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The goal of the present paper is investigation of the nonrelativistic approximation in the 39-

component theory for a spin 2 particle. We apply explicit expressions for four main matrices
I'* with dimension 39 x 39 in the relevant first order system of equations, written in Cartesian
coordinates and in the presence of external an electromagnetic field. For distinguishing the
large and small parts in the complete wave function, we use three projective operators
constructed on the base of the minimal polynomial of the 7-th order for the matrix I'?.
The relevant large and small components are found in explicit form. Among them we have
found independent variables; in particular, among the large components there exist only
five independent ones. We have derived the nonrelativistic equation for 5-component wave
function; in which term describing interaction of the magnetic moment of the spin 2 particle
with the external magnetic field is separated.
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Introduction

After the investigation by Pauli and Fierz
[1], [2], the theory of massive and massless fields
with spin 2 has always attracted much attention
[3]-[27]. Several key aspects and challenges of this
theory have been explored over the years.

Most of the studies were performed in the
framework of 2-nd order differential equations. It
is known that many specific difficulties may be
avoided if from the very beginning we start with 1-
st order systems. Apparently, the first systematic
study of the theory of spin 2 fields within that
formalism was performed by F.I. Fedorov [4]. It
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turns out that this description requires a field
function with 39 independent components. This
theory was re-discovered by Regee in [5].

When studying the massless spin-2 field
in a curved space-time, additional difficulties
appear. For instance, unexpected constraints on
space-time geometry arise to insure the gauge
symmetry of the theory. In particular, the Ricci
tensor R,g and the Riemann tensor Ragps
must vanish [15]. To resolve this, a non-minimal
interaction term involving the Riemann tensor
can be introduced into the basic equations [20],
allowing the constraints to be reduced to R,3 = 0.
Another area of interest has been the problem of
anomalous solutions in spin-2 theory [6, 7, 10].

A technical alternative for studying spin-
2 fields, both massive and massless, involves
formulating first-order systems. This approach,
based on the Gel’fand-Yaglom formalism |[3],
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was first explored by Fedorov [4] and Regge [5].
Their papers demonstrated that a spin-2 particle
requires a 39-component set of tensors for its
description, it includes @, @k, D (), Plnn)i-

This formalism allows for exploration of
new physical questions related to degrees of
freedom. For instance, for the massless case,
the 39-component matrix equation was solved
in Minkowski space-time in [24], [25] using
spherical and cylindrical coordinates. Six linearly
independent solutions were found. By applying
the Pauli—Fierz approach, adjusted to the tetrad
formalism, the gauge solutions were constructed
using exact solutions for the massless spin-1 field.
This yielded four independent gauge solutions and
two gauge-free solutions for the spin-2 field, as
expected from physical reasoning.

Additionally, F.I. Fedorov initiated a more
general theory for the spin-2 particle based on
a b50-component set of tensors. This theory, in
the presence of external electromagnetic fields,
describes a spin-2 particle with an anomalous
magnetic moment4 see in {12, 13, 21-23|.

One notable aspect of this theory is its
allowance for a new massless limit for the
spin-2 field [21]. This is particularly significant
because the minimal Pauli—Fierz theory does not
possess gauge symmetry in curved space-times
with R,g = 0. However, the generalized theory
exhibits gauge symmetry under these conditions.

In the present paper, we will investigate the
non-relativistic approximation in the basic 39-
component theory.

Section 1 introduces the basic definitions
and notations, including the structure of the 39-

J

component matrix equation. Explicit expressions
for the four key matrices I'® of the equation,
derived in [19], are assumed to be known. The
system is formulated in Cartesian coordinates in
the presence of external electromagnetic fields.

The non-relativistic approximation
performed by distinguishing between large
and small components of the wave function
using three projective operators derived from
the seventh-order minimal polynomial for the
39 x 39 matrix I'?. The explicit structure of these
components is determined; in Supplement A, we
establish independent variables among large and
small components.

In section 2, we perform the procedure of the
non-relativistic approximation. The basic point
consists in decomposition of the components of
the complete wave function in large and small
constituents and splitting all 39 equations in
equations of different orders of smallness. At this
we should separate the rest energy.

Besides, when performing the nonrelativistic
approximation, we should assume the presence of
terms of different smallness order; this permits
in each equation to distinguish large and small
terms.

As the result, we derive the nonrelativistic
equation for the 5-component wave function,
in which the term describing interaction of
the magnetic moment of the spin 2 particle
with external magnetic field is separated. This
additional term is constructed with the use of the
spin matrices and the components of the magnetic
field.

is

1. Basic equation for a spin 2 particle, projective operators

We start with the matrix equation in Minkowski space [19, 24, 25|

0 G* 0 0 ®(z)
LAaa o _lga (I)l(x)
a _ — a = 2 3 =
(F D, M)‘I/(l') 0, T 0 A° 0 %Ba ’ \Il(x) (I)(mn) (fL‘)
0 0 e 0 q)[mn}l(x)
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where D, = 0, + ieAy; we use the block matrices G!, A, K% B® F® (see in [19]); they dimensions are
determined by the block columns in the complete field function; the field function consists of scalar,
vector @y (z), symmetric tensor ®(,,,)(z) and 3-rank tensor ®[,,,;;(7); it may be presented as the 39-
dimension column

U={®; &; f, & d fo; o, ¢1, 2, p3 } = {H; Hy; Ho; H3} . (1.1)

According to general theory, in order to perform the nonrelativistic approximation we should work
with the matrix 'Y = 'y = I (its blocks are given below; we indicate their dimensions)

3000
%000
1000
1 0000000001 0000
0 0000001000 0000
G1><4:‘+10007A4><1: 0,K4x10= 0000000100,A10x4= 0000l
0 0000000010 0100
0010
0001
3
3000
3/2 . ... L =1/2 . =12 ...
=12 3/ =12
=12 =12 L 32
|
Bioxoa=| |
1.
1.
12 . .. 12 12
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1/3
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The matrix I' satisfies the minimal equation (this is verified by direct calculation) I'7 — I'> = 0;
which permits us to introduce 3 projective operators

1 1
P+:§F5(1“—|—I):P1, P,:§F5(I‘—I):P2, Py=I-T%=P;

(1.2)

with the needed properties Pi2 =P,P.+P_+ Py=1,i =1,2,3. The components of the complete

wave function are listed in accordance with the following notations (also see (1.1))

Qo1
o211
P03y

Hjs = (I)[mn}l = =

a3y
P31y
P12y

Eno
Eo
Esp
Bio
Boyo
Bsg

= ¥0;

We can find explicit form of three projective
operators. Acting by these operators on the
complete wave functions, we obtain the structure
of three projective constituents and their sum
(U4 +¥_+¥y) = V¥ (we introduce notations for
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Eny
E2y
Es3
B
Boy
Bs

= ¥1,

Eqo
Eoo
Eso
By
Boo
Bsa

= P2,

= ¥3-

(

the variables L_

referring to large components;
the notations S and s__ for variables referring to
small components:
In Supplement A, it is shown that among
components there exist linear relations, they
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permits us to present the complete wave functions
in terms of only independent large and small
components.

