 0000
0 -100 0000

and also expressions for the needed generators

0000
_ 0-10 0
Ji2 ’

1 0000/ 7
00 0+1

1

0

_12_. 0

J2 =1 0

0

0

-03 _

OO OO oo

OO O = OO

0010
0000O0
1000
0000O0

OO = O OO
[e= RN en BN e B e B e B o)
o O O OO

Now let us transform the above system to the cyclic basis. The first equation leads to

[ClKOC;lcQ(aO —ieEz) + (CLK'Cy 1010,

1
+01K202‘102;6¢ + a2 4+ O1 K305 1000, | Cy CoHy — MCyHy
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+enE(C1j0 Y CLHy — 2Eec

O O O

whence allowing for the identity

o o OMHOE‘H
oo ooy
oo o o~ o

===

S.OE‘“‘ o O O

Shosk oo o

5

the first equation is transformed to the form

Oy —ieEz
Or
1/r 0y
o8

Dgo = 0;

O = OO

S-egle
Sloglo

o O

oo = Po3

ha
o

o O O
o O O

i _ ,1 1oy, 734 15 <03
[KO(—ie —ieB2) + K10, + K*~ (95 +J3) + K?’az} Hy + ep k5 Hy

+2Fec

o O O
Shogko

Shegle

The second equation transforms as follows

1000 — ieB2) + L'0, + EQ%@

Oy —ieEz
Or
1/r 0y
-

B B (11)
$oo — MH; =0,

o= OO

+ i) + L0 iy = My = 0. (12)

Now let us perform the separation of the variables in cyclic basis. Taking in mind the substitution

El(rv Z)
Dy(r, 2) Ey(r, z)
— iet 1 (r, 2) — et Es(r, 2)
— iet ime¢ | *1\ — iet ime | =3\
Hy =e¢ " Bo(r,2) | Hy =e " Bi(r.2) | (13)
P3(r, 2) By(r, 2)
Bs(r, 2)

we get

_ _ |
K%(—ie —ieEz) + K'0, + K*=
T

+epnEj3Hy + 2Eeo

o O O =
§F°§F°

(im + j32) + f(?’az] Hy — MH,

00 —ie —1eBz

<0 Oy _

V2 gy =0
Q 1 im/r 0 ’
vl 9,

_ _ 51 _ _ _ _
[LO(—ie —ieBz) + 10, + L* (im + j1%) + L38Z] iy — MH, = 0.
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Let us specify separately two additional terms:

0010 By tenEd,
—m = 0000 @ 0
03 _ ) -
TenBETHr) = Fenl | o o1 By | T | e
0000 ®s 0
ie —icE
1 01 00 e ens 2 Feo (—ie —ieEz)
0 —— X 0 87‘ — _\/EE 8 —
7 V3 _ eo (Op + m/r)
RNy 00 0 1| gy | 2 Eeo 0, o2
1 i
0 % 5#0 . V2Eea (0, — m/r)

SO we arrive at

_ _ _-1 _ _ _ _
[KO(—ie —ieEz) + K'o, + KQ;(im + ji?) + K30, |Hy — M H,

euEdy 2 Feo (—ie —ieEz)Fy
| 0 || VEEee 0 mmEs | (1)
+eulEdq 2 Feo 0,E,
0 V2Eeo (0, — m/r)Es

1 _ _ _
L°|(—ie —ieEz) + 0, + —(im + j12) + az} i — MH, = 0.
r
Whence we obtain the following 10 equations

1<§r_ L_1>E_'1(T,Z) _ L( 0 + m+1>E3(T,z)—aZE2

V2 r V2 \or r
+epu E®y(r,2) — 2iEeo (€ + eEz) Eq(r,2) = M®y(r, 2),
. — 1 8 m\ = — 8 m\ — _
2 i(e+eEz)Ey(r,z) + 7 (5 + 7>B2(r, 2) — 0, B3(r, 2) — V2Eeo (E + 7)E2(7“, z) = M®Py(r,2),

3 4i(e+eEz) Balr,z) \}5(8‘1 4 mf—“)Bl(r, 2) - \2(367« - mT_l>B3(r, 2)

+eu E®g(r,2) + 2 Eeo 0, Ea(r,2) = M®y(r, 2) ,

) _ 1 /0 m\-= _ Jd m\ = =
4 i(e+eEz) Es(r,z) + \ﬁ<§ - 7)B2(r, z) 4+ 0,B1(r, 2) +\/§Eea<§ - 7)E2(r, z) = M®3(r, 2),
1,0 m\-= . - _
5 —Q(ar—i-?)q)g(r,z)—z(e+eEz)<I>1(r,z)—MEl(r,z),
6 —0.Po(r,2) —i(e+eEz)®y(r,2) = MEy(r, z),
0
1 /0 m\= . - _
7T - E(E — 7)@3(7’, z) —i(e+eEz) ®3(r,z) = ME3(r, z),
1 /0 m\-= - _
8 — E<§ — 7)@2(7“, z) + 0, P3(r,z) = M By(r,2),
1 /0 m—1 1 /0 m+ 1\ = _
9 () m )+ (g T )Bsn2) = MBs(r2),
1 /0 m\-= - _
10 - (5 + =) ®alr,2) — 0:84(r, 2) = MBa(r. 2).
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With the use of the shortening notations

