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ANALYTICAL PROPERTIES OF SOLUTIONS TO NONLINEAR
SYSTEMS OF DIFFERENTIAL EQUATIONS ASSOCIATED
WITH SOME RANDOM MATRIX TYPE MODELS

V. V. Tsegel'nik®

We obtain new results, as well as those complementing already known ones, concerning the construction
of solutions of systems of differential equations corresponding to certain models of random matrix type.
These solutions are expressed in ternes of solutions of Painlevé II-V equations. We also show that solutions
of syatems of differential equations associated with random matrix type models having Laguerre and Her-
mitian kernels satiafy the formal Painlevd test. We obtain new formulas relating solutions of Painleve 11T
and Painlevé V equations under certain conditions imposed on the parameters entering these equations.
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1. Imtroduction

COrver the past three decades, there has been strong interest in the study of certain classes of continu-
ous and discrete probabilistic models called rendom matrir type models. Sources of such models are quite
diverse: random matrix theory, developed by nuclear physicists about 50 years ago; directed percolation the-
ary; stochastic crystal growth; random tilings; emumerative combinatorics; and asymptotic representation
theory [1], [2].

Random matrix theory studies the following question |[2|. Consider a large matrix whose entries are
random variables with given distributions. What can we say about the distribution of & certain set of
eigenvalues or eigenvectors of this matrix? This question is central to problems in quantum and classical
statistical physics, number theory, etc.

COme of the most important characteristics of such models is the so-called zero-probability, ie., the
probability of finding no particles in a given interval or combination of intervals. Usnally, zero-probabilities
can be represented as Fredholm determinants det{1—=K)| 5, where K is some integral operator with a special-
form kernel, and .J 15 a set where there should be no particles. The only currently known method for
calculating such determinants is to characterize them as solutions of some ordinary differential equation or
system of partial differential equations. Usually, the kernel of the operator K has the form

K(z.y) = XD =20 /555) (11)
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with appropriate functions 1=, A, and B. Tn |3, the anthors aolve the problem of deriving a differential
eqnation for mero-probahbilities in the case of a sine kemnel, which is given hy (1.1] with 1z = 1/,
Alx) = sine, and T{x) = enax, and demeonstrate that the walne of the Fredholm determinant for the
lentilby operator mios Le sioe keroel restoicted o oan oterval of wacieble leoguls ¢ osn be caprossed
through solution of the ordinary differential equation

gy ? der e der
(frﬂq) =_a1(1‘.a -1 —r:r) [#m + (E) —I'.I':|.

Using successive transformations o(t) = £ = da(t) /dt,

2 1 -
. B T i a |r]. s ‘i'.l'_,l2
= _ — dan - T = .
pit] pnj(.; {'lm-.’l w) [( rITJ A | AT dr, = const

the function o{t) can be expressed in terms of solution of the Painlevé V equation

A Y — 1 duwht 1 i 1':12 ) ~w (a1 -

—= - . } ; ey — | 1 = o)
cf? Dipfae — 174 AP t ot f2 a t w—1

with parameter values o = = = 1/2, v = <2, and § = 2.

We note that the relation betwesn the Fredbolm determinant for intepral operators and solutions of
Painlevd conations was Ot established o (4], More esactly, the anthors of thet work showed that the
one-parametric family of solutions of the equation

:i_f = éﬁ—f é sinh g dag7 " sinh @,
(where o is a parameter) which is a particolar case of the Pajnlevé L equation
PO (fﬂ)"’ L odx 1, d

i At I:-;a}.:‘ +b) +edl = 3 ra)

[with parameters @, &, o, and d), can be expressed in terms of Fredholm determinants of s special tvpe.

dri

T was established in [3]9 that the metions (“resolvents™ [2]) associabol with Frodbolo deterimi-
nants and corresponding to a certaln tvpe of kernel satisty nonlinear seconcl-oeder second-degree differential
crnations, It is significant that these squations are of the Painlevé type and chat their solutions can
be expresged in terms of salutions of equations for polynomial Hamiltonians associated with imrecncible
Painlevé equations [10], [11].

We also note the existence of nonpolynomial (in particular, rational) Hamiltonians associated with the
Painlevé equations [12], [13].

The wim of vur puper s comstrocliog selutions or cortadn svstoms of ordinesey dillvreobiol cquelions
ssmocialod wilh raodem melrix Grpe models, s well as deciviog oew Jermoles relationg Wbe selotions of
Eqs. (P5) and (FP3).