2. The non-relativistic procedure

We should separate the rest energy by formal
change (where M is real valued and positive mass
parameter))

Dy — (Do —’LM)

Besides, when performing the nonrelativistic
approximation, we should assume the presence of
terms of different smallness order):

1 D
MDiN‘rv 70 Nx27

L~1
’ M

S~z s~u,
this permits in each of 39 equations distinguish
large and small terms. They may be divided into
three groups.

The group I consists of the constraints
among S;:

s9—s51=0, (= ——=")—s2=0,

3
+~(s19— 511 — 515) +

S .
1 52>+Z(56+811+515) =0

1 3
—i(Z(=2 b
7,<4( 819+511)+4(819+511)+ 9

3
—(s19+515)+

1
z<4( 519~|—S15)—|—4

S14=0, S13=0, Si0=0,

1

S19 + 819 +

389
(4 1 4519+7)+1512—07

s16 =0, s17=0, s18=0,

2) +i(86—511) =0

S .
52) —|—Z(86—Sl5) =0

—i(s6 — SSE + S11+ S15) +i(s19 —S11 — S15) =0

+iS10 + i(s20 + S10) = 0,

iS13 +i(s21 + S13) = 0, iS19 + i(—s20 + S10) = O,

S
(86 — % — 511) + 1(819 + 511) 0,

iS14 +i(s27 + S14) =0, iS13+i(—s21 + S13) =0
1514 + i(—827 + 514) =0,

. S .
—i(s6 — % — S15) +i(s19 + S15) =0,

IT permits to express small variables through
the terms of the form D;L,,:

&1(
M3
1Dy

<y
T30 13“3

Dy 1 1D,
—-L -—1L
M3 T
1D
+§ ]\;’LM—H?—H&;*O

Dsl, 1Dip
M3 Ty

1 Dy

—Li1— Lis) + §ﬁL10

+1is3 =0,

+7—L14—|—z +28r =0,

3 M 3

Do Ds

—L
10+2M

D,
7 Wi (=L11 — Lis)

L
13+2M

—i(Sg + %‘3) + ’ng = 0,

D, Dy D
iy L
D VALY VEte s Y VAR

. S .
72(54 + %4) -+ 1810 = 0,

D1 Dy 1
——L ——L
M2 13 + I
Ds S15 .
+H§L15 i(ss + %) + 1511 = 0;

Dy

Do
SM( Ly — L15)+7L10

3M
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D4 2isq Dy D3 s5  s15 523 3823
il § — Zo D325 215 223 9928
+3M13 3+18130 M11+M(2+4+4+4)
Doy D1 D3 21810 . Dy 3s4  S14  Sos S34
—L L L1y — = Zeqod 214 2ed ) o954
st gyl + gyl 5 tisu 0, +M(2 + 4+4)
Ds D, D, 2is1y Dy, s3 s 3s s
—L L Ly — =0, ZLle_ 23 218 9530 535y
sl Tl t gyl - —5 tiss = +M( 5 T 1 4)—0,
D"‘Lm + D—ng +isay =0, Do Ds 3s5 | s15  S23  s2s
Lis + — (- )
M M 2 4 4 4
Ds 1
£(3L15—L11—L15)—37MD L3 +%(_%4+%_%_3134)
1 1
—D,L is11 + 523 = 0
+3M 2 14+3Z$11+2523 ) +%(7%+%+%+3135):0’
1 2
—7D2(2L11 +3L15) + -~—-D1L1o Dy 1 1 D s
3M 3M Uy L T2 228
. 510 ]\4(2 14+2 14)+M(85 D) )
—7D3L14 — — tis2a =0, D D
3M 3 _|_7( +Sﬁ)+ 1(@_‘9&)_0
D L L L DL M K M2 ? |
37M 3(—=3L11 — 15)*37M 1L13 Dy 1 . L D, S23
; a7 (gt +gh) + M(5+7)
1511 .
+7D2L14 — — tisss =0,
3 +D3( _Sﬁ) DQ(SE_SE)_O
Dy D, _ M M2 2 ’
LlO - L14 +is29 =0, D D
0 1 524
D1 i (2L10 + Llo) i — (82— 7)
M(S( Lyy — Lys) + Lay) 5 5
3,822 S29 2 530
2Dy D T ) et )0
2 Lo+ 2 Lag + =2 4isgg = 0,
M 3M 3 D 2D D D
0 1 2 510 3511
Dy 1 — (=L —Li5) — 5789+ —— +—— =0,
M(3L11+L15)+7D 1L10 M 3 M M 3 M 3
Dy D, Do Ds
2 1 —Lig— —s9=0, 24 —L — —59 =0,
— g Dslna+ gisio +issa =0, M7 M B
Do Dy
D, D, —Lio— —s10=0,
— (L1 —2L15) — —L
3M( 11 15) 30 10 M M
Ds s . DOL L Disy  Da2s10  Dssu _
"rleS— 3 +1is35 =0, M M 3 M 3 M 3 ’
D D Dy Dy Do Dy
_MQLB—'— ‘]\41[,144_2‘536:07 MLM_H s10 = 0, le—M811—07
DOL Do 0
O — 2251, =0,
The group III contains the terms with the M M
structure ]]?4‘,) DOL Dysg  Dasigo Dz2si1
DLis+—— 4+ =2 - 22 o,
D M M 3 M 3 M 3
]WO( Lyy — Lys)
We will ignore all equations from the first
+&(,Sj I 3s23 528y groups because they are not needed to derive
M> 2 4 4 4 equations with the non-relativistic structure.
D, (- s1 Sia 3524 ! ) First we resolve equations of the group I with
M 2 4 4 4 respect to small variables:

