Nonlinear Phenomena in Complex Systems, vol. 28, no. 3 (2025), pp. 248 - 260

Electromagnetic Field in the Newman-Unti-Tamburino
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Using the conventional tetrad method by Tetrode-Weyl-Fock-Ivanenko, we specify the
Maxwell equations for Newman-Unti-Tamburino (NUT) spacetime. We apply the covariant
Majorana—Oppenheimer matrix presentation of the Maxwell theory. Separation of the
variables is performed, and the equations for angular and radial components are solved
in terms of hypergeometric and confluent Heun functions respectively. We find the NUT-
charge dependent quantization rule for the angular separation constant. Behavior of the
radial components with structure of outgoing and ingoing waves is studied near the outer
event horizon, and we demonstrate that the probability of particle-antiparticle production
on the outer event horizon decreases with the increase of the NUT charge; the expression of
temperature for the Hawking radiation of the photons coincides with that for the fermions
production on the horizon. The effective constitutive relations, generated by metric structure
of NUT spacetime, are derived; it is shown that the existence of the NUT charge leads to
entanglement of electric and magnetic field components in these relations.
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Introduction

of the NUT parameter [5]. Mostly, the NUT

The  Newman-Unti-Tamburino  (NUT)
metric is an axially symmetric vacuum solution
of Einstein equations with two parameters,
the black hole mass and the NUT parameter.
The NUT spacetime is generalization of the
Schwarzschild one, due to the presence the
NUT parameter (or NUT charge) [1-3]. NUT
parameter is understood as a gravito-magnetic
charge, or as gravito-magnetic monopole, or
magnetic (gravitomagnetic) mass |3, 4].

For NUT spacetime the singularities of
the Misner string type arise. This leads to
the difficulties in thermodynamical analysis and,

as a consequence, in physical interpretation
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parameter is interpreted as a linear source of
a pure angular momentum [6] or the twist
parameter of the surrounding vacuum spacetime
or electromagnetic (EM) universe in the presence
of the EM field |7].

The existence of the Misner string as
well as the non-vanishing g;, components in
metric tensor, lead to the spacetime areas
where T-symmetry is broken and circular time-
like (null) geodesics exist. By this reason,
sometimes NUT spacetime is considered as
nonphysical one. However, in [8] it was shown
that geodesics of the freely falling observer are
not closed time-like ones, so the NUT spacetime
can be geodesically complete, without causal
pathologies. Currently, the black holes with NUT
parameter are considered as one of the most
intriguing cosmological objects.

As shown in [9], the black hole with NUT
charge has the smaller Hawking temperature,
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and pure gravitomagnetic monopoles without
ordinary mass (if exist) may not be decayed due
to the Hawking radiation by now.

In [8] it was demonstrated that the
supercritically charged black holes with NUT
parameter belong to traversable wormhole
solutions. Besides, the NUT black holes may
exhibit a twist in the lensing pattern [10], and
an asymmetry of black hole shadow or the
Lense-Thirring effect |3, 11].

Classical equations of motion in NUT
spacetimes were extensively studied [12-14].
However, the papers on the quantum-mechanical
problems of the particles in the background
of NUT spacetimes are few. In [15], within
the Newman-Penrose formalism, the Maxwell
equations have been studied in Taub-NUT
background which has singularity at whole axes
0 = 0, 7. After separating the variables, solutions
of the angular equations were constructed
in terms of Jacobi polynomials. The radial
equations (see equations (28a) and (44a) in [15])
were transformed respectively to equations with
hypergeometric and Heun’s structure on the left-
hand side, while the right-hand sides include
terms of different order in frequency w. Only
approximate solutions with the zeroth order in
frequency w in the right-hand side have been
found in terms of the hypergeometric and Heun
functions.