" _6+m u _8+m—|—1
mT g o LT gy r (15)
b _8_m _8_m—1
m—ar T" m—l—ar r )

the above 10 equations read as follows

1 _ 1 _ _

1 ﬁbqul(T, z) — ﬁam—i—lE?)(r? z) — 0. E»
t+epu E®y(r, z) — 2iEeo (e + eEz) Ey(r, 2)
= Moy(r, 2),

_ 1 _
2 i(e+eEz) By (r,z) + —=amBa(r, 2)

3

—0.B3(r,2) — V2Eeo amEy(r,2) = M®(r, 2),

_ 1 _
3 i(e+eEz)Ea(r,z) — ﬁamHBl (r,2)

1 _ _
——bym_1B3(r,z) + e E®q(r, z
NG 1B3(r, 2) pE®o(r, 2)

+2 FEeo 0,Fs(r, 2) = M®y(r, 2),

_ 1 _
4 i(e+eEz) Es(r,z) + ﬁmeg(r, z)

+0.B1(r, 2) + V2 Eeab,, By (r, z) = M®s3(r, 2),
1 = -
5 —am Po(r,z) —i(e+eEz) Pi(r, 2)

V2

= ME;(r,2),
6 — 0,P(r,2) —i(e+eEz)Py(r,2)
= MEy(r, z),

1 _ _
7 — —b,®o(r,z) —i(e+eBz)Pg(r, z
7 o(r,z) —i(e ) ®3(r, 2)
:MEg(’I",Z),

1 _ _
8 — %bmqh(ra Z) + 62@3(?”, Z) = MBl(rv Z)>
0 b 1®1(r,2) + g1 B, 2)
—by— rzZ)+ ——amp T,z

/2 191 /5 +193

= MBs(r, 2),

1 _ _
10 — —=amPa(r,z) — 0,P1(r,2) = MBs(r,z).

V2

6. Projective operators and the
Fedorov — Gronskiy method

To analyze the system of equations, we will
use the method of projective operators. To this
end, we consider the third spin projection ¥ =
—iJ'2, and make sure that it satisfies the minimal
equation V(Y — 1)(Y + 1) = 0. This minimal
equation allows us to introduce three projective
operators
YV +1) YV -1)
- 5 P—l = a9

2 2
with the needed properties

P =Py, P2, =Py, P>, = P_4.

Py=1-Y? Py =

Accordingly, the complete wave function can be
expanded into the sum of three parts

o= (i)o + ‘i)+1 + (i),l,i)o- = Po-é,O' =0,41, 1.

These components have the following dependence
on the variable r (in accordance with the
Fedorov — Gronsky method [15], each projective
component should be determined by only one
function of r):

il
o =
N
S—

=)
o
—~
=
N
S—
I

| K

o o=

N

S—

Fl(r)7

o o X
N
Ny

vl
(Y]
—~

w
N—

)

cofooco

(I)-l—l(r) = FQ(T)7

w

—
N

~

=

—
N

~—

o O
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s =l
T oo~ o
N S
S— N—r

o o o o

vl
w
—~

N
S—

the columns are made up of yet unknown
numerical coefficients. Taking this into account,
we can rewrite the previous systems of equations
differently

1

1 _
— —F3(2)ame1 Fo(r
7 3(2)amt1F2(r)

7 (
—8ZE2(2)F1 (r)+ep E@Q(Z)Fl (r)
—2iFeo (e + eEz) Ey(2)Fi(r) = M®o(2)Fy(r),

1) El(z)bmleg,(T)

%Bg(z)amlﬂ(r)
—0,B3(2)F3(r) — V2Eeo Ey(2)am Fi(r)
= M(i)l(Z)Fg(’r‘) s

2) i(e+eEz) Ei(2)Fs(r) +

3) i(c+eEz) By(2)Fi(r) - %BﬂzmHFZ(r)
1

—ﬁBg(Z)bquzs(T) + ep E®q(2) Fy(r)

+2 Eea 0, Eq(2)Fi(r) = M®o(2)Fi(r),

4) i(e+eEz) E3(2)(2)Fy(r) + ZBg(z)bmFl (r)

NG
+0,B1(2)Fa(r) + V2 Eeab, B2 (2) Fi ()
= M®3(2)Fy(r),

5) Do (2)amFi(r) —i (e + eEz) ®1(2)F3(r)

1
V2
= ME,(2)F3(r),
6) —0.90(2)F1(r) —i(e+eEz) Pa(2)Fi(r)
= MEs(2)Fi(r),

1
V2
—i(e+eEz) ®3(2)Fa(r) = ME3(2)Fa(r),

7) (I)o(z)bmFl(T)

8) — \%%(z)bmFl(r) + 0, ®3(2) Fy(r)

= MB1(2)Fx(r),

9) %él(z)bmng(r) + \}i(i)g(z)aerng(r)
= MBQ(Z)Fl(T),

10) — \2@2(2)(17%17’1(7“) — 0,®1(2)F3(r)

= MBg(Z)Fg(T).

