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Abstract: Hybrid organic–inorganic perovskites have emerged as promising materials for
next-generation optoelectronic devices owing to their tunable properties and low-cost fabrica-
tion. We report the synthesis of 3D hybrid perovskites with monoethanolammonium cations.
Specifically, we investigated the optoelectronic properties and morphological characteristics
of polycrystalline films of hybrid perovskites MAxMEA1−xPbI3, which contain methylam-
monium (MA) and monoethanolammonium (MEA) cations. MAxMEA1−xPbI3 crystallizes
in a tetragonal perovskite structure. The substitution of methylammonium cations with mo-
noethanolammonium ions led to an increase in the lattice parameters and the bandgap energy.
Energy level diagrams of the synthesized samples were also constructed. The bandgap of
MA0.5MEA0.5PbI3 makes it a promising material for use in tandem solar cells. These poly-
crystalline films, namely MA0.5MEA0.5PbI3 and MA0.25MEA0.75PbI3 were fabricated using a
one-step spin-coating method without an antisolvent. These films exhibit a uniform surface
morphology under the specified deposition parameters. Within the scope of this study, no
evidence of dendritic structures or pinhole-type defects were observed. All synthesized sam-
ples demonstrated photocurrent generation under visible light illumination. Moreover, using
monoethanolammonium cations reduced the hysteresis of the I–V characteristics, indicating
improved device stability.

Keywords: perovskite; organic–inorganic; monoethanolammonium; cations; solar cell;
crystal structure; UV–vis spectroscopy; morphology; hysteresis

1. Introduction
The performance of hybrid organic–inorganic perovskite solar cells has led to a recent

surge in interest in perovskite materials [1,2]. Inorganic and fully organic metal-free halogen
perovskites have been the subject of more research due to the growing interest in hybrid
perovskite materials [3–8]. Bulk (3D) hybrid perovskite materials (polycrystalline layers or
single crystals), two-dimensional (2D), one-dimensional (1D), and zero-dimensional (0D)
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perovskite materials are thought to be very appealing for optoelectronic applications and
have a wide range of uses [9–17].

A bandgap that is ideal for absorbing sunlight, a direct bandgap structure, a high
absorption coefficient, high mobility, and a long average free path of the charge carriers are
some of the special qualities that make hybrid perovskite solar cells effective [18,19]. By
altering the composition of the hybrid perovskites, the bandgap can be adjusted, thereby
controlling the absorption spectrum of the tandem solar cell. This is crucial for the growth
of the silicon solar cell market, which may employ hybrid perovskites with a wider
bandgap [20,21]. It is notable that a polycrystalline hybrid perovskite film can be pro-
duced from solution crystallized at low temperatures (about 100 ◦C). Perovskite films
can be made using a variety of techniques, including spin coating, screen printing, inkjet,
spraying, and doctor blades [2,22,23]. These application techniques have the advantage of
being compatible with silicon solar cells and having low mass production costs. Hybrid
perovskites can be utilized to make X-ray detectors, optically excited memristors, and
light-emitting devices [24–28].

Currently, a wide range of compositions of polycrystalline films based on APbX3

has been proposed for the creation of photovoltaic structures, usually with a variation
in the proportions of formamidinium (FA+, CH(NH2)2

+) and methylammonium (MA+,
CH3NH3

+) cations and I−, Br−, and Cl− anions, as well as the introduction of inorganic
cations or partial replacement of lead [29–32]. The search for complex compositions of
hybrid perovskites aims to improve stability while ensuring optimal values of the bandgap
and solar cell efficiency [2]. Molecular passivation and the formation of films from 3D/2D
perovskites can be used to reduce the degradation phenomena of perovskite photovoltaic
structures [33–36]. For this purpose, as a rule, long-chain amines are used, which interact
with uncoordinated Pb ions with terminal -NH2 groups and passivate defects at the periph-
ery of grains. Also, some short-chain amines can act as organic linkers between inorganic
octahedral frameworks in quasi-2D perovskites [34]. Nowadays, 2D perovskite organic–
inorganic perovskite materials are divided into three phase types: Ruddlesden–Popper
(RP) phase, Dion–Jacobson (DJ) phase, and alternating cations in interlayer space (ACI)
phases and corresponding quasi-2D phases (layered perovskites) with general formulas
A′