Didsy | s 500 885y _ _ _
2 4 4 4 ’ s3=0, s4=0, s5=0,
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i (DaLyg + D3Liz — D1 (L11 + Lis)) tD1D3Lyy | ©DyD3Lyy | iD1DyLqs
0= M ’ 202 20?2 SWE
’i (DlLlQ + D2L11 + D3L14) <2MDO - Z (2D1D1 + D2D2 + D3D3)) L14
S10 — + )
M ’ 2M
i (D1Ly3 + DLy + D3Lys) iD3D2Lys 0
S11 = M , 2 M2 ’
i (D2L1o + D3L1z — D1 (L11 + Lis)) iD>Dslng D1 D3l
S13 — M ) 2M2 2M2
i (D1L1o + DLy + D3Lyy) n (6M Dy —i(3D1 Dy + 6DsDy +2D3D3)) L3
S14 = M ) 6M2
, iDyD1L1y | i(D3Dy — D1D3) Lys
DLz + DoLis + D3 =0
31522( 1l13 5414 3 15)7 W W ,
2M Doy — i (DD DsD 2D3D3)) L
i (DyLy3 — D3Lyp) ( 0o — (D1 D1 + DyDy +2D3D3)) Lo
S99 = i ; 2M?
. (Do Dy — D1 Do) L
oo = UD1Las + D5 (Lu1 + Las)) L 2M21 2 b
23 — — )
] M 1D3DoLy3 | 1D3D1Liy  iD1Dalns 0
Sgq = Z(DlLlo +D]\24(L11 +L15))’ 2M2 2M2 - 2M2 — Y%
e i(D2Ll14 — D3L11) - i(D3L1o — D1L14) i (DaDy — 212)1D2> Lo
28 = Vi y§29 = Vi ) 3M
i (DrLuy — Daluo)  (i(2D1D + DyDs) —3MDy) Ly,
530 = i ) 3M?2
i (D2L15 _ D3L14) +Z (D3D1 — 2D1D3) L13
S34 = M ) 3M2
i (D3 D DyD3) L
i (2DsLys — 3Dy Lys) i(DiLus — DaLyy) 1 HDsDa + DaDs) Lna
S35 = 30 , 836 = Vi . 3M?2
Jr(i (2D1 Dy + D3D3) — 3M Do) L1s 0
Then we substitute these expressions into 3M? ’
equations from the group IIT; this leads to (we (MDy —iDyDs) L1g | iD2D1L1;
follow the order of the derivatives, and recollect M? M?
the terms with respect to the large variables): _iDyD3lyz | iDyDiLys 0
M2 M2
Do D1 L i (Do D D3D3) — MDg) L
i 2M12 10 (1(D2Ds + 3M;,) o) L11 iDsDoLiy  iDsD: Ly
M2 M?2
i(12D3Dy + D1 Ds) Lys (MDy —iDsDs) Ly, iDsDiLis _
1202 + M2 M2 -
(7’ (D2D2 + DSDS) - M-D(J) L15 -0 (MDQ — ’LDlDl) L10 iDngLll iD1D3L14 B
M2 ’ M2 - M2 - M2 -
1D1DyLqg (MDO —1 (D1D1 + D3D3)) L1 ) (D1D2 — 2D2D1> Lo
M?2 M?2 3M2
iDngng iD3D2L14 —0 i (SMDQ —1 (D1D1 + 2D2D2)) L11
12M2 M? ’ 3M2
3tD1D3Ly3  iD2D3Ly +i (D3Dy + D1D3) L3
4M? M?2 3IM?2
T (MD() —1 (DlDl + DQDQ)) L15 —0 +Z (D3D2 — 2D2D3) L14
M? - 3M?

)
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_i (DlDl — D3D3) L15

—0 _i (D1D1 — DQDQ) L11 + ) (D1D3 — 2D3D1) L13

3M?2 3M?2 3M?2
iDngLlo iD3D2L11 (MDO — ZD3D3) L14 —0 )
Tz ez M2 =% 4 (D2Ds — 2D3D;) Lg
) 2
(MDO — ’LDlDl) L13 3
2
‘ M (3MDy — i (DyDy +2DsDs)) Lys
iD1Dolyy  iD1D3Llys 0 + 302 =0.
- M2 - M2 -
1Dy Dy Lq- MDgy —1iDyDs) L 1Dy Ds L
- 2M12 = +( 2 M22 2) g _ QM?; © =, Let us separate 15 equations with the non-
. relativistic structure (it is convenient to numerate
i (D2D1 + D1D3) Lo them)): (
3M?2 '
with the use of more short notations
Lig=Ly, Ly1=Ls, Lig=0L3, Liy=Ly, Li5=Ls, (2.1)

1) —2DyDiL1M —2D3LoM —2D2LyM — 2D3Dy Ly M

1
—5D1DsLsM — 2D3LsM — 2D3LsM — 2iDoLaM? — 2iDgLs M? = 0,
1
2) = 2Dy Doy M +2D3LoM + 2D3 Lo M — EDngLgM —2D3DyLyM + 2iDoLoM? = 0,

3) — ngDngM — 2Dy D3LyM + 2D?LsM + 2D2LsM + 2iDoLsM? = 0,

4) = DyD3IM — DyD3LoM — DyDyL3M + 2D?LyM + D3LyM + D2LyM — D3DyLsM + 2iDo Ly M? = 0,
5) — DoD3LyM + DyD3LoM + D?LsM + 2D3 L3 M

2
+§D§L3M — DyD1L4yM — D3D1LsM + Dy1DsLsM + 2iDoLsM? =0,

6) DILyM + D3LyM + 2D3L,M — DyD1LyM + Dy DyLoM — D3DoLsM
—D3D1LyM + Dy1DyLsM + 2iDoLM? = 0,
2

2 4 4
7) — SDyD\L\M + ~D1DyLy M — —~D3}LoM 3

2 4 2
3 3 3 D3LoM — ZD3Dy LyM + §D1D3L3M — §D3D2L4M

3
2 4 2
—§D2D3L4M - gDfLE,M — gD§L5M — 2iDyLoM? — 2iDgLs M? = 0,
8) 2D2LyM — 2DyD1LoM + 2Dy DsLsM — 2Dy Dy LsM + 2iDo Ly M? = 0,
9) 2D3DoLyM —2D3DyLoM +2D3L3sM — 2D3Dy LsM + 2iDo Lz M? = 0,
10) 2D?LyM + 2D DyLyM + 2D D3 LyM + 2iDoLi M? = 0,