In order to obtain differential equations in
the variable z, we should impose the following
constraints

bn—1F3 = C1F1, apl) = Cy4F3, (16)
amy1F2 = CoFy, by Iy = C3F,
in this way we arrive at
1 _ 1 _ _
—C1E1(z) — —=C9E3(z) — 0,E5(z
\/511()\@23() . Eo(2)

+epuE®y(2) — 2iEeo(e + eEz)Ey(2) = M®y(2),

+i(e +eEz)Ey(2) + 120432(2) —9,Bs3(2)

=
—V2Eeo CyFs(z) = M®,(2),
Fi(e + eB2)Ba(z) — \20231(@ _ %clég(z)

+eu E®g(2) +2 Eeo 0, E5(2) = M®y(2),

+i (e + eEz) E3(2)(2) + \}50332(7;)

+0,B1(2) + V2 EeoC3Ey(2) = M®3(2);
12 Cy®o(2) —i(e+ eEz) ®1(z) = ME;(z),

V2

—0,®0(2) —i (e +eEz) Po(z) = MEy(2),

—\}503(50(2) —i(e+eEz) ®3(2) = ME3(2),
—\}50@2(2) + 0,83(z) = MB(2),
\20@1(2) + \}502@3@) — MBa(2),
_;50@2(@ 0,81 (2) = MBs(=).
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7. Explicit form of three basic
functions

From the differential constraints

bm—1F3 = C1F1,  anFy = CyFs,

am+1Fy = CoF1, by by = CsFy,
it is obvious that the parameters in each pair
can be chosen the same: Cy = Cq, C3 = Cs.
Therefore, we obtain the second-order equations
(bm—1am — C})F1 = 0, (ambm_1 — C})F3 =0,
(am+1bm — C%)Fl = 0, (bmam+1 — C%)Fg =0.
Further we obtain the explicit form of the second-
order equations

(e 1 =52 - ) =0
2 2
T )

(17)

(18)

and
2 1d (m+1)2 )
(dr2 rdr 12 _02)F2 =0,
2 1d (m—1)2 9
(Getra— —G)R=o

Thus, we have only three different equations (and
the constraint C3 = Cf = C?):

2 1d m? 9
[ F =
(er rdr 12 > 1 =0
2 1d (m+1)? 5
—t (" =0, (19
(dr2+rd7“ r2 ) 2 , (19)
2 1d (m—1)2 5
&L 2 U= o —
(dr2+rdr r2 C) 3 =0
In the variable x = iC'r, they take the Bessel form
2 1d m?
C L2 1 \p =
(d2+xd:c+ xQ) =0
Fi(x) ~ Jim(x),
2 1d (m+1)>
SR A U 200
<d:n2 x dx x2 ) 2 ’
Fy(x) ~ Ji(me1) (@),
2 14 (m —1)2
SRR NRI TR VL2 - N
(dx2+$dx+ x? ) 5=0,

Fy(z) ~ Jim-1)(®).

8. Solving equations in z-variable

Taking in mind the identities C; = Cy =
Cs = Cy = C, we get the following system in
z-variable:

1 1
V2 V2
+ep E®y(2) — 2iEeo(e + eEz)Ey(2) = Mdy(2),

CEl(Z) — CEg(Z) — 8ZE2(Z)

i(e + eE2) By () + 12032(2) — 0.Bs(2)

f
—V2Eec CEy(z) = M®,(2),
i(c + eB2) Ba(z) — \}iCBl(z) _ \2033@)

+eu E®g(2) + 2 Eea 0, Ex(2) = M®y(2),

i (e + eB2) By(2) () + \}5032@)

+0.B1(2) + V2 EeaCEy(z) = M®3(2),
\}5 CBo(2) — i (e + eE2) By (2) = MEy(2),

—0,P0(2) —i (e +eEz) Po(2) = MEy(2),

\}Qcéo(z) —i(e+eBz) ®3(2) = ME3(2),
—\20@(@ 4 0,85(2) = MBi(2),
\}écél(z) + \}50@3(2) ~ MBs(2),
—\}50@2(2) —0,81(2) = MBa(=).

For shortness, we change the notations:

ekl — F, ek —=— FEu, eFo = FEo,
e+ Ez=W(z), W =E.

Let us divide equations into two groups:
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1 11
1 - 1 - _
) ﬁCEli(Z) B E(_}E‘Q’(z) - afEQ(Z) W () E1(2) + \}icég(z) —0.Bs()
+u Edy(z) — 2 ZEUIV(Z)EQ(Z) = 1]\4@@(2) , _3Be CEy(z) = Mby(2),
iW(2)Eq(2) — —=CBy(z) — —=CBj3(2)

V2 V2 iW(2)E3(z) + icéz(z) + 8.B1(2)
+u E(IDQ(Z) +2Fo 8ZE2(Z) = M(i)g(z) . \/5 _ _
: +V2 EcCEy(z) = M®s3(z),

