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Using the conventional tetrad method by Tetrode-Weyl-Fock-Ivanenko, we specify the
Maxwell equations for Newman-Unti-Tamburino (NUT) spacetime. We apply the covariant
Majorana–Oppenheimer matrix presentation of the Maxwell theory. Separation of the
variables is performed, and the equations for angular and radial components are solved
in terms of hypergeometric and confluent Heun functions respectively. We find the NUT-
charge dependent quantization rule for the angular separation constant. Behavior of the
radial components with structure of outgoing and ingoing waves is studied near the outer
event horizon, and we demonstrate that the probability of particle-antiparticle production
on the outer event horizon decreases with the increase of the NUT charge; the expression of
temperature for the Hawking radiation of the photons coincides with that for the fermions
production on the horizon. The effective constitutive relations, generated by metric structure
of NUT spacetime, are derived; it is shown that the existence of the NUT charge leads to
entanglement of electric and magnetic field components in these relations.
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1. Introduction

The Newman-Unti-Tamburino (NUT)
metric is an axially symmetric vacuum solution
of Einstein equations with two parameters,
the black hole mass and the NUT parameter.
The NUT spacetime is generalization of the
Schwarzschild one, due to the presence the
NUT parameter (or NUT charge) [1–3]. NUT
parameter is understood as a gravito-magnetic
charge, or as gravito-magnetic monopole, or
magnetic (gravitomagnetic) mass [3, 4].

For NUT spacetime the singularities of
the Misner string type arise. This leads to
the difficulties in thermodynamical analysis and,
as a consequence, in physical interpretation
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of the NUT parameter [5]. Mostly, the NUT
parameter is interpreted as a linear source of
a pure angular momentum [6] or the twist
parameter of the surrounding vacuum spacetime
or electromagnetic (EM) universe in the presence
of the EM field [7].

The existence of the Misner string as
well as the non-vanishing gtφ components in
metric tensor, lead to the spacetime areas
where T-symmetry is broken and circular time-
like (null) geodesics exist. By this reason,
sometimes NUT spacetime is considered as
nonphysical one. However, in [8] it was shown
that geodesics of the freely falling observer are
not closed time-like ones, so the NUT spacetime
can be geodesically complete, without causal
pathologies. Currently, the black holes with NUT
parameter are considered as one of the most
intriguing cosmological objects.

As shown in [9], the black hole with NUT
charge has the smaller Hawking temperature,
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and pure gravitomagnetic monopoles without
ordinary mass (if exist) may not be decayed due
to the Hawking radiation by now.

In [8] it was demonstrated that the
supercritically charged black holes with NUT
parameter belong to traversable wormhole
solutions. Besides, the NUT black holes may
exhibit a twist in the lensing pattern [10], and
an asymmetry of black hole shadow or the
Lense-Thirring effect [3, 11].

Classical equations of motion in NUT
spacetimes were extensively studied [12–14].
However, the papers on the quantum-mechanical
problems of the particles in the background
of NUT spacetimes are few. In [15], within
the Newman-Penrose formalism, the Maxwell
equations have been studied in Taub-NUT
background which has singularity at whole axes
θ = 0, π. After separating the variables, solutions
of the angular equations were constructed
in terms of Jacobi polynomials. The radial
equations (see equations (28a) and (44a) in [15])
were transformed respectively to equations with
hypergeometric and Heun’s structure on the left-
hand side, while the right-hand sides include
terms of different order in frequency ω. Only
approximate solutions with the zeroth order in
frequency ω in the right-hand side have been
found in terms of the hypergeometric and Heun
functions.

The goal of the present paper is to study

the electromagnetic field in background of original
NUT spacetime which has singularity only at
semiaxes θ = π. We apply the conventional
tetrad method developed by Tetrode-Weyl-Fock-
Ivanenko in [16–19], and covariant Majorana–
Oppenheimer matrix presentation of the Maxwell
theory [20–22], in the background of the original
NUT spacetime. We have solved the angular and
radial equations in terms of hypergeometric and
Heun functions, respectively.

2. Ricci rotation coefficients for
NUT space

NUT-metric is determined by the line
element

ds2 = Φ
(
dt+ 4a sin2(θ/2)dφ

)2 − dr2

Φ
−
(
a2 + r2

) (
dθ2 + sin2 θdφ2

)
,

(2.1)

Φ = 1− rgr + 2a2

r2 + a2
=

∆

ρ2
,

where tis a time coordinate, t, θ, φ are spherical
coordinates, rg = 2M is a Schwarzschild horizon
of black hole with massM , a is a NUT parameter,
ρ = r2 + a2, ∆ = r2 + rgr − a2.