2. Analysis of solutions of a system of two differential equations
generated by differential difference equations

2.1. The svstem of differential equations [14]

) 1 L Fii - . 1 w1l &
2'E|rJ = ll'--|r.|— - P 2 =1 = ] ;5-h h 5 2.1
152 (t BT, ) sl 1—,5',;( : .:s:)' (2.1)

where ¢ 15 a continmous independent variable, n is an arbitrary parameter associated (in the case of natural n)
with the equation [15]
(118, = H8 + Sao)(1 - 5820, [2.2)
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which is the discrete Pamlevé II equation, and with the discrete modified Korteveg—de Vries equation |16]

s,
at

The equations of avstem (2.7) can he obtain by aubtracting T, (2.3) from (2,27 and replacing n with n—1
in the obtained expression, as well as by adding Tns, (2.2) and [2.8).
Lo bhae potadion § =z, Syo) —w = wiz), and 5, — o — wz), svslan (2,1) beeomes

] 1 n—+1 . 1 o, . d -
:=m( - ﬂ+f.:): :A=m(;-f.—1.'), = 2y

For the unlnown functions «, «, aystem (2,41 18 equivalent to the espective cquations

I:H.-._|.1 ;':'."-r_-_1 ]I:J. SE_:I. I:E.Tfl

' 2 5
o b o Lo, ¥ 2, e
[ RS P —_ —da1 — =], 2.5
1w z ¢ 1wt ( ’ 12:3)
W = LIYE BN ARV du(l — 4% LR
S F = 1 — b Y

Thns, the followring theorems hold frue.

Theorem 1 (see [14]). Let v = v(z) be a splution of Eq. (2.5). Then the function u(z) defined by the
formula in (2.4) is a solution of Eq. (2.6).

Thevrvm 2. Lot w — wiz) be a solution of By, (26), Then (he fuoctien o]z) delioed By the formela
i (2.4) ks oosalution ol By, (2.5},

Equations (2.5, (2.6) can be meduced via the transformations

th 1 al
P ' P = i
V1—u W1—g

oy the eruations

e oy et -1 ¥

_ IPEINE N W=y ¥ ] (2.8
2nly J.Jy T x Ty T -

. dp—1 g 1 ig—17°

v dg o n+11° (g—1] L2l (299
Zylg — 1) o 2 Ty T Y

respectively. Fach of Taa (28], (29) is the fifth Painlevé equation [P3) with the respective parsmeter
vahws: @ =1, & = —Ilz.,"lg: =t A=0and =0, 7= —(n+ 1202, =2 §=1.

Ting transformations (2.7), system [2.4) can T redieed to the following:

2= B .
o= ﬁqﬂ — gl D =g 47 (2,10
W L ;
AT £ |
T Ty v ol (2.11)

Formulas [2.10], (2.77) with fived = and = establish a one-to-ome comrespondence hetwreen anlutioma of
Figs. (28], (2.9, T follows from relations (2,100, (2.11) that

-'1'rr;1|:.';—]] .

o O 5 2.12)

¥ [Bre+ 101 — g0 + rgf]*° (2.12)
Aryiy — 10

[rely — 1)+ Ty"-_'z'
Formula (2.13) (Backlund transformation for Eq. (P5) with @ = § = (), v #£ (1) has been obtained i [17].
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A generalization of formula (2.13) to the case of (P5) with av # 0, § = 0 is given in [18]. It is shown
in [19] that the system of differential equations (2.12), (2.13) is a Painlevé type system.

By a direct check, it is easy to verify that the following theorem is true.

Theorem 3. Let u = u(z), v = v{z) be solutions of system (2.4). Then the function

Y =

2l

(2.14)
is a solution of the equation
XYY = VYV —dn¥V? +d{n+ 1)V + 42V — 4z (2.15)

Equation (2.15) is the third Painlevé equation with parameters g = —dn, b=d(n 4 1), e = =d = 4.
Using the substitution ¥ — 1/Y, n = —n, it reduces to Eq. (P3) with parameters a = d(n = 1), b = —dn,
c=—-d=4d [ﬂﬂ]

Thus, formula (2.14) allows representing a solution of Eq. (2.15) as a nonlinear combination of solutions
of Eqgs. (2.8), (2.9). More precisely, the following theorem holds true.

Theorem 4. Let y = y(7v) (y{y = 1) £ 0) and g = g(7) (glg = 1) £ 0) be two arbitrary functions
satisfying system (2.10), (2.11) with fixed £, . Then they are solutions of Eq. (P5) with the respective sets
of parameters ({l, —n®/2,2,0) and (0, —(n + 1)*/2,2.0), and the squality

- ¥ e
Yiz)=eo =g’ =, (2.16)
holds true, where Y(z) is a solution of Eq. (2.15).
Eguations (2.5), (2.6) via the transformations
1 1
v= Tt , U= Pt (217)
r=1 p=1
reduce to the respective equations
-1 ,, ¢ n° 1Y fr=1)* y
= e — = | = =8rr+1), 218
2r{r =1) =8 (r r) z" rir+1), (2.18)

Spp-0F T 8

o Pl e ¥ [n+l]2(p_i)ﬁ
o ]

= - =8pi(p+1), (2.19)

i.e., to Eq. (P5) with the sets of parameters (n”/8, —n”/8,0, =8) and ((n + 1)*/8, —=(n + 1) /8,0, —8).
In this case, system (2.4) transforms to the system

16zp
TE ey AR - 1) -8 (220)
p=1 16 (2.21)