COy(2) —iW(2)®1(2) = ME(2),

V2 —0,®0(2) — iW (2)P2(2) = M Eo(2),
1 _ _ _
——=C0%(2) — iW(2)®3(2) = M E3(z) LINeT L 0da(2) = MB
’ — + —=Co =MB .
V2 1 7 1(2) 7 3(2) 2(2)
—5062(2) + 8,2&)3(2) = MBl(Z) s
1 The system I can be solved with respect to
—ECCI)Q(Z) —0,91(2) = MB3(2); six variables ®q, @2, E1, E3, By, B3; so we obtain
1
by = 2M (0, + 2%E(Ez + €)o)C? + M(iE(Ez + €) (1 — 2Mo
0 2((02_M2)2_M2E2M2)[ (( (B2 +)o) (iB(E= +¢)(u — 2Mo)
~0.(M = 2B%0))) Bz +iV3C((C* = M?)(Ex + ) — i0. MEp) (@1 - 3)]
Oy = — ! [22’M((Ez—|—e—2i8zEa)C2 — M(MEz+ Me+i0,En)

2((C? — M2)* — M2E212)
+2ME(i0.M + E(Ez + €)u)o) Es + V2C(9,(C? — M?) + iME(Ez + €)u) (®1 — @3)] ,

! ) 2
b= 2(M(C? = M?)” = M3E2) {\/501\/1((@ +2E(Ez + €)o)C

+M(iE(Ez+€)(p—2Mo) — 0. (M — 2E*uo))) E»
—i(((C*—M?)(Ez+€)—i0. M Ep)®3C*+ (i0, M EnC? —2M?E*(Ez+€)p° + (04—3M202+2M4)(Ez+e))<1>1)],

1 . 2
E;=— S0 M2)2 ) [\/iCM((ﬁz +2iE(Ez +¢€)0)C

+M(iE(Ez +€)(p — 2Mo) — 0. (M — 2E°u0))) Ex +i(((C? — M?)(Ez +¢)
—i0, MEp)®,C? + (i0,MEuC? — 2M*E*(Ez + e)p® + (C* — 3M*C* + 2M*) (Ez + e))q>3)},

1
B = 9.(C — M)(C+ M) +iME(Ez + €)u)®,C?
S NG T3P P [(0.(C = M)(C + M) (B2 + )@

+iV2M (Ez + € — 2i0,E0)C? — M(MEz + Me +i0,Ep) + 2M E(id,M + E(Ez + €)u)o) CEy

+(0.C* + M(=30.M — iE(Ez + €)u)C? + 20, M?(M — Ep)(M + EM))<1>3],
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1
2M(C? — M2)® — 2M3E2y?

[((82(02 — M?) +iME(Ez + €)1)®5C?)

-H\/iM((Ez +€—2i0,F0)C* — M(MEz+ Me+i0.Ep) + 2ME(id0.M + E(Ez + €)p)o) CEs
+(—0.C" + M(30.M +iE(Ez + €)u)C* — 20, M*(M — Ep)(M + Eu))cbl} .
Now, we substitute these expressions into four remaining equations; in this way, we get four

equations for the variables ®1, ®3, Eo, By:

B,C By - CO?E(2C%0 + M (u — 2Mo))
V2 a((02 - M2)? - M)

1

+\/§((C’2 _ M2)2 _ /ﬂMzE?)

)[CE(=20((C* = M?)(C? — (M = Bz — )(M + B2 +¢))

42— M2)E? + ipME?) — i(C? — M?) + p(—M)(Ez + 6)2)]

i ( C202(C? — M?) 02((02—MQ)(Ez+e)2+wME2))
Non(02 - M2)? - 22 MBE? 2M (C2 — M2)* — 22 M3 E?
92(C* = 3C?M?* 4+ 2M?*(M — pE)(M + pFE))
0 (

2M (C? — M2)* — 22 M3 2
1
2M (C? — M2)* — 22 M3 2

[CH((B2 + €2 = 2M?) + C2M(AM? — 3M(E= + €)? — ipE?)

—OM*(M — pE)(M + pE)(M — Bz — e)(M + Ez + e)]) —0,

ByC C292(C% — M?) C2((C? — M2)(Ez + €)? + iuM E?)
2) == o : + ; : )
V2 2M (C? — M?)” — 2u2M3E? 2M (C? — M?)” — 22 M3E?
(C’@EE@C@U + M(p—2Mo))
\/5((02 _ M2)2 _ u2M2E2)

1 4 2 2 2 .
+\/§((CQ - M2)2 R {C’E(ZC’ o+ C*(—4M?0 +20(Ez +¢€) +1)
+M(2M?0 + M(—20(p*E® + (Ez +€)?) —i) + p((Ez +€)* + 2i0E2)))D

I (5‘3(04 —3C2M? 4+ 2M?*(M — pE)(M + pFE))
’ 2M (C? — M2)* — 22 M3 2
+ ! [04((Ez + €)% —2M?) + C*M (4M?® — 3M(Ez + €)*> — inE?)

2M (C? — M2)* — 22 M3 E?