The corresponding metric tensor is non-
diagonal

gαβ =

∣∣∣∣∣∣∣∣
Φ 0 0 2aΦ (1− cos θ)
0 − 1

Φ 0 0
0 0 −a2 − r2 0

2aΦ (1− cos θ) 0 0 4a2Φ (1− cos θ)2 −
(
a2 + r2

)
sin2 θ

∣∣∣∣∣∣∣∣ .

We chose the following tetrad

e(a)α(x) =

∣∣∣∣∣∣∣∣
√

Φ 0 0 2a
√

Φ (1− cos θ)
0 1√

Φ
0 0

0 0
√
a2 + r2 0

0 0 0
√
a2 + r2 sin θ

∣∣∣∣∣∣∣∣ .
(2.2)

Applying the known formulas [23]

γabc =
1

2
(λabc + λbca − λcab),

λabc =

(
∂e(a)α

∂xβ
−
∂e(a)β

∂xα

)
eα(b)e

β
(c),
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we find the relevant Ricci rotation coefficients

γab0 =

∣∣∣∣∣∣∣∣∣∣
0 Φ′

2
√

Φ
0 0

− Φ′

2
√

Φ
0 0 0

0 0 0 a
√

Φ
a2+r2

0 0 − a
√

Φ
a2+r2

0

∣∣∣∣∣∣∣∣∣∣
,

γab1 =

∣∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣ ,

γab2 =

∣∣∣∣∣∣∣∣∣∣
0 0 0 a

√
Φ

a2+r2

0 0 r
√

Φ
a2+r2

0

0 − r
√

Φ
a2+r2

0 0

− a
√

Φ
a2+r2

0 0 0

∣∣∣∣∣∣∣∣∣∣
, (2.3)

γab3 =

∣∣∣∣∣∣∣∣∣∣
0 0 − a

√
Φ

a2+r2
0

0 0 0 r
√

Φ
a2+r2

a
√

Φ
a2+r2

0 0 1
tan θ

√
a2+r2

0 − r
√

Φ
a2+r2

− 1
tan θ

√
a2+r2

0

∣∣∣∣∣∣∣∣∣∣
.

3. Maxwell equations, separating
the variables

It is convenient to apply the matrix complex
Silberstein – Majorana – Oppenheimer formalism,

so the covariant matrix Maxwell equation reads
(for more detail see [20–22, 24])

αa
(
eβ(a)

∂

∂xβ
+

1

2
jmnγmna

)
Ψ = 0,

Ψ =

∣∣∣∣ 0
E + icB

∣∣∣∣ , (3.1)

where E and B are electric and magnetic fields
vectors, generators jmn of the complex vector
representation of orthogonal group SO(3.C) equal

j23 = s1, j01 = is1, j31 = s2,

j02 = is2, j12 = s3, j03 = is3.
In the cyclic basis, the matrix s read

s1 =

∣∣∣∣∣∣∣∣
0 0 0 0
0 −i 0 0
0 0 0 0
0 0 0 i

∣∣∣∣∣∣∣∣ , s2 =
1√
2

∣∣∣∣∣∣∣∣
0 0 0 0
0 0 −i 0
0 −i 0 −i
0 0 −i 0

∣∣∣∣∣∣∣∣ ,

s3 =
1√
2

∣∣∣∣∣∣∣∣
0 0 0 0
0 0 −1 0
0 1 0 −1
0 0 1 0

∣∣∣∣∣∣∣∣ .
Taking into account expression for the tetrad
(2.2) and the Ricci rotation coefficients (2.3), the
Maxwell matrix equation (3.1) is obtained in the
following form

[(
α0 ρ√

∆
+ α3 2a

ρ

√
1− cos θ

1 + cos θ

) ∂
∂t
− α1

√
∆

ρ

∂

∂r

−i α0s1

( ∆′

2
√

∆ρ
− (r + ia)

√
∆

ρ3

)
+
(
α3s2 − α2s3

)(r + ia)
√

∆

ρ3
− 1

ρ
Σθ,φ

]
Ψ = 0,

(3.2)