2An−1BnX3n+1 (for RP), A′An−1BnX3n+1 (for DJ) и A′AnBnX3n+1 (for ACI), where n is
the number of octahedral layers, A′ is spacer cations [9,37]. The chemical composition of
3D perovskites is typically designed so that the Goldschmidt tolerance factor falls within
the range of 0.8 to 1.0. [37]. When the number of layers (n) is very large, quasi-2D lay-
ered perovskites resemble the 3D perovskite phase, typically with n much greater than 4.
Adding cations of different sizes can stabilize the perovskite crystal structure and balance
the Goldschmidt tolerance coefficient. A slight distortion of the lattice will occur when
small amounts of larger cations are added [38]. Small amounts of certain cations that are
utilized to create 2D and quasi-2D perovskites may also be added to the 3D perovskite
crystal lattice [38–40].

Monoethanolammonium cation was used in [41] in 2004 to fabricate 2D perovskite
(HO(CH2)2NH3)2PbX4, where (X = I, Br). A solar cell incorporating a 3D/2D heterojunction,
composed of (HOOC(CH2)4NH3)2PbI4/CH3NH3PbI3 was fabricated. This device demon-
strated exceptional operational stability under working conditions [42]. High permittivity
(37.7) is another feature of the 2D perovskite (HO(CH2)2NH3)2PbX4. This is because the
hydroxyl group and short carbon chain induce charge dipoles that greatly lower the ex-
citon binding energy and increase the effectiveness of charge separation [43]. In [44], 3D
hybrid perovskites based on monoethanolammonium and methylammonium cations were
synthesized, characterized by a deficiency of lead and iodine compared to the MAPbI3

compound. Despite this, these materials retain a 3D architecture. The authors propose
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that such compounds can be regarded as an intermediate between 2D and 3D perovskites,
which opens new possibilities for controlling their structural and functional properties.
Moreover, the relatively high boiling point of ethanolamine (monoethanolamine) may
contribute to its potential to lessen atmospheric perovskite degradation.

In this work, we investigated the effect of changing the proportion of monoethanolam-
monium cation MEA+ (HOCH2CH2NH3+) in 3D hybrid perovskite MAxMEA1-xPbI3. The
influence of cation composition on the crystal lattice, optical properties, and energy level
alignment was systematically examined. Additionally, changes in current–voltage charac-
teristics and film morphology were analyzed. The polycrystalline layers were fabricated
via one-step spin-coating from a DMF:DMSO (4:1) solution. In the composition range
under investigation (up to a proportion of MEA = 0.75 with a proportion of MA = 0.25), the
MAxMEA1−xPbI3 hybrid perovskites were found to be a stable perovskite phase. As the
MEA fraction increases, both crystal lattice parameters and the bandgap increase with the
shape changes of the absorption spectra. Our results demonstrate good agreement with
the data presented in the study by A. Leblanc et al. [44]. In addition, perovskite phases are
not formed by MEAPbI3. According to XRD and UV–VIS spectroscopy, MEAPbI3 is most
likely in the δ-phase. Tuning the bandgap of MAxMEA1−xPbI3 makes it suitable for use in
tandem solar cells. Comparing the current–voltage characteristics with those of MAPbI3,
the hysteresis is reduced as the MEA fraction increases.

2. Materials and Methods
Monoethanolammonium iodide (MEAI, HOCH2CH2NH3I) was synthesized through

the neutralization of monoethanolamine (HOCH2CH2NH2, JSC LenReactiv, St. Peters-
burg, Russia) with hydroiodic acid (HI, JSC LenReactiv, St. Petersburg, Russia) until a
pH = 6.5 was attained. After that, the solution was evaporated at 90 ◦C in a water bath,
and the precipitate that emerged was vacuum-filtered. MEAI and lead iodide (PbI2, Xi’an
Yuri Solar Co., Ltd., Xi’an, China) were separately dissolved in dimethylformamide (DMF,
C3H7NO, JSC LenReactiv, St. Petersburg, Russia). The two solutions were then mixed
at a 1:1 molar ratio while maintaining a constant temperature of 60 ◦C throughout the
process. Similarly, methylammonium iodide (MAI, CH3NH3I, Xi’an Yuri Solar Co., Ltd.,
Xi’an, China) and PbI2 were dissolved in DMF and combined in a 1:1 molar ratio at 60 ◦C
to synthesize MAPbI3 (CH3-NH3PbI3).