1 1
11) (DoM — gz'(D% +2D32)) Ly + 3i(D1D; = 2D2D1) Ly

1 1 1
+§i(D3D1 + D1 D3)Ls + gz'(173D2 —2D9D3)Ly — gz‘(Df —D3)Ls =0,

4 2 2 4 2 2
11) §D2D1L1M - §D1D2L1M + gD%LQM + gD§L2M — §D3D1L3M - §D1D3L3M

Nonlinear Phenomena in Complex Systems Vol. 28, no. 3, 2025
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2 4 2 2
—§D3D2L4M + §D2D3L4M + ngLg)M — §D§L5M +2iDyLoM? =0,

12) 2D3D1LiM + 2D3DoLoM + 2D3L4M + 2iDoLyM? = 0,
13) 2D?LsM + 2D DyL4M + 2D D3LsM + 2iDoL3M?* = 0,
14) 2DyDyLsM + 2D3L4M + 2Dy DsLsM + 2iDoLsM? = 0,
2 2

D?LoM —
312 3

2 2 4 2
15) = 3D2DiLaM — S D1 Dy Ly M + D3LsM + 3DsD1LsM — 2D\ D3LsM

4 2 2 4
+§D3D2L4M — §D2D3L4M + ngLsM + gD§L5M + 2iDoLs M? = 0.

Further, let us take into account the following identities (note that Fi; = 0;4; — 0;4;)
DiD; = S(DiD; + D;D) + 3 (DiD; — D;Dy) = 3 (DiD; + D;Dy) +ieFyy = Dy +ieFiys - (22)

so in all equations should arise only the following terms
2iMDoLy, D1y = DiLp, Doy = D5Ly, D3 = D3Ly,

(2.3)
Do3)Lk, Do)Lg, Daz)Lk, FasLy, FziLg, FiaoLg.

In this way, we obtain (below we will omit parentheses in D;;))

1) —2iDogLyM? — 2iDoLsM? — 2D15L1 M — 2Dgy Lo M — 2D33Lo M

1 11
7F3D31L3M — 2D22L5M — 2D33L5M + 2i6F12L1M - FingngM = 0,

1
2)  2iDoLyM? — 2Dy5LiM + 2Dy, LoM + 2D53Lo M — g Ds1LsM —2DssLaM — 2ieFyyLi M
1
+6i6F31L3M + 2’i€F23L4M = 07

3 3
3)  2iDoLsM? — 5Ds1LaM —2D33LaM +2D11 Ls M + 2Dy LsM + SieFy LsM — 2ieFys LaM =0,

4) 2iDgLyM? — D31 L1 M — DogLoM — D15LsM + 2D11 LaM + Doo LM + DgsLyM — DoysLs M
+ieF51 LiM —ieFosLoM — ieF1oLsM + ieFa3 Ls M = 0,
5)  2iDgL3M? — DaygLy M + D31 LoM + D1y LyM + 2Dog LM + §D33L3M — DLy M
—1eFos Ly M —1eF31 LoM + ieFi9LyM — 2ieF51 Ls M = 0,
6) 2iDoLiM? + D11 LiM + Dos Ly M + 2D33L1M — DogLsM — D3y LyM + D1oLs M
+2ieF1oLoM +ieFo3LsM — ieF31 LyM + ieFioLs M = 0,

2 4 2 2 4
7) —2iDgLoM? — 2iDoLs M?* + §D12L1M — §D11L2M — §1)22L2M + §D31L3M - §D23L4M

4 2
—§D11L5M — §D33L5M + 2teFio L1 M — 2ieF31LsM = 0,

8)  2iDyLiM? + 2Dy Li M — 2D13LoM + 2Do3LsM — 2D15Ls M
+2i€F12L2M + 2i€F23L3M + 216F12L5M = 0,
9) 2iD0L3M2+2D23L1M—2D31L2M+2D33L3M—2D31L5M—2i6F23L1M—2Z'€F31L2M—2’L'€F31L5M = 0,
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10) 2iD0L1M2 + 2D11L1M + 2D12L2M + 2D31L4M + 2i6F12L2M - 2i6F31L4M = 0,

2 P 4 4 P 2
11)  2iDgLyM? + §DRLiM + SDuLaM + gDo LM — 2D LsM + Do LaM + 3 DuLsM

2
—§D33L5M — 2i€F12L1M + 2i6F23L4M = O,

12) 2iD0L4M2 + 2D31L1M + 2D23L2M + 2D33L4M + 2i€F31L1M - 2i€F23L2M = O,
13) 2iD0L3M2 + 2D11L3M + 2D12L4M + 2D31L5M + 2i6F12L4M - 2i6F31L5M = 0,
14) 2iD0L4M2 + 2D12L3M + 2D22L4M + 2D23L5M - 2i€F12L3M + 2i€F23L5M = 0,

4 2 2 2
15)  2iDgLsM? — 3D12laM + 2D LeM — 2 Do2LaM + 2 Dy Ly M

2 2 4
+§D23L4M + §D11L5M + §D33L5M + 2i6F31L3M - 2’i€F23L4M =0.

Let us combine the above equations so that to get equations with the non-relativistic structure
(they contain the terms DgLq,, ..., DoLs), and some constraints for large functions which do not contain
the derivative Dy:

In this way, we obtain the five equations with the needed structure

10), 20D L1 M + 2D11Ly + 2D1oLo + 2D31 Ly + 2ieF 9Ly — 2ieF31 Ly = 0,

4 8 4 3 4
2)+11), 4iDgLy — §D12L1 + §D11L2 + §D22L2 +2D33L9 — §D31L3 — §D23L4

2 2 1
+§D11L5 — §D33L5 — dieFolq + gingng + 4ieFh3L4 = 0,

13), 20 DgLsM + 2D11L3 + 2D1oL4 + 2D31 L5 + 2ieF 1oLy — 2ieF31Ls = 0,

14), 20 DgL4M + 2D19L3 + 2Doo Ly + 2Do3L5 — 2ieF o L3 + 2ieFo3Ls = 0,

3 3
3), 2iDoLs M — §D31L3 —2Do3Ly +2D11Ls + 2Dos L5 + 5i6F31L3 — 2iefh3 Ly = 0.

Besides, there arise differential constraints which do not contain the derivative Dy:

1)+7)+2+11+2x3)

8 4 4 20 10 10 2.