—OM*(M — pE)(M + pE)(M — Bz — )(M + Ez + e)}) —0,
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920 (M (M — 2u0E?) — C?)
E2(

3) 5
(02 _ M2) _ ,u2M2E2

1
+
(02 _ M2)2 — W2 M2E2

M (2i0 (= C2 4+ M(M +ip(E= + ¢)?))

—(C2 = M?)(C2 = (M — Bz — €)(M + Ez + €)) + y2M2E? — iuMEQ)D

s (7 CO*uME CE(u(—M)(Ez +¢)? —i(C’—M)(C’—i—M)))
! \/i((CQ—MQ)Z—uzMQEQ) \@((CQ—MQ)2—;L2M2E2)
® ( Co*uME CE(/LM(EZ+€)2+i(C—M)(C+M)))_0
8 \/?((C’Q—M2)2—N2M2E2) \/5((02—M2)2—/,L2M2E2) 7
RTRPIL:: T

Eliminating the variable B, we obtain the system of three equations (let us change the notations,
G=%®,, H=®3, F=E):

1) ( —V2COEME(2C20 + M(u— 2Mo))
+V2CME(—-20((C? — M*)(C* = M? + (BEz + €)?) + p*(— M*)E* + iuM E?)
—i(C? = M?) + p(—M)(Ez +€)?)) + G(W¥*M?E*(2(M — Ez — €)(M + Ez +¢) — C?)
—iC?uME? 4 02(C* — 3C°M? + 2M?*(M — pE)(M + pE))
+(C* = 3C*M? +2M*)(C? — (M — Ez — ¢)(M + Ez + e)))F
+(CO+ CH((Bz + ) — 2M?) + C202(C? = M) + C2M (M? — |2 ME? — M(E= + )* + inE?) ) =0,
2) (VACOEME(2C%0 + M (s 2Mo))
+V2CME(2C*0 + C*( — 4M?0 + 20(Ez + €)* +1i) + M (2M?0
+M(—20(pPE* + (Ez+€)%) —i) + p((Ez + €)* + 2i0E2))))F
+(u2M2E2 (2(M — Bz — )(M + Ez + ¢) — C2) — iC2uM E?
+02(C* = 3C°M? + 2M*(M — pE)(M + pE)) + (C* = 3C°M? + 2M*) (C* — (M — Ez — €)(M + Ez + e)))H
+<06 + C*((BEz+€)* —2M?) 4+ C?92(C* — M?) + C°M (M? — > ME* — M(Ez + €)* + WE?))G =0,
3) (20202 (M(M — 200 F2) - C?)
+2M* (= (C? = M?)(C? — M? + (Ez + €)?) + 2i0E*( — C* + M (M + ip(Ez + ¢)*)) + p> M*E* — z’uMEQ))F
+( = V2CORUM2E + V2OME(u(~M) (B2 + )* — i(C* - M?)) ) H

+(VBCO UM + VROME(uM(B= + ¢ +i(C* ~ M2)))G =0,
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Let us sum and subtract the first two equations as
1+2) ((€2 = M2)" — p2MPE?)(C? + 02 — (M? = (Ez+ %)) (G + H) =0,
1-2) M( = 2V2C%0E — VaCE(20 (62 — 2M* + (Ez + ¢)%) + i)
—V2CME(M(—20(02 + p*E* + (Ez +€)?) — i) + (02 + 2i0E* + (Ez + €)®) + 2M3J)>F
+M(C4M — C2(9°M — 2M® + M(Ez + ¢)® + ipnE?)
M (M — pE)(M + pE) (0% — M2 + (Ez + e)2)) (H-G) =0,
3) M(iﬁCME(M +ip(02 + (B2 + €)?)) — z’x/iCSE) (G — H)
+M (= 2C*M — 202 M (82 — 2M? + 2i0 B* + (Ez + )*)+

+2M2 (02 (M — 240 B2) — M? + M (E? (1 + 2icr + 2%) + 2Bz + &) + pE2(— 20(Ez + €)* — i) ) F = 0.

It is convenient to introduce new notations

G+H=V, G-H=U; (20)
then we get
1) (53 4 (Bzte)?+C? - MQ)V(Z) —0, (21)
2) (- V2COME(2C%0 + M (i - 2M0)

+V20ME( —20((C?* — M?)(C? — (M — (Ez +¢)?))

(= M) E? + inME?) —iC? + M( = u(Ez + )* +iM)) ) F
+(92M2( = C* + M2 = i2B?) + M(CY(~M) + C*(2M° — M(Ez + ¢)? ~ ipE?)
—M(M — uE)(M + pE)(M? - (Ez + )*)) )U =0,

3) (= V2CORuME + VACME(M (- p(Ez + )* +iM) — iC?) )U
+(202M3 (M (M = 200 ) — C?) +2M%( — C* + C*(2M? = 200 E? — (E= + ¢)?)

FM (= M+ M(E? (5% + 210 + 2%) + 2Bz + ) + pE?( = 20(Ez + €)* —i))) ) F = 0.

Let us consider the system of two linked second and third equations as

2)  AU" + Ba(2)U + KoF" + La(2)F =0, 3) AsU” + B3(2)U + K3F" + L3(2)F = 0.
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Let us combine last two equations as follows. Multiplying equation marked as "2)"with 8 and multiplying
equation marked as "3)"with v and add these together we get

(BAg +~vA3)U" + (BBy + vB3)U + (BKa + vK3)F" 4 (BLy 4+ vL3)F = 0.