By mixing the resultant MAI-PbI2 and MEAI-PbI2 solutions in 1:1, 3:1, and 1:3 ra-
tios, precursor solutions were prepared for the synthesis of organic–inorganic perovskites
with the general formula MAxMEA1−xPbI3 (MA0.75MEA0.25PbI3, MA0.5MEA0.5PbI3, and
MA0.25MEA0.75PbI3).

These solutions were drop-casted onto glass substrates and subsequently annealed
at 110–120 ◦C in an argon-inert atmosphere to facilitate crystallization and film formation.
The resulting perovskite samples were then subjected to X-ray diffraction (XRD) analysis
for structural characterization.

The thin layers of MAxMEA1−xPbI3 were deposited using a spin-coating technique
with a solution of DMF and dimethyl sulfoxide (DMSO, C2H6OS, JSC LenReactiv, St.
Petersburg, Russia) in a 4:1 volume ratio. DMSO increases the solubility limit of PbI2,
and this DMF–DMSO ratio is commonly employed to facilitate the subsequent successful
use of an antisolvent in the one-step spin-coating method for forming MAPbI3 films [45].
For MAPbI3 and MA0.75MEA0.25PbI3 films, an antisolvent was also utilized in the one-
step spin-coating process. Ethyl acetate (EA, C4H8O2), which is less toxic compared to
other suitable substances, was employed as the antisolvent [46]. The concentration of
MAxMEA1−xPbI3 in the DMF and DMSO solution was approximately 400 mg/mL. The
spin-coating process involved a centrifugation speed of 4000 rpm for 30 s, preceded by
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a preliminary centrifugation step at 1000 rpm for 10 s. When using the antisolvent, EA
was applied during the centrifugation step at 4000 rpm. After centrifugation, the films
were annealed for 10 min at 110 ◦C on a hotplate. Both the annealing and centrifugation
processes were carried out in an inert argon (Ar) atmosphere within a glovebox. The films
were deposited on glass substrates for spectrophotometric and morphological studies. For
the evaluation of current–voltage characteristics (IVs), perovskite films were spin-coated
onto ceramic substrates equipped with interdigitated gold electrodes (Sensor Platform,
Tesla Blatna, a.s., Blatna, Czech Republic). The interdigitated electrodes consist of gold (Au)
strips with a spacing of 25 µm between adjacent strips and a strip width of 25 µm. The total
active area of the electrode array measures 4.2 × 4.2 mm.

For ultraviolet photoelectron spectroscopy (UPS), the MA0.75MEA0.25PbI2, MA0.5MEA0.5PbI2,

and MA0.25MEA0.75PbI2 samples were deposited on glass substrates with an ITO (Indium
Tin Oxide) layer similarly to centrifugation, but using solutions with a concentration
of ~40 mg/mL.

Photoelectron spectroscopy of the samples was carried out under ultrahigh vacuum
conditions (~10−7 Pa) on an Escalab 250Xi complex photoelectron spectrometer (Thermo
Fisher Scientific Inc., Waltham, MA, USA) with a photon excitation energy of hν(He I)
≈ 21.2 eV for UPS and of AlKα = 1486 eV for X-ray photoelectron spectroscopy (XPS).
XPS spectra were processed using CasaXPS Version 2.3.24 software. Carbon-containing
and oxygen-containing surface adsorbates might drastically distort the relative UPS peak
positions as well as blur the whole UPS spectrum. Oxygen adatoms might be involved in
the formation of metal oxide components and carbonyl functional groups [47]. To avoid
such distortions, we used Ar+ sputtering accelerated by 500 V voltage for 20–30 s as we
described in more detail in our previous work [48,49].

XRD measurements of the samples were carried out using a Bruker D2 PHASER X-ray
diffractometer (Bruker, Billerica, MA, USA) in a 2θ angle range of 10 to 45◦ with a scanning
rate of 1◦ per minute using CuKα radiation.