—=D1oLy + zD11Ly — - DosLy —6D31L3 — —Dy3Ly—D11Ls + 2Dy Ls — — D33 Ls — sieF31 L3 = 0,
3 3 3 3 3 3 3

1)—1)

8 4 4 17 4 4 4 1.
*§D12L1 + §D11L2 - §D22L2 —2D33Ly — ED31L3 + §D23L4§D11L5 —2Dgo L5 — §D33L5 + 616F31L3 =0,

6) — 10)

—D11Ly + DogLy + 2D33Ly — 2D19Lo — DozLg — 3D31 L4 + DigLs + ieFo3L3 +ielF31 Ly +ieFioLs = 0,
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8) — 10)
—2D11L1 + 2D22L1 — 4D12L2 + 2D23L3 - 2D31L4 — 2D12L5 + 2i€F23L3 + 2i6F31L4 + 2i6F12L5 = 07

2) — 11)

8 4 4 7 8 2 2 1.
—§D12L1 + §D11L2 — §D22L2 +2D33L9 + 6D31L3 - §D23L4 - §D11L5 + §D33L5 + 626F31L3 =0,

5(—13)
—Da3ly + D31Lo — D11 L3 +2Daa L3 + §D33L3 —3D12Ly —2D31 L5 —ieFa3ly —ieF31 Ly —ieF1oLy = 0;
9) — 13)
2D93l1 —2D31Ly —2D11L3 + 2D33L3 — 2D9Ly — 4D31Ls — 2ieFy3L1 — 2ieF31 Lo — 2ieF15L4 = 0,
4) — 14)
—Ds1Ly — Do3gLo —3D1oLs+2D11 Ly — Dos Ly + Ds3sLy — 3Do3 Ly +1eF51 L1 —ieFo3Lo +ieF1oLs —ieFa3Ls =0,
12) — 14)
9Ds1 Ly + 2Das Ly — 2D15Ls — 2Dgo Ly + 2Da3 Ly — 2Da3 Ls + 2ieFay Ly — 2ieFas Ly + 2ieFya Ly — 2ieFysLs — 0,

15) — 3)

4 2 2 13 8 4 4 1.
—§D12L1 + §D11L2 - §D22L2 + €D31L3 + §D23L4 - §D11L5 — 2Dy L5 + §D33L5 + §Z€F31L3 =0.

The last system of constraints may be presented in matrix form

DyoLy
Dy2Ly
DyoL3
DyoLy
DyoLs

D311y
D31 Lo
Aqoxis) X | Da1Ls | = Y(10x1)s
D31 Ly
D31 L5

D3y
Do3Ly
DosL3
Do3Ly
DosLs
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where

,%DHLQ + 4D232L2 _ 10D§1L5 — 2Dy Ls + % 4 %ingng

-3 0 0 0 0 0 O
—%000000
0 -2 0 0 1 0 0
0 -4 0 0 -20 0
A4—|=3 0 0 0 0 0 0
00 0 -30 0 1
00 0 -20 0 -2
00 -30 0 -10
0 0 -20 0 2 0
-2 0 0 0 0 0 O

The rank of the matrix Agx15 equals
9; when eliminating the first row, the rank is
not changed. Therefore, the first row should be
decomposed into the terms of remaining 9 rows:

r1 = boxo + b3z + ... + bigx10-
We find the relevant coefficients

by =1,b5=0,by = 0,bs = 1,bs = 0,

—4Dy Ly + 4822 4 9Das [, — 2PuLs 4 9D,y [ 4 HPssks _ Liepy Iy
Dy1Ly — DysLy — 2Dss Ly — ieFysLs — ieFay Ly — ieFyoLs
2D11L1 — 2Dos Ly — 2ieFy3L3 — 2ieF31 Ly — 2ieFo Ly
_%DIILQ + % —2D33L5 + % - % - %ingng
Dy1Ls — 2Dyy Ly — 2P3Ls 4 ieFy3 Ly + ieF31 Ly + ieFiaLy
2D11Ls — 2D33L3 + 2ieFs3L1 + 2ieF31 Lo + 2ieF oLy
—9Dy1 Ly + DysLy — DasLy — ieFsy Ly + ieFysLy — ieFyoLs + ieFysLs
9Dyo Ly — 2Ds3 Ly — 2ieFay Ly + 2ieFys Ly — 2ieFioLs + 2icFys Ls

f%D11L2+%§L2+%+2D22L57 %7%7:6F31L3

-6 0 0 0 0 0 —-% 0
-0 0 0 0 0 3% O
0 30 0 0 -1 0 0
0 20 0 0 2 0 0
0 0 0 0 0 =% 0
0 0 -2-10 0 0 0
0 0 —42 0 0 0 0
0 0 0 0 -10 0 -3
0 0 0 0 2 0 0 -2
20 0 0 0 0 & 0

b7:0,b820,b9:0,b10:—2.

We can verify that the same is valid for row of the
right side y1 = bay2 +bsys+...+b1oy10. Therefore,
the first equation in the system may be removed,
so we arrive at 9 equations
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DisLy
DioL .
DELE —3D11 Ly + 74D§2L2 +2D33Lo — 74D§1L5 +2Dgo L5 + 74D§3L5 — tieF3 L
DiaLy D11Ly — DasLy — 2D33L1 —ieFy3L3 — teF31 Ly — ieF12L5
D12L5 2D11L1 - 2D22L1 - 2i6F23L3 - 2i€F31L4 - 2i€F12L5
D311, 4 4DosL 2D, L5 _ 2D3sLs _ 1;
D31L2 7§D11L2 -+ % — 2D33L2 + % - % — glngng
A x D31L3 :Y,Y: D11L3—2D22L3—%+7:€F23L1+i€F31L2+i6F12L4 B
33154 2D11Ls — 2D33L3 + 2ieFy3 L1 + 2ieF31 Ly + 2ieF 5Ly
31L5
D23L1 —2D11L4 + D22L4 — D33L4 — i@FglLl + i€F23L2 — i€F12L3 + ingng,
Doz Lo 2Do9 Ly — 2D33Ly — 2ieF31 Ly + 2ieFo3Lo — 2ieF1oL3 + 2ieFy3 Ly
Dos L ) .
DisLs 3Dl + 203k 4 APpke 49D Ly — APgle — LicFy Ly
DosLs
-50 0 0 0 0 0 -0 0 0 0 0 3 O
o -2 0 0 1 0 0 O -3 0 O O -1 0 0
o 40 0 -20 0 0 -20 0 0 2 0 O
-0 0 0 0 0 0 I 0 0 0 0 0 -%0
A=/ 0 0 O -3 0 01 0O O -2-10 0 0 o0
o 0 0 -20 0 -2 0 0 -4 2 0 0 0 O
o 0 -30 0 -1 o O O O O-=10 0 -3
o 0 -2 0 O 2 0 O O O 0O 2 0 0 -2
-3 0 0 0 0 0 0 ¥ 0 0 0 0 0 % 0