The goal of the present paper is to study

J

) 0 0
0 —1 0

Yap = 0 ()(I> —a®—r
2a® (1 —cosf) 0 0

We chose the following tetrad

Vo 0 0 2av/® (1 — cos b))
0 &= 0 0
e(a)a(T) = Ve
(@e 0 0 VaZti? 0
0 0 0 va? +r2sind

(2.2)

the electromagnetic field in background of original
NUT spacetime which has singularity only at
semiaxes § = w. We apply the conventional
tetrad method developed by Tetrode-Weyl-Fock-
Ivanenko in [16-19], and covariant Majorana—
Oppenheimer matrix presentation of the Maxwell
theory [20-22], in the background of the original
NUT spacetime. We have solved the angular and
radial equations in terms of hypergeometric and
Heun functions, respectively.

2. Ricci rotation coefficients for
NUT space

NUT-metric is
element

determined by the line

ds® = @ (dt + 4asin®(6/2)d¢)” — dg (2.1)

— (a® +r?) (d6® + sin® 0d¢?)

@Zl_M_%,

r24+a2  p

where tis a time coordinate, t,60,¢ are spherical
coordinates, ry = 2M is a Schwarzschild horizon
of black hole with mass M, a is a NUT parameter,
p=r>+a* A=1r?+r,;—ad’

The corresponding metric tensor is non-
diagonal

2a® (1 — cosb)
0
0
4a?® (1 — cos 0)* — (a® + r?) sin® 0

(

Applying the known formulas [23]

1
Yabe = i(Aabc + )\bca - )\cab)v
Oe@a Oews\ o 5
Aabe = ( oz dxe )e(b)e(C)’
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we find the relevant Ricci rotation coefficients

@/
Oq), NG 0 0
Yabo = e 0 0 ’
@ b
0 0 0 4
)
0 0 4% o
000O0
o000
’Vabl - 0 O 0 0 9
0000O0
)
0 0 0 4
0 0 Ve 0
Yab2 = 0 /3 QQ?)_TQ ) (23)
a2+r?
-5 0 0 0
[
¢ 0 = 0
U 0 e
Yab3 = | /B 0 0 1
a’+r? tan 6va2+r?2
0 _ r/® _ 1 0
a?+r? tan 6va2+r2

3. Maxwell equations, separating
the variables

It is convenient to apply the matrix complex
Silberstein — Majorana — Oppenheimer formalism,

J

_|_

(o5 + 05 Teoms Jor -

. A (r+ia)VA
.0 _ 3
100 Sl<2\/gp p3 )+(a S92
0 1 0 1
2 3 =
Xog = a5, Ta (sin9¢+sltan9

so the covariant matrix Maxwell equation reads
(for more detail see [20-22, 24])

a® (efa)fiﬁ + %jm"’ymna) v =0,
0

E +icB

(3.1)

)

v |

where E and B are electric and magnetic fields
vectors, generators ;7" of the complex vector
representation of orthogonal group SO(3.C') equal

-23 .01 . -31
J =51, J =151, ]

02 . -12 -03 :
J =182, ] =83, ] =183

In the cyclic basis, the matrix s read

= 52,

0000 00 0 0
L _0—i00 1100 —i0
Yoo oo P20 i 0 —i|
000 00 —i 0
00 0 0
1100-10
S§3 = ——=
2001 0 -1
00 1 0

Taking into account expression for the tetrad
(2.2) and the Ricci rotation coefficients (2.3), the
Maxwell matrix equation (3.1) is obtained in the
following form

VA 9
“ar
( .W”K 1 (3.2)
9 r+1a
P AL YA Sy MY /)
3) p3 P ’¢]
0 010
o . 1 |0 =00
)’ @E=THE =1 0 00
0 0 0 i
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0 -1 0 1 0 —i 0 —i

, 1|1 0 —io0 5 1 |=i0 -1 0

CTAl0 -0 - YT A0 1 0 -1
1 0 —i 0 —i 0 1 0

As the NUT-metric does not depend on the time and angle ¢, we should search wave functions in
the form