Σθ,φ = α2 ∂

∂θ
+ α3

( 1

sin θ

∂

φ
+ s1

1

tan θ

)
, α0 = −i, α1 =

∣∣∣∣∣∣∣∣
0 0 1 0
0 −i 0 0
−1 0 0 0
0 0 0 i

∣∣∣∣∣∣∣∣ ,
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α2 =
1√
2

∣∣∣∣∣∣∣∣
0 −1 0 1
1 0 −i 0
0 −i 0 −i
−1 0 −i 0

∣∣∣∣∣∣∣∣ , α3 =
1√
2

∣∣∣∣∣∣∣∣
0 −i 0 −i
−i 0 −1 0
0 1 0 −1
−i 0 1 0

∣∣∣∣∣∣∣∣ .
As the NUT-metric does not depend on the time and angle φ, we should search wave functions in

the form

Ψ = e−iωteimφ

∣∣∣∣∣∣∣∣
0

R1(r)T1(θ)
R2(r)T2(θ)
R3(r)T3(θ)

∣∣∣∣∣∣∣∣ . (3.3)

Substituting the last in the equation (3.2), we get

R2T2

(
2aω tan

θ

2
+m csc θ ) +R1T1

( ∆′√
2
√

∆
+
i
√

2ρ2ω√
∆

)
+
√

2
√

∆T1R
′
1 +R2T

′
2 = 0, (3.4)

R1T1

(
2aω tan

θ

2
− cot θ +m csc θ

)
+R3T3

(
2aω tan

θ

2
+ cot θ +m csc θ

)
+

2
√

2
√

∆R2T2(r + ia)

ρ2
+
√

2
√

∆T2R
′
2 −R1T

′
1 +R3T

′
3 = 0,

(3.5)

R2T2

(
2aω tan

θ

2
+m csc θ

)
+R3T3

( ∆′√
2
√

∆
− i
√

2ρ2ω√
∆

)
+
√

2
√

∆T3R
′
3 −R2T

′
2 = 0, (3.6)

−R1T1

(
2aω tan

θ

2
− cot θ +m csc θ

)
+R3T3

(
2aω tan

θ

2
+ cot θ +m csc(θ)

)
+
i
√

2ρ2R2T2ω√
∆

+R1T
′
1 +R3T

′
3 = 0.

(3.7)

With the use of simple algebraic calculation we separate the variables.
The radial equations read (we introduce the separation constants ξ1, ξ2, ξ3, ξ4)

√
2
√

∆R′1 +R1

( ∆′√
2
√

∆
+
i
√

2ρ2ω√
∆

)
+ ξ1R2 = 0, (3.8)

√
2
√

∆R′3 +R3

( ∆′√
2
√

∆
− i
√

2ρ2ω√
∆

)
+ ξ2R2 = 0, (3.9)

√
2

2

√
∆R′2 +

√
2R2

(√∆(r + ia)

ρ2
+
iρ2ω

2
√

∆

)
+ ξ3R3 = 0, (3.10)

√
2

2

√
∆R′2 +

√
2R2

(√∆(r + ia)

ρ2
− iρ2ω

2
√

∆

)
− ξ4R1 = 0; (3.11)
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and for the angular components:

T ′2 + T2

(
2aω tan

θ

2
+m csc θ

)
− ξ1T1 = 0, T ′3 + T3

(
2aω tan

θ

2
+ cot θ +m csc θ

)
− ξ3T2 = 0, (3.12)

T ′1−T1

(
2aω tan

θ

2
−cot θ+m csc θ

)
−ξ4T2 = 0, T ′2−T2

(
2aω tan

θ

2
+m csc(θ) Big)+ξ2T3 = 0. (3.13)

Without loss of generality won can take ξ1 =
−ξ4 = Λ1, ξ2 = ξ3 = Λ2. Then the last equations
take the form

√
2
√

∆R′1 +R1

( ∆′√
2
√

∆
+
i
√

2ρ2ω√
∆

)
+ Λ1R2 = 0,

√
2

2

√
∆R′2 +

√
2R2

(√∆(r + ia)

ρ2
− iρ2ω

2
√

∆

)
+Λ1R1 = 0,

(3.14)
√

2
√

∆R′3 +R3

( ∆′√
2
√

∆
− i
√

2ρ2ω√
∆

)
+ Λ2R2 = 0,

√
2

2

√
∆R′2 +

√
2R2

(√∆(r + ia)

ρ2
+
iρ2ω

2
√

∆

)
+Λ2R3 = 0;

(3.15)
and

T ′2 + T2

(
2aω tan

θ

2
+m csc θ

)
− Λ1T1 = 0,

T ′1 − T1

(
2aω tan

θ

2
− cot θ +m csc θ

)
+ Λ1T2 = 0,

(3.16)