Let us consider two different variant:
the first one

1) (BA2 +vA3)~'U" + (BBy + vB3)U + (BK2 + vK3)"F" + (BLy + yL3)F =0 =

BAs +~yA3 =1 BKy+7K3=0,
solution of the linear system is
M (M = 2uocW?) — C?
M ((02 ~M2)? ;ﬂM?W?) (M — 2uoW?)’
B CW (2C%0 + M(p — 2Mo))
IV ((C2 = M2y — g2 a2w2) (M — 200 W)

8=

so that
V2CE(uM — i) (40%E% — 1)

C? (M? — 2ic E?)
" _ 2 2 —
U +(M(M_2WE2) M2 + (B2 +)*)U + e — F=0
the second one is
2) + (BB2+yB3)U + (BKz + 7K3) "' F" + (BLy + yL3)F =0 —

BKy+vK3 =1, [BAz+~vA3=0,

solution of the linear system is

. CuFE
VZM ((02 —M2)? - u2M2E2) (M — 2u0E?)
o C% — M2 + 2 E?
oM ((02 —M2)? - ;ﬂM?E?) (M — 2u0 E?)
so that
2) o C? (M —2uo E?) — M? + M (E? (u? + 2i0 + 2°) + 2Eze + €2) + uE? (—20(Ez + €)% — i) P
M —2uocE?
CE(-pM +i)

VZ(M - 2u0 E?)
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Thus, after this transformation we arrive at the following much more simple equations

C? (M? — 2ic E?)
M (M — 2ucE?)

N V2CE(uM — i) (40%E% — 1)

" _ 2 2 _
v+ ( M2+ (B2 +¢)?)U T F=0,
(C? (M —2poE?) — M3 + M (E? (p? + 2i0 + 22) + 2Eze + €%) + pE* (—20(Ez + €)? — i)

M —2uoE?
CE(—pM + 1)

V2(M - 2u0E?)

F// + F

They can be reduced to more convenient form

My — i)+ 2icM|E? — M3 CE(—pM +1
F”+(02+(Ez+e)2)F+[“( po i) & 2ioM] F S L)
M =2uckE V2(M - 2uc E?) (22
C? (M? — 2icE?) V2CE(uM — i) (402E? — 1)
U"+ (= M+ (B2 + ¢2)U U F=0.
* ) Ut a0 Ut M — 240 E?
[
For additional checking, let us fix the so that
physical dimensions of the quantities
) ) . ST =TS,
[M] = I [C] = I le] = R siosi2 || A K| | A 0 ) sin osi2
1 ) so1 s22 || L B 0 A2 || s21 s22
Bl= 25 =L lo]=1
whence follow two similar subsystems
Let us present the system in matrix form
a2 P I { (A= A1)s11+ Lsi2 =0
A_d2+(€+EZ)2’A’U‘_T‘U , Ksi+(B=)siz=0"
z { (A — )\2)821 + Lsgs =0
AV(z) = TY(z), T:‘A iy Kso1+ (B = A2)s22 =0
L B From vanishing the determinant we get
NOW We‘ will find the transformations which A2 (A+ B)A+ AB — LK =0,
diagonalizes the system N (A E
+B \/ +B
V= SU, AU(z) = TU(2), A= EY T T UB-LE). ()
T=STS = A0 , 11 812 Explicitly, the involved parameters read
0 Az S21 S22

A+B M (-2C*M +2M? — > ME? 4+ iuE?) 4+ 20 E*(C? — M?)(uM + i)
2 2M (M — 2ucE?) ’

(A+B)?2 (M (2C°M —2M® + > ME? — ipE®) — 20E*(C2 — M?)(uM +1))°
4 AM? (M — 20 E?)*

)
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—(AB - LK) =
CUM? — 202 M* — 2i0 B2 (C2 — M?)” +iC?uME? + C2E? + M® — ;2 M*E? + ipM>E?
M (M — 2ucE?) '

Solutions of eq. (23) have the form

1

A= oM (M — 20 E2)

x { 202 ( ~ M? 4 uMoE® + iaE2> oMty E2( — ouM30 — pu2M? — 2iM%5 + mM)

i\/EQ(,uM )2 (4O4a2E2 4 4C2M (—2Mo2E? + M — poE?) + M2E2(ji — 2Mcr)2) } . (24)

Let us take into account that two parameters are imaginary, o = i0, u = iu; then we get
1

A=
M (M + 2u0E?)

x [2M2 (M2 = C?) + E* (20(M2 =~ CF)(iM +1) + pM(uM 1))

i\/E2(,uM —1)2 (40402E2 — 4C2M (2M02E? + M + poE?) + M2E2 (i — 2M0)2)} (25)