_ R (T)T (9)
_ iwt zm(;S 1 1
U=e B Th(0) | (3.3)
Rs(r)T5(0)
Substituting the last in the equation (3.2), we get
0 A’ iv2p?
RyTh <2aw tan B +mescl )+ RiTh (ﬂ\/g n Z\C%w) + \/§\/KT1R'1 + RoTy =0, (3.4)

0 0
RiTy <2aw tan 3~ cot § + mcsc 9) + R3T3 (2aw tan 3 + cot 8 +mesc 9)
(3.5)
— RlT{ + RgTé =0,

2vV 2V AR T: ]
+ \/7\/7 p22 2(T+Za) —|—\/§\/KT2R/2

0 A
R2T2<2awtan§+mcs00) +R3T3<\[\/> “f\/ﬂ“) FVOVATR, — RoT, =0,  (3.6)

0 0
-1 (Qaw tan 3 cot @ + mcsc 9) + R3T3 <2aw tan B +cotf +m CSC(H))

. 3.7)
20°RyT: (
W\/Z“w + RyT] + RsT} = 0.
With the use of simple algebraic calculation we separate the variables.
The radial equations read (we introduce the separation constants &1, &2, &3,&4)
A/ iV2p*w
V2VAR, + R + + &Ry =0, 3.8
S AL 35
A/ iv2pw
V2V AR, + R — + &Ry =0, 3.9
R vE T vE ) e 39
V2 VA(r+ia)  ip*w
~=VAR: 2 = 1
oV R2+\fR2( ot Z) + &Ry =0, (3.10)
\f VA(r+ia)  ip*w
~~VAR, + V2R - — &Ry =0; 3.11
9 2( e 5 \/Z) §aly (3.11)
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and for the angular components:

0 0
T2'+T2<2awtan§+mcsce>—§1T1:0, T§+T3<2awtan§+Cot0—|—mcscﬁ)—£3T2:(), (3.12)

0 0
T T, <2aw fan o —cot 6+m csc 9) 4Ty =0, Ty—Th <2aw tan 7 +mecsc(f) Big)+&T5 =0. (3.13)

Without loss of generality won can take £&; =
—&4 = Ay, & = &3 = Ag. Then the last equations
take the form

A/ iV2p*w
V2V AR, + R + + ARy =0,
(Gt TE )
V2 VA(r +ia)  iptw
7\/AR§+\/§R2( e 2\/z> + ARy =0,
(3.14)
A/ iV2p*w
V2V AR, + R - + AsRy =0,
r(aa s )
V2 VA(r+i p?
7\/AR;+\/§RQ( (;2 ia) ;” %) +AsRy = 0;
(3.15)
and

0
Ty + Ty <2awtan 3 + mcsc 0) — ATy =0,

0
T —Th (2awtan 3 cot @ + mcsc9> +MTy, =0,
(3.16)
0
Ty + T <2aw tan 3 + cot 6 + mcsc 9) — AT, =0,

0
Ty — Ty <2aw tan 5 Tmesc 6> + AT =0. (3.17)

Three of four equations in both these
systems are independent. The fourth equation can
be expressed as a combination of the last three if
the following condition performed:

4aw — A3 + A% = 0. (3.18)

4. Angular equations solution

Expressing T from the first equation in the
system (3.16) and substituting it into the second

(

one, we get the second-order equation for the
function 7T7:

T + cot 0T
+(A2 4 da?u? - 2aw(1 + 2m + 4aw)
! 1+ cosf
(1+m?) m 0 B
20 + 2c0t9(sin0 + aw tan 2))T1 =0.
(4.1)

In the same way, one get the equation for the
function T5:

Ty + cot 0Ty + (A% + 2aw + 4a*w?

daw(m + 2aw)  m? )T 0 (4.2)
1+ cosd sin20/° 2
Introducing the new variable z = SiHQg, one

transform the equations (4.1)-(4.2) to the form

(1 —2)2T7 + (1 — 22)T7 + (A% + 2aw(2aw + 1)

(daw +m+1)2  (m— 1)2)
- T =0
4z + Az—1)/) 7

(4.3)