In the matrix Agx1s, we should find the sub-matrix Agxg which determinant does not non-vanish;
it is verified that we can preserve only the columns 1,2,3,4,5,6,7,8,14:

20 0 0 0 0 0 - 2
0 -2 0 0 1 0 0 0 O
0 -4 0 0 -20 0 0 0
8 7 8
—3 000000 g 274432
Agxg=| 0 0 0 =30 0 1 0 0| detd=——"=;
0o 0 0 -20 0 -2 0 0
0 030 0-10 0 0
0o 020 0 2 0 0 O
-2 0 0 0 0 0 0 % 38
Thus, we arrive at the non-homogenous equation
-5 0 0 0 0 0 0 —i % DisLy
0 -2 0 0 1 0 0 0 O DLy
040 0 -20 0 0 0 DioLs
-50 0 o0 0 0 0o I -8 DisLy
00 0 -30 0 1 0 0 |x|DpLs
00 0-20 0 -2 0 0 D31 Ly
0 030 0-10 0 0 D3 Ly
00 -20 0 2 0 0 0 D3 Ly
-2 0 0 0 00 0 & 8 Dy3Ly
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—3D11 Ly + 2P2L2 4 2Dgs 1y — APULs | 2Dy [ 4 APssls — LieFy Ly
Dy1Ly — DyoLy — 2D33 Ly — ieFysLg — ieF3y Ly — ieF15 L5
2D Ly — 2Dy Ly — 2ieFy3Ls — 2ieF3; Ly — 2ieFioLs
—3D1 Ly + 2P2L2 _9Dg3 L, 4 2Puls _ 2Dsals _ LieFy) Ly
= Dy1Ls — 2Dy Ly — 28381 4 jeFys Ly + ieFs Ly + ieFiLy
2D11 Ly — 2D33 L + 2ieFy3 Ly + 2ieFs; Ly + 2ieFioLy
—2D11L4 + DogLy — D33 Ly —ieF31 L1 +ieFo3lo —ieF 1oL3 + ieFo3Ly
2D9o Ly — 2Ds3 Ly — 2ieFy1 Ly + 2ieFa3Ly — 2ieFio Ly 4 2ieFs3Ls

—%D11L2+%+%+2D22L5—% —%ingng

0 0 0 0 0 0
3 0 0 0 1 0
2 0 0 0 -2 0
0 0 0 0 0 0
+10|Ds1La+|2|Ds1Ls+| 1 |DasLi+| 0 |DagLo+| 0 | DagLs+ | 0| DaosLs.
0 4 -2 0 0 0
0 0 0 1 0 3
0 0 0 —2 0 2
0 0 0 0 0 0

Its solution has the form

Dy1Ly  DoylLy  TD33Ly  7DiuiLs  DapLs  7DszzLs 7

DisLy = - - - L ieFy L
121 =5 2 i34 134 2 T3 greiate
1 Do L Dss L 1. 1. 1,
DioLy = —§D11L1 + % + % — D31 Ly + 516F23L3 + §l€F31L4 + §Z€F12L5,
D1 L Dos L D33 L 1 1 1 1
D12L3 = 1; 4 — 2; 4 + 3; 4 — D23L5 + §i€F31L1 — §i€F23L2 + iieFlng — §i€F23L5,
D1 L Do L 5Das3 L 1 1 1
DLy = — 1; LA 2; LA 13; > DLy — §i€F23L1 - §i€F31L2 - §i€F12L4,
D1aLs = —D33Ly + DagLls + D31 Ly, (2.4)
D11 L Doo L Das L 1 1 1 1
D31 Ly = —DoslLy + 1; L4 2; S 3; S §i€F31L1 + §i6F23L2 - §i€F12L3 + §i€F23L5,
D1 L Dos L TDs3L 1 1 1
D31Ly = DagLy — 1; 2 _ 2; 4 f; 2 DayLs — §i€F23L1 — §i€F31L2 - §i€F12L4,
36 36D11L 36D33L 5 .
D3 Lz = —@D33L2 + 6171 5 6373 5 _ al€F31L3,
31D33Ls  5D11Ls  DaoLs  5Ds33Ls 5 .
Dos Ly = — — —1ielFs31Ls.
234 67 134 1 2 134 67 s
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We should take them into account in the above 5 equations; as a result, we obtain

2iMDyLy; = —(D11 + D22 + D33) L1 + ie{ — Fy3Ls + F51 Ly + Fi2(—2Ly — Ls)

2tM DoLy = _(Dll + Doo + D33)L2 + ie{ — 2Fy3 Ly + 2F19L4

i

)

N~~~ Y~ —~— ——

2iM DyLs = —(D11 + D2y + D33) L3 + ie{FzzsLl + I31(La + 2L5) — FiaLy ¢, (2.5)
2iMDoLy = —(D11 + D22 + D33)La + ie{F23(L2 — Ls) — F31L1 + FiaLs ¢,
21M DyLs = *(Dll + Doy + D33)L5 + i6{2F23L4 —2F31L3¢.
Let us present this system in the matrix form
1 ie
DoV = —— (D D D33V + — (F F F; v 2.
1Do 2M( 11 + Dag + D33)¥ + 2M( 2351 + F3152 + F1253)V, (2.6)
14 00 -1 0 O 0O 0 0 10 0-20 0 -1
Lo 00 0 -2 0 0 0 0 0O 20 0 0 O
v=|Lg|, S4=110 0 0 0 |,5%=|012002|, S=|0 0 0-1 0
Ly 01 0 0 -1 —-10 0 00O 0O 01 0 O
Ls 00 0 2 O 0 0-200 0O 0 0 0 O

The needed commutators are valid
5159 — 5951 = 53, and so on;

so the matrices S; are 3 projections of spin for a
spin 2 particle.

3. Conclusions

We began with the well-established 39-
component relativistic matrix equation for
a spin-2 particle interacting with external
electromagnetic fields.

Through a non-relativistic approximation,
we decomposed the wave function into three
parts: one dominant component and two smaller
ones. This process revealed five independent large
variables, all remaining are small ones.