T ′3 + T3

(
2aω tan

θ

2
+ cot θ +m csc θ

)
− Λ2T2 = 0,

T ′2 − T2

(
2aω tan

θ

2
+m csc θ

)
+ Λ2T3 = 0. (3.17)

Three of four equations in both these
systems are independent. The fourth equation can
be expressed as a combination of the last three if
the following condition performed:

4aω − Λ2
2 + Λ2

1 = 0. (3.18)

4. Angular equations solution

Expressing T2 from the first equation in the
system (3.16) and substituting it into the second

one, we get the second-order equation for the
function T1:

T ′′1 + cot θT ′1

+
(

Λ2
1 + 4a2ω2 − 2aω(1 + 2m+ 4aω)

1 + cos θ

−(1 +m2)

sin2 θ
+ 2 cot θ

( m

sin θ
+ aω tan

θ

2

))
T1 = 0.

(4.1)

In the same way, one get the equation for the
function T2:

T ′′2 + cot θT ′2 +
(

Λ2
1 + 2aω + 4a2ω2

−4aω(m+ 2aω)

1 + cos θ
− m2

sin2 θ

)
T2 = 0.

(4.2)

Introducing the new variable z = sin2 θ
2 , one

transform the equations (4.1)-(4.2) to the form

(1− z)zT ′′1 + (1− 2z)T ′1 +
(

Λ2
1 + 2aω(2aω + 1)

−(4aω +m+ 1)2

4z
+

(m− 1)2

4(z − 1)

)
T1 = 0,

(4.3)

(1− z)zT ′′2 + (1− 2z)T ′2 +
(
Λ2

1 + +2aω(2aω + 1)

−2aω(2aω +m)

z
+

m2

4(z − 1)z

)
T2 = 0.

(4.4)

We search the solution with the structure
T1 = zA(z − 1)BG1, T2 = zC(z − 1)DG2;
substituting the last in the equations (4.3)-(4.4),
one get

(1− z)zG′′1 + (1 + 2A− 2z(A+B + 1))G′1

+
(
2aω(2aω + 1)− (A+B)(A+B + 1) + Λ2

1

)
G1 = 0,
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(1− z)zG′′2 + (1 + 2C − 2z(C +D + 1))G′2

+
(
2aω(2aω + 1)− (C +D)(C +D + 1) + Λ2

1

)
G2 = 0,

here

A = ±1

2
(1 +m+ 4aω), B = ±1−m

2
,

C = ±1

2
(m+ 4aω), D = ±m

2
.

The equations for G1, G2 have the structure
of hypergeometric type

z(1− z)G′′ + [c− (a+ b+ 1)z]G′ − abG = 0,

G =2 F1(a, b, c; z);

then the general form of solutions is (K1, K2

stand for some numerical constants):

T1 = K1 z
A(z − 1)BG(a1, b1, c1; z),

T2 = K2 z
C(z − 1)DG(a2, b2, c2; z),

a1, b1 =
1

2
+A+B ± 1

2

√
(1 + 4aω)2 + 4Λ2

1,

c1 = 1 + 2A;

a2, b2 =
1

2
+ C +D ± 1

2

√
(1 + 4aω)2 + 4Λ2

1,

c2 = 1 + 2C.

The cases of positive and negative values of
number m should be considered separately:

m > 0, A =
1

2

(
1 +m+ 4aω

)
, B =

m− 1

2
,

C =
1

2

(
m+ 4aω

)
, D =

m

2
,

c1 = 2 +m+ 4aω,

a1 =
1

2

(
1 + 2m+ 4aω − 1

2

√
(1 + 4aω)2 + 4Λ2

1

)
,

b1 =
1

2

(
1 + 2m+ 4aω +

1

2

√
(1 + 4aω)2 + 4Λ2

1

)
,

c2 = c1 − 1, a2 = a1, b2 = b1;

m < 0, A = −1

2

(
1 +m+ 4aω

)
, B = −m− 1

2
,

C = −1

2

(
m+ 4aω

)
, D = −m

2
,

c1 = 1−m− 4aω,

a1 =
1

2

(
1− 2m− 4aω − 1

2

√
(1 + 4aω)2 + 4Λ2

1

)
,

b1 =
1

2

(
1− 2m− 4aω +

1

2

√
(1 + 4aω)2 + 4Λ2

1

)
,

c2 = c1 − 1, a2 = a1, b2 = b1.