(1= 2)2T5 + (1 — 22)T% + (A} + +2aw(2aw + 1)

2aw(2aw 4+ m) m?
— T = 0.
z * 4(z — 1)2) 2
(4.4)

We search the solution with the structure
T = 24z - 1)BG, Tv = 290z — 1)PGy;
substituting the last in the equations (4.3)-(4.4),
one get

(1—2)2G] +(14+24—-22(A+ B+1))G}

+ (20w(2aw + 1) — (A+ B)(A+ B +1) +A2) G, =0,
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(1—2)2GY +(14+2C —22(C+ D +1))G,
+ (2aw(2aw + 1) — (C + D)(C + D+ 1) + A]) G2 =0,
here

1 1—
A= (14 m + daw), B:iTm,

1
C= :tg(m+4aw), D= :t%.

The equations for G, G2 have the structure
of hypergeometric type

2(1=2)G" +[c— (a+ b+ 1)2]G' — abG = 0,

G =3 Fi(a,b,c; 2);

then the general form of solutions is (K7, K2
stand for some numerical constants):

T = K; ZA(Z - 1)BG(alablacl;z)7

Ty = Ko zc(z — 1)DG(a2,b27C2§2);

1 1
al,b1:§+A+B:|:§\/(1+4aw)2+4A%,

61:1—1—2A;

1 1
az, by — §+C+Di§\/(1+4aw)2+4A%,

62:1+2C.

The cases of positive and negative values of
number m should be considered separately:

1 -1
7<1+m+4aw),B:L,

>0, A
m 2 2

m>0, b =

N

1
(1+2m+ daw+ 54/(1 + daw)2 +407) = —my =

9

1
C:§<m+4aw>,D:%

c1 =2+ m+ daw,
1 1
a; = 5<1—|—2m—i—4aw—5\/(1—1—4aw)2—1—4A%),

1 1
by = §<1+2m+4aw+5\/(1+4aw)2+4A%),

co=-c1—1, a2 = a1, by = by;

1 -1
A:—§<1+m+4aw),B:—mT,

)

1
C:—§<m+4aw>, D=—

m
2

c1 =1—m — daw,

1 1
a; = 5(1—2m—4au}—5\/(1—1—4a<,u)2—1—4A%),

1 |
by = 5(1—2m—4aw+§\/(1+4aw)2+4A%>,

c2=c1—1, ag = a1, by =b1.

We introduce the quantization rule in
usual way by imposing the condition that the
power series for the hypergeometric function
are terminated, namely (b takes on non-positive
integer values):

(4.5)

A% =(m+n1)(14+m+n; +4daw) = N1 (N1 + 1 + daw);
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1 1
m <0, bl:5(1—2m—4aw+§\/(1+4aw)2+4A%> = —ng =

(4.6)
A2 = (1 —m+ng)(—m + ng — 4aw) = Ny(Ny — 1 — daw);
[
in the second case, the constraint ny —m — 4aw — q <Zp w + Al _ 2(r + w)) G+ £F —0
; 3 .
m > (0 has to performed; so that in both cases A 2A P VA
A2 >0. (5.1)

5. Solving the radial equations Eliminating the function G, one derives the

second-order equation for the function F' (taking
into account the explicit expressions for A, p and
introducing 71 and 79 as the roots of equation

In the system (3.14) we apply the following
substitutions R; = F/\/Z, Ry = ﬂG/\/Z, SO