Absorption spectra were acquired using a SPECS SSP 715 UV–Vis spectrophotometer
(Spectroscopic Systems, Moscow, Russia). The topography of the organic–inorganic perovskite
films was investigated using an atomic force microscope (AFM) NTEGRA (NT-MDT, Moscow,
Russia) and a POLAM-312 polarization microscope (LOMO, St. Petersburg, Russia).

IVs were measured using a Keithley 6487 picoammeter (Keithley Instruments, Solon,
OH, USA). The measurements were conducted in the dark, with the applied voltage swept
across a range of −2.5 to 2.5 V. To evaluate the photoresponse of the perovskite films, a green
LED light source with a peak wavelength of approximately 535 nm and an irradiance of
100 W/m2 was employed. The films, deposited on interdigitated electrodes, were exposed
to this light source during the photoresponse measurements.

3. Results and Discussion
Figure 1a displays the XRD patterns for the perovskites MA0.25MEA0.75PbI3,

MA0.5MEA0.75PbI3, MA0.75MEA0.25PbI3, and MAPbI3. The obtained samples confirmed the
tetragonal structure of the obtained perovskites with minor peaks of planes (200), (202),
and (312), and intense peaks assigned to planes (110), (220), (310), (224), and (330) [44,50].
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As the MEA fraction increases, XRD peaks shift to lower 2Θ angles, indicating ex-
panded interplanar spacing. This correlates with a blue shift in the absorption edge and an
increase in bandgap energy. This trend is clearly demonstrated in Figure 1b, which focuses
on the (220) plane, the most intense peak in the samples. The systematic peak shift to lower
2Θ values with higher MEA concentration confirms the lattice expansion. These results
suggest that the MAxMEA1−xPbI3 perovskites remain structurally stable across the studied
composition range.

The data obtained in our study are in good agreement with the results presented in the
work by Leblanc et al. [44]. In the aforementioned study, the crystal structure of the hybrid
perovskite was thoroughly investigated using MA+ and MEA+ cations (in combination
with Pb2+ and I−), confirming the formation of a three-dimensional (3D) hybrid perovskite
with a tetragonal structure. It was demonstrated that an increase in the proportion of
the MEA+ cation leads to a decrease in the 2Θ angles for the main peaks, indicating an
expansion of interplanar distances. Notably, in our independent study, the goal was
not to intentionally reduce the proportion of Pb2+ and I− to obtain compounds of the
composition (MA)1−2.48x(MEA)3.48x[Pb1−xI3−x]; however, the obtained results demonstrate
good consistency with the data from [44].

To calculate the effective tolerance factor (teff) for compositions of the type AxB1−xX3

(in our case, MAxMEA1−xPbI3), a previously proposed approach based on the calculation
of the effective cation size (reff) can be used [51]. Specifically, the calculation of teff for
the perovskites MAPbI3, MA0.75MEA0.25PbI3, MA0.5MEA0.5PbI3, MA0.25MEA0.75PbI3, and
MEAPbI3 was performed using the following formulas:

reff = x·rMA+ + (1 − x)·rMEA+ (1)

teff =
reff + rI−√

2·
(
rPb2+ + rI−

) (2)

The ionic radii were assumed to be 0.132 nm for Pb2+, 0.206 nm for I−, 0.18 nm for
MA+, and 0.24 nm for MEA+ [52,53]. The calculated values of the effective tolerance factor
(teff) were 0.81, 0.84, 0.87, 0.90, and 0.93 for the perovskites MAPbI3, MA0.75MEA0.25PbI3,
MA0.5MEA0.5PbI3, MA0.25MEA0.75PbI3, and MEAPbI3, respectively. This approach demon-
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strates that the size of the MEA+ cation may be suitable for the formation of a perovskite
crystal structure, providing an effective tolerance factor within the range of 0.8 to 1. How-
ever, the use of MEA+ may lead to the formation of intermolecular hydrogen bonds due
to interactions of the NH3+···OH type [41]. In our view, the likelihood of hydrogen bond
formation between cations such as MEA+ and MA+, as well as between MEA+ and MEA+

cations, may contribute to the formation of a 3D hybrid perovskite with channels in the
crystal structure (deficiency of Pb2+ and I−), which is consistent with the results described
by Leblanc et al. [44].