We introduce the quantization rule in
usual way by imposing the condition that the
power series for the hypergeometric function
are terminated, namely (b takes on non-positive
integer values):

m > 0, b1 =
1

2

(
1 + 2m+ 4aω +

1

2

√
(1 + 4aω)2 + 4Λ2

1

)
= −n1 ⇒

Λ2
1 = (m+ n1)(1 +m+ n1 + 4aω) = N1(N1 + 1 + 4aω);

(4.5)
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m < 0, b1 =
1

2

(
1− 2m− 4aω +

1

2

√
(1 + 4aω)2 + 4Λ2

1

)
= −n2 ⇒

Λ2
1 = (1−m+ n2)(−m+ n2 − 4aω) = N2(N2 − 1− 4aω);

(4.6)

in the second case, the constraint n2−m−4aω−
m > 0 has to performed; so that in both cases
Λ2 > 0.

5. Solving the radial equations

In the system (3.14) we apply the following
substitutions R1 = F/

√
∆, R2 =

√
2G/
√

∆, so
we obtain

F ′ +
iρ2ω

∆
F +

Λ1√
∆
G = 0,

G′ −
(
iρ2ω

∆
+

∆′

2∆
− 2(r + ia)

ρ2

)
G+

Λ1√
∆
F = 0.

(5.1)

Eliminating the function G, one derives the
second-order equation for the function F (taking
into account the explicit expressions for ∆, ρ and
introducing r1 and r2 as the roots of equation
∆ = 0: r1 = 1/2(rg −

√
r2
g + 4a2), r2 = 1/2(rg +√

r2
g + 4a2)):

F ′′ +
2

r − ia
F ′ +

(
ω2 +

−Λ2
1 − 2aω + 2ir1ω + 2r2

1ω
2

(r − r1)(r1 − r2)

−−Λ2
1 − 2aω + 2ir2ω + 2r2

2ω
2

(r − r2)(r1 − r2)
− ir1ω − r2

1ω
2

(r − r1)2
− ir2ω − r2

2ω
2

(r − r2)2

)
F = 0.

(5.2)

In the same way, we get the second-order equation for the function G:

G′′ +
2

r − ia
G′ +

(
ω2 +

−Λ2
1 − 2aω + 2r2

1ω
2

(r − r1)(r1 − r2)
+

2ia+ r1

2r1(r − r1)(r1 − r2)
− −Λ2

1 − 2aω + 2r2
2ω

2

(r − r2)(r1 − r2)

− 2ia+ r2

2r2(r − r2)(r1 − r2)
+

1 + 4r2
1ω

2

4(r − r1)2
+

1 + 4r2
2ω

2

4(r − r2)2
− i

a(r − ia)
− 2

(r − ia)2

)
G = 0.

(5.3)

Solutions of the equation (5.2) are searched
in the form

F =
1

(r − ia)
(r − r1)α(r − r2)βe−γrf ;

substituting the last into (5.2) leads to

f ′′ −
(

2γ − 2α

r − r1
− 2β

r − r2

)
f ′ +

(
− −Λ2

1 + 2αβ + 2αγ (r2 − r1) + 2ir1ω + 2r2
1ω

2 − 2aω

(r − r1) (r2 − r1)

+
−Λ2

1 + 2αβ − 2βγ (r2 − r1) + 2ir2ω + 2r2
2ω

2 − 2aω

(r − r2) (r2 − r1)

)
f = 0

(5.4)

at γ = ±iω; α = −ir1ω, 1 + ir1ω; β =
−ir2ω, 1 + ir2ω. In a new variable v = r−r1

r2−r1

the equation (5.4) is transformed to the confluent
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Heun equation:

f ′′ +
(
− 2γ(r2 − r1) +

2α

v
+

2β

v − 1

)
f ′ +

(
− A

v
+

B

v − 1

)
f = 0, (5.5)

A = −Λ2
1 + 2αβ + 2αγ (r2 − r1) + 2ir1ω + 2r2

1ω
2 − 2aω,

B = −Λ2
1 + 2αβ − 2βγ (r2 − r1) + 2ir2ω + 2r2

2ω
2 − 2aω.

The solution of the equation (5.5) can be written as follows

f = C1HeunC [−A,B −A, 2α, 2β, 2γ (r1 − r2) , v]

+C2v
1−2αHeunC [−A1, B −A1 − 2(2α− 1)β, 2− 2α, 2β, 2γ (r1 − r2) , v] ,

here A1 = A− 2(2α− 1) (β + γ (r2 − r1)) . Then,
the original function R1 has the form

R1 =
(r − r1)α−1/2(r − r2)β−1/2

(r − ia)
e−γrf.