btai
e optat A =07 = 1/2(ry — \[r2 +4a2), vy = 1/2(ry +
- 2
,  iptw Ay, )
F' + A F+ﬁG_O’ \/T2 +4a?)):
o 2 o (w2 n —A} - 2aw + 2irw + 2rjw?
r—1ia (r—mr1)(r1 —r2) (5.2)
—A% — 2aw + 2irow + 2r§w2 _ riw — r%wQ _ irow — r%w2>F _0 '
(r—mra)(ry —ra) (r—r1)? (r —ro)? ’
In the same way, we get the second-order equation for the function G:
a4 2 a4 (w2 n —A? — 2aw + 2riw? 2ia + 11 _ —A? — 2aw + 2r3w?
r —ia (r—mr1)(r1 —r2) 2ri(r—ry)(r —ro) (r—ro)(r1 —r2) (5.3)
2ia + 12 n 1+4r20w? 1+ 4730 ? 2 )G _0 '
2ro(r —ro)(ry —12)  A4(r—r1)2  4(r—m)?  alr —ia) (r—ia)?/
[
Solutions of the equation (5.2) are searched substituting the last into (5.2) leads to
in the form
1
F = =) (r —r)%(r —rg)Pe " f;
o <27 22 28 >f/ N (_ —A? + 208+ 20y (12 — 1) + 2irw + 2riw? — 2aw
r—r1 T —T9 (r—mr1)(ro—ry) (5.4)
+—A% + 208 — 2B (rg — r1) + 2iraw + 2r3w? — 2aw>f . '
(r—mro)(rg —r1)
[
at v = 4iw; o = —irw,l + irw; B = the equation (5.4) is transformed to the confluent
—irow, 1 + irow. In a new variable v = %
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Heun equation:
2a 2 A B
‘V+(—2ﬂm—wﬁ+4f+4l1)ﬂ+<—4~k )f=o, (5.5)
v v—1 v v-—1
A= —A2 4208+ 2ay (ry — r1) + 2iriw + 2riw? — 2aw,
B = —A? +2a8 — 267 (ro — r1) + 2irqw + 2riw® — 2aw.
The solution of the equation (5.5) can be written as follows
f=C1HeunC[—A, B — A,2a,203,2v (r1 —r3) ,v]
+Cov' **HeunC [~ Ay, B — Ay — 2(2a — 1)3,2 — 20,283, 2y (r1 — r2) , 0],
here A; = A—22a—1)(B+7y(ra —r1)). Then, we get
the original function R; has the form
;9
ip°w Ao
W' — —W + —=G =0,
R (r— rl)afl/Q(r — 7“2)5*1/2 g A VA
= ; e . ) ,
' (r —ia) a 7Zp2w+é’7M G’+£W:0.
TN VA
In the same way, we solve the system (3.15). (5.6)

Applying the change

Expressing the function G from the first equation
Ry = W/VA, Ry =V2G/VA, and substituting into the second, we get

A3 — 2aw + 2iryw — 2riw?

W// + L,W’—I— (w2 _

r—1a (7“—7“1)(7"1—"”2)
A% — 2aw + 2irow — 27“%@02 riw + T%WQ irow + T%UJQ
. - ﬁvza
(r—ro)(ry —r2) (r—mrp) (r—mrg)

The solution of (5.7) is searched in the form W =

(r—lia) (r—r)X(r— 7“2)56_77"10, we get

2x 2¢ )w' " (A% — 2x€ — 27 (re — 1) + 2irw — 2riw? — 2aw
(r—r1)(re —r1)

7A§ — 2x€ + 287 (rg — 1) + 2iraw — 2rjw? — Qaw)w _0

(’l“ — 7“2) (7‘2 — 1”1)

w//_(27_ _
r—r r—7T9
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at v = tiw; x = irw, 1 —irw; { = irow, 1 — irqw. Taking into account the condition (3.18), the

equation (5.8) reads

w”_<2f}/_ _

r—mnr r—rTo

2 26 )w’ N < AR 2xE 4 2xy (g — 1) — 2imw + 2rfw® — 20w

(r—ry)(re—r)

+_A%+2X§—2§7(7"2—7"1)—2i7“2w+2r§w2—2aw) 0
w = 0.
(r—rq)(re —ry)

Comparing the equations (5.4) and (5.9), one can
see that they are complex conjugated ones, so
we have w = f* (a symbol * denotes complex
conjugation). The function Rj is determined by
the expression

(r+ia)

By = (r —ia)

R

Algebraic equation to find the function Ry is
derived from equations (3.14-3.15):

i\/§p2w

A2R3 — MR+ \/Z

Ry = 0.