Figure 2a displays the perovskite film’s absorption spectra. The absorption edge of
MAxMEA1−xPbI3 shifts towards shorter wavelengths (blue shift) as the MEA fraction
increases, indicating an increase in the bandgap energy (Figure 2b).
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The optical bandgap Eg was determined in the Tauc coordinates (A·hν)1/r from hν
by extrapolating the linear section to the energy coordinate, where r is determined by the
type of dependence of the absorption coefficient of the semiconductor on the irradiation
energy greater than the bandgap. For direct-gap semiconductors, the absorption coefficient
is described by the root dependence (r = 1/2) [54]. The absorption spectrum remains
nearly unchanged (Figure 2a), and the bandgap energy does not significantly increase
even when MEA cations constitute up to 25% of the total cation concentration, as shown
by UV–vis spectra in Tauc plot in Figure 2b. Therefore, incorporating MEA cations in
MAxMEA1−xPbI3 up to x = 0.25 does not significantly reduce the material’s absorption of
solar radiation. For MA0.25MEA0.75PbI3, a notable increase in the bandgap Eg = 1.94 eV
was observed. These data are consistent with the increase in the interplanar distances
in the MAxMEA1−xPbI3 crystal lattices. The shift of peaks in MA0.75MEA0.25PbI3 and
MA0.5MEA0.5PbI3 to the region of smaller 2Θ angles is less noticeable than the shift of
peaks in MA0.25MEA0.75PbI3, as illustrated in Figure 1b. The interplanar spacing of the
crystal lattice and the bandgap energy (Eg) exhibit a nonlinear dependence on the MEA
cation fraction in MAxMEA1−xPbI3. A similar sharp increase in the optical bandgap,
observed for the perovskite MA0.25MEA0.75PbI3 (Eg ≈ 1.94 eV), was also recorded for the
composition (MEA)0.73(MA)0.47[Pb0.80I2.80] (Eg ≈ 1.84 eV), which is structurally the closest.
In this case, Pb2+ and I− ions are absent in the channels of the crystal lattice, and the
increase in the bandgap in the proposed model of the crystal structure is explained by
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the disruption of connectivity in the PbI6 octahedra along the crystallographic directions
2a + b and a − 2b [44]. This model of the crystal structure is of significant interest and
can be considered a promising approach to explaining the observed phenomena. Overall,
our results, demonstrating an increase in the bandgap with the expansion of interplanar
distances in the 3D hybrid perovskite MAxMEA1−xPbI3, are consistent with previously
obtained data and confirm their reliability.

Similar results regarding the formation of a 3D-vacant perovskite structure with a
tetragonal crystal lattice were observed in the MEAxFA1−xSnI3 system for x = 0.6–1.0. For
x = 0–0.2, an orthorhombic crystal structure was observed, while for x = 0.2–0.4, a rhombo-
hedral structure was identified [55]. It can be hypothesized that in the MAxMEA1−xPbI3

system, there is a competition between the incorporation of the MEA+ cation into the crystal
lattice and the formation of channels within the structure, depending on the proportion of
MEA+ as well as the ratios of Pb2+ and I−. The significant increase in the bandgap from
Eg ≈ 1.7 eV for MA0.5MEA0.5PbI3 to Eg ≈ 1.94 eV for MA0.25MEA0.75PbI3 may also be
attributed to the formation of channels induced by the high proportion of MEA+. These
hypotheses require further comprehensive studies, including both theoretical calculations
and direct observation of channels in the crystal structure, which is beyond the scope of
this work.

The value of the bandgap Eg ≈ 1.7 eV for MA0.5MEA0.5PbI3 is in the range of preferred
Eg values for the perovskite film in the top photovoltaic structure in silicon-based tandem
solar cells [56,57]. The bandgap energy of MAxMEA1−xPbI3 can be tuned from approxi-
mately 1.6 eV (for x = 1, pure MAPbI3) to 1.94 eV (for x = 0.25, MA0.25MEA0.75PbI3), making
it possible to optimize the material for specific applications, such as tandem solar cells.