To simplify the problem, we eliminated
the variables associated with the scalar and
symmetrical two rank tensor, leading to a
relativistic system of second-order equations for
the 11 components of the comlete wave function.

We then expressed these 11 variables as linear
combinations of the large and small components,
aligning with the non-relativistic framework.

Following the general method, we separated
the rest energy from the wave function and
established the orders of smallness for various
terms in the equations. By systematically
performing the necessary calculations, we derived
a system of five coupled equations for the large
variables. These equations are presented in matrix
form, exhibiting a non-relativistic structure.
Crucially, this system includes an interaction
term representing the coupling with the external
magnetic field through the three spin projections.

The Pauli like equation (2.6) for spin 2
particle should be generalized to the curved space-
times models.
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Appendix A. Independent large and small variables
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O O OO

0
+(2B11 — Eoy — Ess + 2f1 — fo — f3)
% (—E11 + 2B — E33 — f1 +2f2 — f3)
5 (—E11 — B +2FE33 — f1 — fa +2f3)
(2¢1 + Ea3 + E32)
(2c2 + B3 + E31)
(2¢3 4+ E12 + Eg)
0

W s s [ =

OO OO OO OO

0
Y (2E11 — Exy — Ess +2f1 — f2 — f3)
L (2¢c3 + E15 + Eg)

% (262 + FEi3 + E31)
0
0
0

% (2¢3 + E12 + Eo1)
3 (=F11 4 2B — Ess — f1+2f2 — f3)
i (2¢1 + Eas + E32)
0
0
0
% (2¢c2 + B3 + E31)
7 (2c1 + Ez3 + E33)
$(—E1 — B+ 2E335 — f1 — fo+2f3)
0
0
0
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0 0

0 0

0 0

0 0

0 0

$(=2E11 + B2 + Ess +2f1 — f2 — f3) S
%(En—2E22+E33—f1+2f2—f3) So
5 (B + By —2E33 — f1 — fo +2f3) Ss
1 (2¢1 — Ea3 — E39) S

I (2c2 — B3 — E3y) Ss

7 (2c3 — E1p — Eo1) Se

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

U_ = 0 =0 |,

0 0

2 (2B11 — Eoy — Ess — 2f1 4 fo + f3) St
% (_203 + Fi9 + E21) Sg

7 (=2co+ B3 + E3) Sy

0 0

0 0

0 0
1(=2c3 4+ Bia + Ex) S1o

$(—E11 + 2By — Ess + f1 —2f2 + f3) S11
1 (=2c1 + Ea3 + E3) S12

0 0

0 0

0 0
% (—2¢o + Er3 + E31) S13
7 (=2c1 + Ea3 + Es3) S14

+ (=B — By 4 2Es3 + f1 + fo — 2f3) S15
0 0

0 0

0 0
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o S1

0 S2

081 S3

D) 84

UE] S5
%(f1+f2+f3) s6
§(f1+f2+f3) st
s(fitfotfa) S8

0 0

0 0

0 0

dy S9

da 510

ds 511

Jo 512

Erp 513

Ex 514

Es 515

Bio 516

Vo= P¥ = Bsyg =| 817
Bsg 518

3 (B11 + Eo + Es3) 519
1 (Eyn — Er2) 520

5 (E31 — Ei3) 821
B 522

Bo 523

Bs 524

2 (E1z — Ea) 25

1 (E11 + Ego + Es3) S26
3 (Esz — Eas) Sa7
Bio So8

Ba2 29

Bso 530

1 (E13 — E31) 531

5 (E23 — E32) 832

3 (B11 + Eo + Esg) 533
Bis 534

Bos 535

Bss 536

It is convenient to write down expressions for
separate components:

v,
1
Ll = 6(2E11 —E22 _E33+2fl _f2 _f3)7
1
Ly = 6 (—E11 +2E2 — B33 — f1 +2fa — f3),
1
Ly = ¢ (=En — Ex + 23 — fi = 2+ 2]3),

S1
52
83
S4
S5
—Lq11 — Lis + S11 + S15 + S6
L1 — 511+ s¢
Lis — S15 + s6
Liy— S1s
Ly — 513
Lo — S0
S9
510
S11
S12
513
514
S15
S16
S17
518
—Ly1 — Lis — S11 — S15 + 519
Lo + S10 + 520
Li3 + S13 + 521
522
523
S24
Lio + S10 — 520
Ly + 511+ s19
L1+ S14+ s27
528
S29
530
Li3 4 S13 — 591
Liy+ S14 — s27
Lis + S15 + s19
834
535
536

1
Ly = 6(2E11—E22—E33+2f1 — fa— f3),

1
Ly= 1 (2¢1 + Ea3 + E32) ,

—_

Ls =—(2co+ Ev3+ E31),

=~

Le = = (2¢3 + E1o + E91),

>~ =

1
Lg = 1 (2¢3+ E12 + E21),
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1 1 _ _
Ly = 1 (2¢2 + E13+ E31), Lig = 1 (2¢3 + E12 + Eoa1), s1=2, s2= 2y,
1 s3 = @1, 54 =P, s5 = V3,
Lu:6(—E11+2E22—E33—f1+2f2—f3), 1 1
se =5 ([i+fot+ f3),sr=5([r+ fat f3),
1 3 3
Lis = 1 (2¢1 + Ea3 + E33) , )
1 88=§(f1+f2+f3),
Lz = 1 (2¢2 + E13 + E31),
1 pu— p— pu— p—
Ly — 1(201 + Eas + Es») s9 = dy, s10 = d2, s11 = d3, 12 = fo,
1 s13 = Fo, s14 = Fa, s15 = s,
Lis = = (—E1y — Esp +2B33 — fi — fo+2f3);
G (=Bu - Bz = f1 = fat2f) s16 = Bio, s17 = Bao, s18 = Bao,