In the same way, we solve the system (3.15).
Applying the change

R3 = W/
√

∆, R2 =
√

2G/
√

∆,

we get

W ′ − iρ2ω

∆
W +

Λ2√
∆
G = 0,

G′ −
(
− iρ

2ω

∆
+

∆′

2∆
− 2(r + ia)

ρ2

)
G+

Λ2√
∆
W = 0.

(5.6)

Expressing the function G from the first equation
and substituting into the second, we get

W ′′ +
2

r − ia
W ′ +

(
ω2 − Λ2

2 − 2aω + 2ir1ω − 2r2
1ω

2

(r − r1)(r1 − r2)

+
Λ2

2 − 2aω + 2ir2ω − 2r2
2ω

2

(r − r2)(r1 − r2)
+
ir1ω + r2

1ω
2

(r − r1)2
+
ir2ω + r2

2ω
2

(r − r2)2

)
W = 0.

(5.7)

The solution of (5.7) is searched in the form W = 1
(r−ia)(r − r1)χ(r − r2)ξe−γrw, we get

w′′ −
(

2γ − 2χ

r − r1
− 2ξ

r − r2

)
w′ +

(Λ2
2 − 2χξ − 2χγ (r2 − r1) + 2ir1ω − 2r2

1ω
2 − 2aω

(r − r1) (r2 − r1)

−Λ2
2 − 2χξ + 2ξγ (r2 − r1) + 2ir2ω − 2r2

2ω
2 − 2aω

(r − r2) (r2 − r1)

)
w = 0

(5.8)
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at γ = ±iω; χ = ir1ω, 1 − ir1ω; ξ = ir2ω, 1 − ir2ω. Taking into account the condition (3.18), the
equation (5.8) reads

w′′ −
(

2γ − 2χ

r − r1
− 2ξ

r − r2

)
w′ +

(
− −Λ2

1 + 2χξ + 2χγ (r2 − r1)− 2ir1ω + 2r2
1ω

2 − 2aω

(r − r1) (r2 − r1)

+
−Λ2

1 + 2χξ − 2ξγ (r2 − r1)− 2ir2ω + 2r2
2ω

2 − 2aω

(r − r2) (r2 − r1)

)
w = 0.

(5.9)

Comparing the equations (5.4) and (5.9), one can
see that they are complex conjugated ones, so
we have w = f∗ (a symbol ∗ denotes complex
conjugation). The function R3 is determined by
the expression

R3 =
(r + ia)

(r − ia)
R∗1.

Algebraic equation to find the function R2 is
derived from equations (3.14-3.15):

Λ2R3 − Λ1R1 +
i
√

2ρ2ω√
∆

R2 = 0.

6. Behavior near horizon

To estimate the behavior of the functions
R1, R2 in the vicinity of the outer horizon, one
should consider the equations (5.2), (5.3) at r →
r2. Preserving only the largest terms in these
equations, one gets

F ′′ +
2

r − ia
F ′ +

r2ω(−i+ r2ω)

(r − r2)2
F = 0,

G′′ +
2

r − ia
G′ +

1 + 4r2
2ω

2

4(r − r2)2
G = 0.

So, the solutions of the last equations in the
vicinity of the horizon have the form

F ∼ (r − r2)−ir2ω, (r − r2)1+ir2ω;

G ∼ (r − r2)
1
2
−ir2ω, (r − r2)

1
2

+ir2ω.

Then, for the original functions R1 = F/
√

∆,
R2 =

√
2G/
√

∆, the solutions represent the
incident and reflected waves

R1 ∼ (r − r2)1/2+ir2ω, (r − r2)−1/2−ir2ω;

R2 ∼ (r − r2)ir2ω, (r − r2)−ir2ω.

According the procedure proposed in [25–27], the
scattering probability

Γ =

∣∣∣∣Ψout(x > x2)

Ψout(x < x2)

∣∣∣∣2 (6.1)

is the probability of creating an outgoing
particle outside the outer horizon and an ingoing
antiparticle of negative energy inside the horizon.
Then substituting the outgoing wave solutions
into the formula (6.1), the probability of particle-
antiparticle pair creating is

Γ = e−4πωr2 . (6.2)

the mean number N̄ω of photons emitted with
a given frequency is determined by relation
(ignoring the backscattering effect):

N̄ε =
Γ

1− Γ
=

1

e4πωr2 − 1
. (6.3)