Analysis of the absorption spectra indicates a notable shift in the absorption edge of
MEAPbI3 relative to the MAxMEA1−xPbI3 samples, with an optical bandgap of ~2.77 eV.
This value exceeds the bandgap energies of both the two-dimensional perovskite MEA2PbI4

and PbI2 [41,58]. As depicted in Figure 3, the MEAPbI3 film displayed a distinct yellow
coloration. Additionally, the XRD patterns (Figure 4) suggest the formation of a non-
perovskite phase, indicating that MEAPbI3 does not crystallize into the conventional
perovskite structure under these conditions.
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The CsPbI3 samples without additives exhibited similar behavior, forming an or-
thorhombic (δ) phase with identical XRD peak positions and no perovskite crystal struc-
ture [59]. Under certain conditions, hybrid perovskites incorporating common cations
such as MA and FA can also adopt the δ-phase [60,61]. Thus, despite the fact that the
effective tolerance factor (teff) for the MEAPbI3 compound is less than 1, the increased
bandgap compared to PbI2, along with the XRD data, suggests the formation of the δ-phase
in MEAPbI3. However, the primary conclusion of this study is that MEAPbI3 adopts a
non-perovskite structure under the given experimental conditions.
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For MA0.75MEA0.25PbI3, MA0.5MEA0.5PbI3, and MA0.25MEA0.75PbI3 organic–inorganic
perovskites, the cutoff values for the high binding energy (Ecutoff) and the initial bind-
ing energy (Eonset) were determined (Figure 5). With the irradiation energy of 21.21 eV
subtracted from Ecutoff, the work functions (Fermi level EF relative to vacuum) for the
perovskites were A(MA0.75MEA0.25PbI3) = 4.33 eV, A(MA0.5MEA0.5PbI3) = 4.40 eV, and
A(MA0.25MEA0.75PbI3) = 4.51 eV, respectively. To determine the value of the valence band
maximum (VBM) relative to vacuum, the value of the initial binding energy (Eonset) was
added to the work function A, that is, the following formula was used:

−VBM = hν − (Ecutoff − Eonset). (3)
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The VBM calculated values were 5.87 eV, 5.96 eV, and 6.07 eV for MA0.75MEA0.25PbI3,

MA0.5MEA0.5PbI3, and MA0.25MEA0.75PbI3, respectively.
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The EF values from UPS and the optical bandgap Eg values were used to construct the
energy band diagram for MA0.75MEA0.25PbI3, MA0.5MEA0.5PbI3, and MA0.25MEA0.75PbI3

(Figure 6).
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brid perovskites (CBM—conduction band minimum, VBM—valence band maximum, EF—Fermi level).

The VBM and EF values for MA0.75MEA0.25PbI3 are very close to MAPbI3 [62,63].
This similarity may be attributed to the insignificant influence of the small fraction of
MEA cations on the lattice structure, band structure, and crystal lattice parameters. The
Fermi level EF is also influenced by deviations in the perovskite composition from its
stoichiometric ratio (i.e., the atomic ratio N:Pb:I). In the case of MA0.75MEA0.25PbI3, our
measurements revealed a significant excess of Pb atoms relative to N and a slight deficiency
of I atoms compared to Pb. Such deviations can induce n-type self-doping, likely due to
the formation of electron-donating defects associated with Pb excess and I vacancies [64]. It
is worth noting that the samples were briefly exposed to air prior to XPS analysis, which
may have contributed to the partial evaporation of methylamine. For MA0.5MEA0.5PbI3, an
excess of Pb was also detected, though it was less pronounced than in MA0.75MEA0.25PbI3.
In contrast, the atomic ratio of N:Pb:I in MA0.25MEA0.75PbI3 was found to be closest to the
stoichiometric ratio of 1:1:3. On the survey X-ray photoelectron spectroscopy (XPS) spectra
presented in Figure 7, the most intense peaks corresponding to the core levels of I3d, Pb4f,
N1s, C1s, and O1s are indicated. Additionally, less intense peaks are marked, with their
identification carried out in accordance with the literature data [65–67].