If C = M, we obtain
)= 1
2M (M + 2uoE?)
correspondingly we have two separate equations
d? 9 _ d? 9 _
(@+(6+Ez) ~ M) F =0, (@-l-(e-l-Ez) — %) 0 =0. (27)
Let us impose an additional restriction A + B = 0, this permits us to get fixed parameter C":
iVM\/2M3 — 2ME? — 2Mo E?(uM + i) + ipE?
V—2M? 120 B2 (uM + i) ’

[,uME2(MM 1)+ /—M2E2(uM — 1)2 (4M (M + 20 E?) — ,uQEQ)]; (26)

C==+

let 0 = io, p = iy, then

ivVM\/2M3 + 2 ME? + 2Mo E2(uM + 1) — pE2
V2/—M? — 0 E2(uM + 1)

and we get two roots different only in sign:

C==

i(1— uM)E
2/ M + 2o E? (M2 + o E2(uM + 1))
2 3 4 2 2 3 2 2 2 2 27172
x| 20 B2 (40P + pM* — pE?) + M2 (4M3 + j2ME? — 2uE?) + AMo2E* (1 + M . (28)

AMM,E, p,0)==+

correspondingly we have two separate equations
& B2+ )F oo, (L Ez)? - \)U =0 (29)
@+(e+ 2)” + =0, @—i-(e—i- z)? — =0.
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9. Solving the differential equation

The derived equation has the same structure as for a scalar particle in the uniform electric field

(we transform the equation to the new variable, assuming that E > 0)

d2 2 2 (EZ + 6)2 ’/TL2
(@—l—(Ez—f—e) —m )@(z)—(), Z—zT, A_E’ (30)
then we get the confluent hypergeometric equation [17]
a2 1/2d 1 A
—t+— —— -4+ —=)®(Z)=0. 31
(d22 + Z dz 4 Z ) (2) (31)
[
This equation has two singular points. The function)
point Z = 0 is regular, behavior of solutions near )
this point is given by the formulas Z — 0, ®(Z) = 7 — Z,(e + E2) — iZ0. Zo>0
ZA, A =0,1/2 . The point Z = oo is irregular E '
point of the rank 2. Indeed, in the inverse variable 42 = et/ )
y = Z~! we get the equation (34)

(Lo2d_ 1 b
dy?  2ydy Ayt 3

)q):o. (32)

Asymptotic of solutions at y — 0 should have the
structure ® = y€eP/¥. Further we arrive at

1
D?*— - =0
4 Y
—2CD+2D—§D—|—2'A:0;
2
1 1 (33)
D1=+§, 0121%-2'/\;
1 1.
D2:—§, CQZZ—ZA.

Therefore, in infinity there are possible two
behaviors

7 — 00,
ZfCleDlZ — Zfl/47iA€+Z/2’

O =7C%"" = ,
ZngeDgZ — Zfl/4+zA€7Z/2’

where (we use the main branch of the logarithmic

Z—1/4FiA _ (elniZ()) —1/4FiA

_ (eln Zo+m/2) —1/4FiA

Let us find solutions in the whole region
of the variable Z. To this end, we apply the
substitution ®(Z) = Z4 eBZ f(Z); taking in mind
the constraints A =0,1/2, B = —1/2 we get the
equation

[Zd2+(2A+1/2—Z)d
22 dZ

—(A+1/4—iN|f(2) =0,

which can be recognized as the confluent
hypergeometric equation with parameters

a=A+1/4—iN, c=24+1/2,
f(2)=2%e¢??F(a,¢; 2) .

Without loss of generality we can use the value
A=0:

A=0,a=1/4—i\, c=+1/2,
©(Z)=e?Pf(2).  (35)

The confluent hypergeometric equation has
different sets of linearly independent solutions.
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First, consider the following ones

Yi(Z) = F(a,6: Z) = 2 F(c — a,¢;— Z),
Yo(Z)=Z' " Fla—c+1,2—¢;Z) (36)
=7V %?F(1—a,2—¢—Z).
They lead to the complete functions
& =e ?PF(a,¢; Z) = et ??F(c—a,c;—2),
By =e 227V Fla—c+1,2—¢ 2)
=772l —a,2 — ¢, - 2) .

Taking in mind the identities

1 1 1
= — = _ — A g = _ A = *
c 2,@ 1 1\, c—a 4—1—2 a,

1
c=c"==,2"=-7,

2

3
a—c+l=-—iA=(1-a

4

),
2-0=@2-0" =3,

we can conclude that the solution ®1(7) is given
by the real-valued function, the second ®2(Z) has
a definite symmetry under complex conjugation:

D1(2) = +[®1(2)]", ©2(Z) =i[P2(2)]". (37)

This property of the function ®9(Z) may
be presented differently when using other
normalization

5:(2) = 1\;

Dy(2)

At small Z the above solutions behave

Yl(Z) ~ 1,
Yg(Z)%ﬁ:m:\/g&%-eEz);
®1(Z) = 1,

QQ(Z)%\FZ:\/%:\/(STE (e+eExz).