We get the Bose-Einstein distribution

N̄ε =
1

1 + eω/T
,

T =
1

4πr2
=

1

2π(rg +
√
r2
g + 4a2)

, (6.4)

where T determines the Hawking temperature.
This expression for Hawking temperature
coincides with the result obtained previously for
the fermions production on the horizon.
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7. Effective constitutive relations
in NUT space

It is known that the Riemann geometry
provides us with possibility to simulate special
types of material media [24, 28]. For an arbitrary
metric tensor gαβ one can obtain the effective
constitutive relations due to the metric structure
of the spacetime

Hαβ(x) = ε0

√
−g(x)√
−G(x)

gαρ(x)gβσ(x)Fρσ(x),

(7.1)
where

Fαβ =

∣∣∣∣∣∣∣∣
0 F01 F02 F03

−F01 0 F12 F13

−F02 −F12 0 F23

−F03 −F13 −F23 0

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

∣∣∣∣∣∣∣∣ ;

Hαβ =

∣∣∣∣∣∣∣∣
0 H01 H02 H03

−H01 0 H12 H13

−H02 −H12 0 H23

−H03 −H13 −H23 0

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
0 −D1 −D2 −D3

D1 0 −H3 H2

D2 H3 0 −H1

D3 −H2 H1 0

∣∣∣∣∣∣∣∣ .

Substituting expressions for Fαβ andHαβ into the
equation (7.1), we get the formulae for effective
constitutive relations

Di = ε0ε
ikEk + ε0cα

ikBk,

H i = ε0cβ
ikEk + µ−1

0 (µ−1)ikBk,

where the matrixes εik, αik, βik, (µ−1)ik are
defined be the metric tensor as follows

εik =

√
−g√
−G

(
g00gij − g0ig0k

)
,

(µ−1)ik =
1

2

√
−g√
−G

εimng
mlgnjεljk,

αik =

√
−g√
−G

gijg0lεljk, βik = −
√
−g√
−G

g0jεjilg
lk,

hereG is the determinant of the Minkowski metric
in the spherical coordinates. For relativistic
non-diagonal metrics these effective constitutive
relations entangle the vectors of electric and
magnetic fields.

Substituting the explicit expressions for
metric tensor components, we get the matrixes
which determine the constitutive relations
generated by NUT-spacetime:

εik =

∣∣∣∣∣∣∣∣
−1− a2

r2

(
1− 4∆

r2+a2
tan2 θ

2

)
0 0

0 − 1
∆ −

a2

r2

(
1
∆ −

4
(r2+a2)

tan2 θ
2

)
0

0 0 − 1
∆ sin2 θ

− a2

∆r2 sin2 θ

∣∣∣∣∣∣∣∣ ,

αik = βki =

∣∣∣∣∣∣∣
0 − a∆

r2(r2+a2) cos2 θ
2

0
a

r2(r2+a2) cos2 θ
2

0 0

0 0 0

∣∣∣∣∣∣∣ , (µ−1)ik =

∣∣∣∣∣∣∣
1

r2(r2+a2) sin2 θ
0 0

0 ∆
r2(r2+a2) sin2 θ

0

0 0 ∆
r2(r2+a2)

∣∣∣∣∣∣∣ .
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Let us compare the found expressions with those
for Minkowski metric

εikM =

∣∣∣∣∣∣
−1 0 0
0 − 1

r2
0

0 0 − 1
r2 sin2 θ

∣∣∣∣∣∣ ,

(µ−1
M )ik =

∣∣∣∣∣∣
1

r4 sin2 θ
0 0

0 1
r2 sin2 θ

0

0 0 1
r2

∣∣∣∣∣∣ , αikM = βkiM = 0.

One can see that in the limiting case for a =
0, ∆ = r2, the obtained matrixes for NUT-
spacetime turn to the corresponding formulas for
Minkowski space.

In Minkowski space, the coefficients in
the matrix are determined the transition from
Cartesian coordinates to spherical ones. Indeed,
from the formula Fαβ = GαγGβσFγσ, we get

∣∣∣∣∣∣∣∣
0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
0 −E1 −E2

r2
− E3

r2 sin2 θ
E1 0 −B3

r2
B2

r2 sin2 θ
E2
r2

B3
r2

0 − B1

r4 sin2 θ
E3

r2 sin2 θ
− B2

r2 sin2 θ
B1

r4 sin2 θ
0

∣∣∣∣∣∣∣∣∣ .
Then the effective constitutive relations generated by the NUT metric can be considered in Cartesian
coordinates