6. Behavior near horizon

To estimate the behavior of the functions
R1, Ro in the vicinity of the outer horizon, one
should consider the equations (5.2), (5.3) at r —
ro. Preserving only the largest terms in these
equations, one gets

o 2 o row(—1 + Tow)
(r —rg)?

r—1ia

F =0,

o 2 o 1+ 4r3w?
4(r —rq9)?

r—ia

G =0.

So, the solutions of the last equations in the
vicinity of the horizon have the form

F o (r =)™, (r—rg) 't

G ~ (’I” o TQ)%firzw’ (T o r2)5+ir2w'

(

Then, for the original functions Ry = F /\/Z,
Ry = \/56’/\/5, the solutions represent the

incident and reflected waves

Ry~ (r— T2)1/2+ir2w7 (r— T2)—1/2—ir2w;

Ry ~ (r — 1), (r — 1g) 2%,

According the procedure proposed in [25-27|, the
scattering probability

\Ifout(l' > LL'Q) 2

\Ifout(ﬂi' < ZL‘2) (61)

-

is the probability of creating an outgoing
particle outside the outer horizon and an ingoing
antiparticle of negative energy inside the horizon.
Then substituting the outgoing wave solutions
into the formula (6.1), the probability of particle-
antiparticle pair creating is

[ = e 4mwrz, (6.2)

the mean number N, of photons emitted with
a given frequency is determined by relation
(ignoring the backscattering effect):

- T 1

N, = [T — olmors - (6.3)
We get the Bose-Einstein distribution
- 1
1 1
T = (6.4)

4mry 27(rg + \/m)

where T determines the Hawking temperature.
This expression for Hawking temperature
coincides with the result obtained previously for
the fermions production on the horizon.
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7. Effective constitutive relations
in NUT space

It is known that the Riemann geometry
provides us with possibility to simulate special
types of material media |24, 28|. For an arbitrary
metric tensor g,s one can obtain the effective
constitutive relations due to the metric structure
of the spacetime

—9(z)
H(z) = €0T@)9a’)(x)gﬂ"<w)Fw(m)7
(7.1)
where
0  Fo1  Foo Fos
[ —Fypn 0  Fio Fi3
f —Fypo —F12 0 Fo3
—Fp3 —Fi3 —Fy3 0
0 —FEy —Ey —E5
| E1 0 —B3 B
" | Ey Bs 0 —-Bi|’
Es —By B 0
0 HOl H02 HOS
B _H()l 0 H12 H13
H™ = _ g2 _pl2 0 H23
H03 H13 H23 0
0 —-D' —-D? -D3
_|D* 0 -H® H?
~|D? H*> 0 -—H!
D} —H* H' 0 |
-1 ﬁ—i(l—r;ﬂigtaﬁg)
ik _ 1
e = 0 -1-g
0
al
‘ 0 2 (r24-a?) cos? g
:ﬁkzz a 0 0 ,

r2(r2+a?) cos? g

0 0 0

Substituting expressions for Fi,3 and H 8 into the
equation (7.1), we get the formulae for effective
constitutive relations

D' = 80€ikEk + EocaikBk,

H' = eocf* By + g (™)™ By,

where the matrixes %, o g* (u=1)* are
defined be the metric tensor as follows

( 00 gl — Ok;)
b

ml
ang g el]kv

Wﬁ

€

I
N
ﬁ
Qe

atk — v —9g Bik

mg g ejku OJ

\/79 Ejzlg

here G is the determinant of the Minkowski metric
in the spherical coordinates. For relativistic
non-diagonal metrics these effective constitutive
relations entangle the vectors of electric and
magnetic fields.