At large Z = iZy, Zy — +oo we can apply the
asymptotic formula (see in [17])

Fla,c,Z) = (F(l;(f)a)<—2)-a + )
(38)
F(C) Z rza—c
NECI

Taking into account identities

) . —1/4+iA
(_Z)—a _ (_iZO)—1/4+zA _ (eano—m/Q) /

— o~ (=1/44iA)in/2 (=1/4+iA)InZo

)

Za—c _ (Z'ZO)—I/4—7§A — (ean0+i7r/2)7l/4*iA

+(=1/4=iA)in/2 ,(~1/4—iA)In Zo

(e _ TA/2) Tl T@A/2)
I(c—a) T(1/4+iA)’ T(a) T(1/4—iA)

we find the following behavior of the solutions

) F(1/2) o AN B ) .
— — »1Z0/2 (=1/44+iAN)in/2 (—1/4+iN)In Zo ,—iZ0/2
Yi(Z)=F(a,c,Z) =e¢ {F(1/4+7LA) e e
D(1/2)  (C1/a—ihyin/2 (—1/4—id)In Zo +iZ0/2
+F(1/4—1'A)e e e . (39)

Henuneiinble sgBiieHnst B CJIOXKHBIX cucTtemax 1. 28, Ne 1, 2025



Spin 1 Particle with Two Additional Electromagnetic Characteristics in the Presence of a Uniform
Electric Field 61

Whence after transition to the variable ®1(Z) we get

_ [T/
") = {ei

- r(1/2) o (—1/4—iN)i/2 6(1/4iA)anoe+iZo/2}7

o~ (= 1/44iN)im /2 ,(=1/4+iA)In Zo ,~iZo/2
(1/4 —1A) (40)

where we can see the sum of two conjugate terms. Similarly, we can examine behavior in infinity of the
second solution F(a —c+ 1,2 —¢; Z):

I'(2 — re-
Fla—c+1,2—¢2)= (76)(—Z)*“+C*1 + 2-¢ e? 707t

I'l—a) I'la—c+1)

Whence taking into account the identities

(_Z)fa+cfl _ (_iZO)73/4+iA

_ (eln ngirr/Z) —3/44iA o~ (=3/4+iN)in/2 (~3/4+iA)In Zo

Y

za—1 _ (eln Zo+m/2> —3/4-iA — H(=3/4—iN)in/2 ,(=3/4—iA)In Zo

r2-c¢  T(3/2) r2-c¢  T(3/2)
I'(1—a) T(3/4+iA) T(a—c+1) T(3/4—iA)’

we find the following behavior in infinity

)

Fla—c+1,2—¢ Z) = e%0/?

D(3/2)  (Cs/atiNyin/2 (—3/4+iN)In Zo ,—iZ0/2
% {F(3/4+z'A) ¢ ¢ ¢

I'(3/2)
TT@E/A—in)

o (=3/4—i)im/2 ,(~3/4~iA)In Zo ,+iZo /2} _
Whence for the function ®5(Z) we derive (allowing for v/Z = e(1/2)/(In Zo+ir/2))
y(Z)=VZF(a—c+1,2—¢,2Z)

) 1_‘(3/2) e AN _ . .
_ im/4 (=3/4+iAN)in/2 (—1/44+iA)InZy ,—iZ0/2
‘ {r(3/4 A © ¢ ¢

MG

+(=3/4—iN)in/2 (—1/4—iA)In Zo +iZo/2
(3/4—ih)© ¢ ¢ }

It is possible to construct two solutions independent solutions (see in [17])
which at infinity behave as conjugate functions.

To this end, we should use other pair of Ys(Z) = U(a, c; Z),Y+(Z) = eZ\IJ(c —a,c—7) .
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Two pairs {Ys, Y7} and {Y7,Y2} are related by
Kummer formulas (see in [17])

~ T'1-¢ I(e—1)

Y et ) T T 2 )
- F<1 B C) F(C B 1) e

Y7_F(1 —a,)Y1 B I‘(c—a,)e Yo

Whence we can derive asymptotic relations in the
region | Z |— o0

Y

Ys5(Z) = (Z‘Zo)fl/4+iA _ (eano+i7r/2
Yi(2) = 2U(e —a,6-7) = e (=i%)"

. . . . —1/4—iA
_ GZZO(—iZQ)_1/4_ZA _ ezZo (ean()—wr/Q) / ]

> —1/4+iA

The last formulas after translating them to
variables ®(Z) take on the form

D5(2) = e 217 v5(2)
—1/4+4iA

)

— —i%0/2 <eln Z0+i7r/2)

7 (2) = e 42 Y1(2Z) (4

. . —1/4—iA
— €+ZZQ/2 (ean()—mr/2> fA-i )

These functions are conjugate to each other, they

are presented in the combinations (40) and (42).

10. Conclusion

The generalized Duffin — Kemmer equation
for a spin 1 particle with anomalous magnetic
moment and polarizability is studied in presence
of external uniform electric field. After separating
the variables, we derive the system of 10 first
order differential equations in polar coordinate.
To resolve this system, we apply the method
by Fedorov — Gronskiy. Within this approach,
the complete 10-component wave function is
decomposed in three projective constituents,
dependence of each on the polar coordinates
is determined by only one function. We find
expressions for this basic function Fj(r) in terms
of Bessel functions. After this, the system of
10 equations in z-variable is obtained. Three
independent solutions of this system are found.
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