It should also be noted that the UPS data of perovskite films are highly sensitive to
experimental conditions, particularly the choice of substrate and film thickness. These fac-
tors can induce Fermi-level pinning, which may significantly affect the measured electronic
properties [68]. The peaks of the In3d core level are associated with the ITO material at the
grain boundaries of the thin films. Accordingly, the peak of the O1s core level is attributed
not only to the presence of the OH group in the MEA+ cation but also to the oxygen of ITO,
as well as the possible presence of adsorbed OH groups on the surface of the samples.

The morphology of the films formed on the glass substrate is significantly influenced
by the MEAI content in the solution, as demonstrated by the optical microscopy results
(Figure 8). Therefore, it is anticipated that the MEAI concentration will have a significant
impact under other film acquisition conditions.
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When perovskite films are deposited without the use of an antisolvent, the MAPbI3 
film forms as elongated split crystalline (or dendritic structures) with a length of about 25 
µm (Figure 8a). The formation of MAPbI3 elongated split crystals may also be observed in 
DMF without the addition of DMSO [69,70]. During the crystallization of MAPbI3, homo-
geneous nucleation in the near-surface region of a thin film of the solution is associated 
with the formation of such structures in [69]. As shown in Figure 8, the addition of MEAI 
to the solution has a significant effect on the morphology of the film. The size of the elon-
gated split perovskite crystallites thus increases sharply to a characteristic size of 0.1–0.2 
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Figure 8. Optical microscopy images of MAxMEA1−xPbI3 films obtained by one-step centrifugation
from a solution of DMF and DMSO (1:4) on glass substrates: (a) MAPbI3; (b) MA0.75MEA0.25PbI3;
(c) MA0.5MEA0.5PbI3; (d) MA0.25MEA0.75PbI3.
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When perovskite films are deposited without the use of an antisolvent, the MAPbI3

film forms as elongated split crystalline (or dendritic structures) with a length of about
25 µm (Figure 8a). The formation of MAPbI3 elongated split crystals may also be observed
in DMF without the addition of DMSO [69,70]. During the crystallization of MAPbI3,
homogeneous nucleation in the near-surface region of a thin film of the solution is associated
with the formation of such structures in [69]. As shown in Figure 8, the addition of MEAI
to the solution has a significant effect on the morphology of the film. The size of the
elongated split perovskite crystallites thus increases sharply to a characteristic size of
0.1–0.2 mm at 25% MEAI and 75% MAI (Figure 8b). These structures’ extremely high
relief makes them unsuitable for the production of solar cells, but they might be useful for
building planar structures and for applications as X-ray or photodetectors. Increasing the
MEAI fraction further produces a continuous homogenous coating and layers devoid of
dendritic structures.

A significant difference in morphology was also observed by AFM of samples
MA0.5MEA0.5PbI3 and MA0.25MEA0.75PbI3 (Figure 9).
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The MA0.5MEA0.5PbI3 film has a hierarchical structure, with larger grains (0.5–1 µm)
made up of 50 nm nanocrystallites (Figure 9a,b). And the perovskite film MA0.25MEA0.75PbI3

is an even more uniform coating of 50 nm nanocrystallites (Figure 9c,d). Thus, a change in
the concentration of MEAI obviously significantly affects the crystallization processes of
perovskite films. The relief of the film MA0.5MEA0.5PbI3 is about 150 nm, while the relief
of MA0.25MEA0.75PbI3 is around 15 nm (for an approximate film thickness of 400–500 nm).
This leads to the fact that visually the surface of the film MA0.25MEA0.75PbI3 looks mirror-
like. Thus, MA0.5MEA0.5PbI3 and MA0.25MEA0.75PbI3 films using DMF and DMSO (4:1) as
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a solvent are formed as continuous homogeneous coatings, which can be used to create
perovskite solar cells without using an antisolvent.

When using an antisolvent (ethyl acetate), the MAPbI3 and MA0.75MEA0.25PbI3 films
also become continuous and homogeneous, as shown in Figure 10.
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for MA0.75MEA0.25PbI3: (c) optical microscopy and (d) AFM (topography). 
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changes in the absorption spectrum of the samples. This trend would also be observed 
under irradiation with a solar radiation simulator. Nevertheless, the hybrid perovskite 
MAxMEA1−xPbI3 retains the strong photoresponse typical of hybrid perovskites, alongside 
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Figure 10. Morphology of films obtained from solutions in DMF:DMSO (1:4) obtained by centrifuga-
tion with an antisolvent (EA) for MAPbI3: (a) optical microscopy and (b) AFM (topography); and for
MA0.75MEA0.25PbI3: (c) optical microscopy and (d) AFM (topography).