Di = ε0εikE
k + ε0cαikB

k, H i = ε0cβikE
k + µ−1

0 (µ−1)ikB
k,

where

εik =

∣∣∣∣∣∣∣∣
1 + a2

r2

(
1− 4∆

r2+a2 tan2 θ
2

)
0 0

0 r2

∆ + a2
(

1
∆ −

4
(r2+a2) tan2 θ

2

)
0

0 0 r2

∆ + a2

∆

∣∣∣∣∣∣∣∣ , αik =

∣∣∣∣∣∣∣
0 − 4a∆ sin2 θ

2

(r2+a2) 0
4ar2 sin2 θ

2

(r2+a2) 0 0

0 0 0

∣∣∣∣∣∣∣ ,

βik =

∣∣∣∣∣∣∣
0 a

(r2+a2) cos2 θ
2

0

− a∆
r2(r2+a2) cos2 θ

2

0 0

0 0 0

∣∣∣∣∣∣∣ , (µ−1)ik =

∣∣∣∣∣∣∣
r2

(r2+a2) 0 0

0 ∆
(r2+a2) 0

0 0 ∆
(r2+a2)

∣∣∣∣∣∣∣ .

Let us consider behavior of the constitutive
relations near singular points: outer horizon and
at infinity. For r →∞, the matrixes behave as

εik = (µ−1)ik =

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣ ,

αik =

∣∣∣∣∣∣
0 −4a sin2 θ

2 0

4a sin2 θ
2 0 0

0 0 0

∣∣∣∣∣∣ ,
βik = 0.

One can see that the matrixes εik for dielectric
and (µ−1)ik for magnetic permittivity turn to
ordinary expressions for Minkowski space and are
unity matrixes for Cartesian coordinates.

The entangling matrixes αik, βik vanish
identically at infinity everywhere except Misner
string θ = ±π. In the vicinity of horizon we have

∆ ≡ (r − r1)(r − r2)→ 0, r → r2,

and the matrixes can be rewritten approximately:
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εik =

∣∣∣∣∣∣∣∣
1 + a2

r22
0 0

0
r22+a2

(r2−r1)(r−r2) 0

0 0
r22+a2

(r2−r1)(r−r2)

∣∣∣∣∣∣∣∣ ,

(µ−1)ik =

∣∣∣∣∣∣∣
r22

(r22+a2)
0 0

0 0 0
0 0 0

∣∣∣∣∣∣∣ , αik =

∣∣∣∣∣∣∣
0 0 0

4ar22 sin2 θ
2

(r22+a2)
0 0

0 0 0

∣∣∣∣∣∣∣ ,

βik =

∣∣∣∣∣∣∣
0 a

(r22+a2) cos2 θ
2

0

0 0 0
0 0 0

∣∣∣∣∣∣∣ .
For small values of NUT parameter (a� r2), one
has r1 → 0, r2 → rg, where rg is the radius of
horizon of Schwarzschild mass. Then we have

εik =

∣∣∣∣∣∣∣
1 0 0
0

rg
r−rg 0

0 0
rg
r−rg

∣∣∣∣∣∣∣ , (µ−1)ik =

∣∣∣∣∣∣
1 0 0
0 0 0
0 0 0

∣∣∣∣∣∣ ,

αik =

∣∣∣∣∣∣
0 0 0

4a sin2 θ
2 0 0

0 0 0

∣∣∣∣∣∣ , βik =

∣∣∣∣∣∣∣
0 a

rg cos2 θ
2

0

0 0 0
0 0 0

∣∣∣∣∣∣∣ .
The found result means that the presence of
the NUT charge leads to arising non-vanishing

component of the matrix which entangles the
electric and magnetic fields. We can assume that
this result correlates with some rotation effects
related to the NUT metric.

8. Conclusion

Thus, we have studied the Maxwell
equations in the NUT spacetime, by applying
the conventional tetrad method. The variables
have been separated and the exact solutions of
the equations for angular and radial components
have been found in terms of hypergeometric
and confluent Heun functions, respectively. The
quantization rule of separation constant has
been obtained from the analysis of angular
solutions. The behavior of the radial components
with structure of outgoing and ingoing waves
has been studied near the outer horizon, and
the expression of the temperature of Hawking
radiation of photons has been shown to coincide
with that for the fermions production on the
outer horizon. The effective constitutive relations
which are generated by metric structure of NUT
spacetime have been found. It has been shown
that the existence of the NUT charge leads
to entanglement of electric and magnetic field
components in the constitutive relations.
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