Substituting the explicit expressions for
metric tensor components, we get the matrixes
which determine the constitutive relations
generated by NUT-spacetime:

0 0
1 290
(Z - (r?7+a2) tan 5) 0 ’
0 _ 1 _ a?
Asin?¢  Ar2sin?§
—1yik
()" = 0 2(r21a2)sin2 6 2
0 0 202 a%)
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Let us compare the found expressions with those

for Minkowski metric

-1 0 0
elb=10 -4 0 ,
1
0 0 T r2sin20
1
: 0 0
rdsin? 0 .
(ma)® = 0 i 0|, ol =8f=0
0 0 4

One can see that in the limiting case for a
0, A r2, the obtained matrixes for NUT-
spacetime turn to the corresponding formulas for
Minkowski space.

In Minkowski space, the coefficients in
the matrix are determined the transition from
Cartesian coordinates to spherical ones. Indeed,

from the formula F*8 = GO‘VGB"FW, we get

0 —E! —E? —E3 0 R B

E' 0 -B B? By 0 — 5y 71231529

E? B’ 0 —B! % % 0 _r4si;29

E3 —-B? B' 0 By ___Bo By 0
r2sin? 6 r2sin?26 r4sin?0

Then the effective constitutive relations generated by the NUT metric can be considered in Cartesian

coordinates
, . o,
D' = ggeip E¥ + eocay B¥,  H' = coeBiu. BX + pg (w1 BY,
where
a® aAsin? £
1+ % (1 — T24+Aaz tan? g) 0 0 0 _4(§+a2)2 0
2 226
Eik = 0 T +a? (% ~ 7 ey tan® g) 0 , ik = 4?:211;2)2 0 0l
0 0 2y a2 0 0 0
ATA
a 7‘2
. e g U » e 00
Bik = T (P ta?) cos? § 0 0 (™ )ik = 0 2 +a?) 0
0 0 0 0 0 =t

Let us consider behavior of the constitutive
relations near singular points: outer horizon and
at infinity. For r — oo, the matrixes behave as

100
ik =(u )i=[010],
001
0  —4asin?% 0
= 4asiHQg 0 01,
0 0 0
Bir = 0.

One can see that the matrixes € for dielectric
and (u~1)% for magnetic permittivity turn to
ordinary expressions for Minkowski space and are
unity matrixes for Cartesian coordinates.

The entangling matrixes «o'*, B vanish
identically at infinity everywhere except Misner
string § = +x. In the vicinity of horizon we have

A=(r—mr)(r—ro) =0, r— 1,

and the matrixes can be rewritten approximately:
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1+ % 0 0
2 2 2
. r5+a
ik = e Y ’
0 0 r3+a?
(ra—r1)(r—r2)
00 0 00
_ (7’2-‘1-(12) dar? sin? 6
(W Maw=1{ "0 00| k= i 00,
0 00 0 00
a
0 (r2+a?) cos? g 0
Bik =10 0 0
0 0 0

For small values of NUT parameter (a < 72), one
has r1 — 0, r2 — ry, where r; is the radius of
horizon of Schwarzschild mass. Then we have

1 0 0 100
en=1]0 7= 0 |, (whax=[000],
0 0 == 000
0 00 0 rgcgsgg 0
G = 4asin2% 00|, Bixk=10 0 0
0 00 0 0 0

The found result means that the presence of
the NUT charge leads to arising non-vanishing

component of the matrix which entangles the
electric and magnetic fields. We can assume that
this result correlates with some rotation effects
related to the NUT metric.

8. Conclusion

Thus, we have studied the Maxwell
equations in the NUT spacetime, by applying
the conventional tetrad method. The variables
have been separated and the exact solutions of
the equations for angular and radial components
have been found in terms of hypergeometric
and confluent Heun functions, respectively. The
quantization rule of separation constant has
been obtained from the analysis of angular
solutions. The behavior of the radial components
with structure of outgoing and ingoing waves
has been studied near the outer horizon, and
the expression of the temperature of Hawking
radiation of photons has been shown to coincide
with that for the fermions production on the
outer horizon. The effective constitutive relations
which are generated by metric structure of NUT
spacetime have been found. It has been shown
that the existence of the NUT charge leads
to entanglement of electric and magnetic field
components in the constitutive relations.
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