

# In situ growth of Te-doped Cs<sub>2</sub>SnCl<sub>6</sub> scintillator composite films for X-ray imaging

Junnan Wang,

Zeyu Wang,

Nikolai V. Gaponenko<sup>1</sup>,

Jindou Shi,

Zheyuan Da,

Chen Zhang,

Yongqiang Ji,

Qing Yao,

Youlong Xu,

Minqiang Wang

2025

<sup>1</sup>Belarusian State University of Informatics and Radioelectronics, 6 P. Brovki Street, Minsk, 220013, Belarus.

**Keywords:** X-ray imaging technology, scintillation behaviour, advancement highlights.

**Abstract:** X-ray imaging technology has been integral to numerous aspects of people's lives since its inception. With the growing demand for advanced imaging technologies, lead-free metal halide perovskites have received significant attention due to their non-toxicity, stability, and excellent optical properties. This paper investigates the scintillation behaviour of a Te doped Cs<sub>2</sub>SnCl<sub>6</sub> scintillator composite film (CF) prepared through an innovative in situ growth strategy. This approach

achieves the direct growth of Cs<sub>2</sub>SnCl<sub>6</sub>:Te micro-crystals within polymethyl methacrylate (PMMA), mitigating the issues of optical property degradation and inhomogeneous distribution that are inevitable in a conventional two-step mixing method. By controllable optimization of the doping ratio of Te, the Cs<sub>2</sub>SnCl<sub>6</sub>:Te/PMMA CFs exhibited exceptional scintillation properties under X-ray irradiation, with the detection limit reaching up to 112 nGyairs<sup>-1</sup>. In X-ray imaging applications, the Cs<sub>2</sub>SnCl<sub>6</sub>:Te 15%/PMMA CF demonstrated advanced sensitivity, producing high-resolution structural images of the target object. This advancement highlights the promising potential of lead-free metal halide perovskites in the development and application of X-ray imaging technology.

**Publication source:**

In situ growth of Te-doped Cs<sub>2</sub>SnCl<sub>6</sub> scintillator composite films for X-ray imaging / Junnan Wang, Zeyu Wang, N. V. Gaponenko [et al.] // Journal of Materials Chemistry C. – 2025. – Vol. 13, Issue 6. – P. 3047–3053. – DOI : DOI <https://doi.org/10.1039/D4TC03906H>.