1
v, S19 =3 (B + E29 + Es3),

1
S1 == (=2FE11 + Eoo + E33 +2f1 — fo — f3), 1
6( ) S20 = 5 (E21 — E12),

1
52:E(EH—2E22+E33—f1+2f2—f3>7 1
So1 = 5 (E31 - ElS)a

1
53:6(E11+E22—2E33—f1—f2+2f3)>

1 1 = = —
Sa= (2¢1 — E93 — E32) , 55 = 1 (2¢2 — E13 — E31) s22 = Bu, 823 = Bay, 824 = B,
1
1 So5 = = (E19 — E91),
Se = 1 (2¢3 — Evg — Ea) ®72 (Er: 1)
1
1 = - (E11 + B9 + Es3),
57:6(2E11*E22*E33*2f1+f2+f3)7 526 3( H » %)
1
1 — _
Sg = 1 (—2c3 + Erz + Eo1), 52175 (Esz = Ey).
1 1 S98 = B12, 829 = Baa, $30 = B3a,
S = 1 (=2c2 + Eq13 + E31),510 = 1 (—2¢3 + E12 + E21), .
1 $31= 5 (B3 — Es1),
»911:6(*E11+2E22*E33+f1*2f2+f3)’ )

$32 =5 (Ea3 — Es3) ,

1 1
S12 = 1 (—2¢1 + Ea3 + E33) ,S13 = 1 (—2c2 + E13+ Es1),

1
§33 = 3 (B + Eg9 + Es3),

1
S14 = 1 (—=2c1 + E23 + E32),
1 $34 = B3, S35 = Bas, $36 = Bas.
S15 = = (—FE11 — Foo +2FE33+ f1 + fo — 2 ; . . .
1o 6( H 22 33t fit f2=2f3) We can find independent variables in all three
T, sets. First consider the large components L;
1 1
L= G (2E1 — Eyp — Es3+2f1 — fo— f3), L= 5 (=B + 2B — E33 — f1 +2fa — f3),
1 1
Ls = 5 (=FB11 — B +2E33 — f1 — fa+2f3), Li= 1 (2¢1 + E23 + E32),
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Ls = i (2c2 + B3+ E31), Leg= % (2¢3 + E12 + Eo1),
L = % (2E11 — By — Eszs +2f1 — fa— f3), Ls= i (2¢3 + Er2 + Ea1),
Ly = %(202 + B3+ E31), Lig= %(203 + Ei2 4 Fa1),
L=+

1
g (=B +2E2 — Es3 — f1+2fa — f3), Liz= 1 (2¢1 + B9z + E39),
Lis = = (2¢c2 + E13 + E31),

1
Lis = 5 (—E11 — Eaa +2E33 — f1 — fa +2f3).

=

1
Ly = 1 (2¢1 + E23 + Es9),

Making up the matrix of the system, we find its rank, it turns out to be equal to 5. Eliminating the

rows 1,...,9 and 12, we get the matrix with the same rank; the variables Lig, L11, L13, L14, 15 can be
taken as independent: let us use the notations L1y = By, L11 = B2, L13 = B3, L1y = By, L15 = Bs; then
we get

Li=L;=—-L11 —Lis=—-By—Bs, Ly=1Li1=DBy, L3=1Li5s=DBs, Li=Lis= By,
Ls=Lg=Li3=DB3, L¢=Lg=Lig= DB,

Ly =Ly = L14 = By.
Similarly, for small components S; we get

1
5’1=6(—2E11+E22+E33+2f1—f2—f3), »5'2:6(E11_2E22+E33_f1+2f2_f3)’
1 1
53:6(E11+E22—2E33—f1—f2+2f3)7 54:1(201_E23_E32)’
1 1
SS = Z (202 — E13 — Egl), SG = Z (263 - E12 - E21)7
1 1
5726(2E11—E22—E33—2f1+f2+f3)7 58:1(_263+E12+E21)’
1
59:*

1 1
1 (—2c2 + B3+ Es1), Sio= 1 (—2c3+ Ei2 + E21),S12 = 1 (—2¢1 + Ea3 + E39)

1
Si1 = 6 (—=E11 +2E2 — Ess + f1 —2fo + f3), Siz= 1 (—2c2 + Er3 + E31) ,
1 1
S1a = 1 (—2c1 + Ea3 + E32), Si5= G (—FE11 — Eao +2E33+ f1 + fa — 2f3).

We make up the matrix of the system, its rank equals 5. Eliminating the rows 1 — —9,12, we get

the matrix with the same rank. The variables S1g, S11, 513, S14, S15 are taken as independent. We find
expressions for remaining components through independent ones

S1 = S11+ 515, S2 = =511,

S3 = —515, Sai=—51, S5=—-513,
Se

—S10, S7=-5=-51—515, Ss=—56= 510, S9g=—S55= 513,

Now consider the small components s;:

S1g = =84 = Sia.

51 =®, s59=8, s3=Py, 54=2y, 5= 3,
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S —

Wl =

1 1
(f1 +f2+f3),$7=§(f1 +f2+f3),88=§(f1 + fo+ f3),89 = di, 510 = da, 511 = d3, 512 = fo,

s13 = Eq9, 814 = Fa9, 815 = E30, 516 = B0, 17 = B2o, $18 = B3,

1

S19 =
3

1
(Er1 + E22 + Es3) , 520 = 3 (B2 — E13), 501 =

1

Es — FE
2( 31 13) 5

S92 = D11, S23 = Ba1, S24 = Ba1,

1 1
$25 = 3 (Bra — Ea1), s26 = 5

3

1
(E11 4 Eos + Es3), s27 = 3 (E32 — Ea3),

828 = B1a, 829 = Ba2, s30 = DB3a,

531

1 1 1
=3 (E1s — E31), s32 = 3 (Ea3 — E32), s33 = 3 (E11 + Eag + Es3),

S34 = B3, 835 = Bag, S35 = DBas3.

here we have 29 independent variables; besides there exist relations

S¢ = ST = S8, S19 = 826 = S33, S20 = —S25, S21 = —S831, S21 = —S32.
Let us collect all constraints together:
Uy, Lo, L1, Li3, L, Lis
Ly=—Ly—Lis, Lo=Ln, L3=Lis, Ly=Ly, Ls=Lis,
L¢ = Lyg, Ly=—Lyy—Lis, Lg= Ly, Lg=0Li3, Li2= Ly
v_, Sy, S, Sz, S, Sis
S1 =511+ 515, So=—-S511, S3=-515, S4=—-S514, S5=—513,
S¢ = —S10, S7=-511— 515, Sz =510, S9=2513, S12=514;
l:[/07 S1, S92, 53, S4, S5, 56, S9,
$10, S11, S12, S13, S14, Si15, S16, Si7, S18, S19, S20, S21, S22,
823, S24, S27, S28, S29, 830, S34, S35, 836,
S7 =S¢, S8 = Sg, Sa5 = —S20, S26 = S19, S31 = —S21, 832 = —S27, 8533 = S1g.
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