The MAPbI3 and MA0.75MEA0.25PbI3 films demonstrate comparable surface morphol-
ogy and are free of dendritic structures. Therefore, MA0.75MEA0.25PbI3 films deposited
using an antisolvent (EA) are suitable for perovskite solar cell fabrication. This is significant
because an MEA cation fraction x < 0.25 does not significantly alter the absorption spectrum,
as demonstrated in the previous results.

The conductivity decreases as the MEA fraction (x) rises, as can be seen from the
IV curves (Figure 11). Since the hybrid perovskite with a higher MEA proportion has a
larger bandgap, this is an expected outcome. For MA0.75MEA0.25PbI3 the conductivity de-
creases insignificantly from the conductivity of MAPbI3, but a decrease in the IV hysteresis
is observed.
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As the MEA fraction increases, the hysteresis (difference in current values under
forward and reverse voltage sweeps) decreases. The hysteresis in IV characteristics of
hybrid perovskites arises from ion migration [71,72]. Thus, the reduced IV hysteresis
in MAxMEA1−xPbI3 suggests improved stability in solar cells and photodetectors. IV
measurements under green LED irradiation (Figure 12) reveal that all MAxMEA1−xPbI3

polycrystalline layers demonstrate strong photoresponse.
A slight decrease in the photoresponse with increasing MEA can be attributed to

changes in the absorption spectrum of the samples. This trend would also be observed
under irradiation with a solar radiation simulator. Nevertheless, the hybrid perovskite
MAxMEA1−xPbI3 retains the strong photoresponse typical of hybrid perovskites, alongside
a significant reduction in the hysteresis of the I–V characteristics.
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4. Conclusions
In this study, hybrid 3D perovskites were synthesized using the monoethanolammo-

nium cation. The resulting hybrid perovskites, MAxMEA1−xPbI3 (with MEA fraction up to
1 − x = 0.75), crystallize in a tetragonal perovskite structure. It was found that the MEAPbI3

compound does not form a stable perovskite phase without the addition of other cations.
An increase in the MEA fraction leads to a shift in the XRD peaks towards smaller

2Θ angles, indicating an expansion of the lattice parameters. Concurrently, changes in
the bandgap and the shape of the absorption spectra were observed. For the hybrid
perovskites MA0.75MEA0.25PbI3, MA0.5MEA0.5PbI3, MA0.25MEA0.75PbI3, the energy levels
were determined. The experimental results suggest that these perovskites are compatible
with widely used electron and hole transport layers. Hybrid perovskites MA0.5MEA0.5PbI3

and MA0.25MEA0.75PbI3 (and similar compositions) are promising materials for use in
tandem solar cells. In particular, the bandgap of MA0.5MEA0.5PbI3 Eg ≈ 1.7 eV makes this
hybrid perovskite optimal in terms of Eg value for use in tandem solar cells with Si.

Perovskites MA0.5MEA0.5PbI3 and MA0.25MEA0.75PbI3 form homogeneous, contin-
uous polycrystalline layers when spin-coated from a DMF:DMSO (4:1) solution. Mo-
noethanolammonium iodide in solution significantly affects the morphology of polycrys-
talline perovskite layers. The hybrid perovskite MAxMEA1−xPbI3 exhibits minimal hys-
teresis in the I–V characteristics, which indicates reduced ion migration. This suggests
improved stability for devices such as solar cells, photodetectors, and X-ray detectors.

For a small fraction of MEA (x ≤ 0.25), changes in the crystal structure, absorption
spectrum, and bandgap are minimal. However, a reduction in I–V hysteresis is observed,
suggesting lower degradation in solar cells without compromising solar absorption. This
work provides foundational insights into the synthesis and properties of 3D hybrid per-
ovskites incorporating the monoethanolammonium cation.
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