T 2zr 4m(r = 1) + 8z’

establishing a one-to-one correspondence (direct and inverse Bicklund transformations for Eq. (P5) with
§ £ 0 [21]) between the solutions of Eqs. (2.18), (2.19).
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Theorem 5. Let = riz) ([r=1)(r+1)2 0), p = p(z) ((p+ 1}{p — 1) £ () be arbitrary functions
satisfying system (2.20)), (2.21), and let

2zp = (n4+1)(p" = 1) — Bezp £ 0, zr' +alr® = 1) + Bepzr 20, g=eg=1
Then they are solutions of Eq. (P5) with the respective sets of parameters
(n®/8, —n?/8.0,-8),  ((n+1)*/8, —(n+1)"/8,0, -8),

and the following equality holds true:

where Y'(z) is a solution of Eq. (2.15).

Corollary 1. Under the conditions of Theorems 4 and 5, the following equality holds troe:

riz)+1 1 plz)+ 1Y 1—yiT) 2 _
Ggm) Gan) =TTy T (2.23)
HRemark 1. Formula [2.22) relating solutions of Egs. (P5) (§ £ 0) and (P3) (ed #£ 0) with other sets
of parameters was obtained in [22].

After substituting the values of v from (2.7) and (2.17) into system (2.4), it takes the form

) 62p%(z) .
¥ = e -+ DR - DE T (2:24)

2T y(rI-yl(r) +n(l —y(7) - ' (7)

Formmulas (2.24), (2.25) with fixed £ establish a one-to-one correspondence between solutions of Eq. (P5)
with the set of parameters (I, =n”/2,2,0)) and sclution of the same equation with the set of parameters
((n+1)5/2, =(n+1)°/2,0,=8).

Since Eq. (P5) is invariant under the transformation [23)

S:wiza f,7.40) 2w ][Z, =8, =, =71,§)
formula (2.24) can be written as

n(r) = (22p/(z) = (n + 1)(p*(z) = ]
[2zp(z) = (n + 1)(p?(z) = 1)]* - 642" . p* (=)’ (2.26)
p) £0, [29/(2) - (n+ 1)) = D - 642522 £0, #=r.

Formmla (2.26) is given in [24] for the case n” = —d.

Theorem 8 (see [25]). Fa = &*/8 =10, v = m?/2, § = 0 in Eq. (P5), then the substitution
w(z) = (i + 1)2dd) !, z = p?, results in Eq. (P5) for @, where & = —=§ = x2/32, 5= 0, = 2m™.
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2.2. We consider the system of differential equations equivalent to Eq. (P5) [23):

zu' = —p = (p+ v)u — ur — uly, (2.27)

' =822 =y (p 4 v)o + 262" 4 %ﬂ"!+u1:'é.. (2.28)
where v? = 20, p® = —24, and the function (=) is related to w(z) via the transformation

u=_—= (2.29)

We assume j 4+ v = 1, v = (1. Then, in view of (2.29), system (2.27), (2.28) in the unknowns v, w takes the
form

zu’ [w—l_}"!
TTw T w
Hr==zv') w4+l
w422 w-1

+w=1=w, (2.30)

(2.31)

We also assume § £ (), because Eq. (P5) with v = § = (I can be integrated in elementary functions [23].
System (2.30), (2.31) with 4 = 0, § = 8 is given in [2]. System (2.30), (2.31) for the function v
is equivalent to the equation

" v pr 1 v =24z AN I=dp+v, , .
= ¢ == o= 4 2627). 232
M7= A T B = e (2.32)
By substituting v = £zV, &% 4+ 24 = (), we ohtain the following equation for V:
Vv v R(L-24) R ,
V= - — = (VI 1) + —V(VE =1 2.33
T 2z ( )+ 4 ( ) (2:33)
The substitution [2]
1 1
Ve==|T== T4+ 1l=0 234
2( T)‘ v (2:34)
transforms Eq. (2.33) into the equation
™ T R(l=2u) . J( 3 ].)
T = —— (T +1)+ | T = = 235
T T)" (2.33)

ie., into Eq. (P3) with the set of parameters (&(1 = 2u)/4i. {1 — 2u)/4i,§/8, =4 /8), § £ (0. We note that
the mverse substitution

T=iV+ey1=V2, =1, {2.36)
leads to Eq. (2.33). In view of the introduced transformations, system (2.30), {2.31) takes the form

1 % plw =1  zuw
Fr——=—|w=1=-"—""—"=— 237

T &z (w w w j’ (2.37)
w41 4i ™
— e 258
w-—1 E T +1 ( )

According to (23], all sclutions of the squation
Rz, &) =zw' -1 —p]w2+{l—2p+?cz_}w+p:=ﬂ {2.39)
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ar F(z,=&) = 0 are also solutions of Eq. (P5) ff p + v = 1, v = 0. Here, if w(z) £ 0 is a solution of
Eq. (P5) with v + p = 1, 7 = 0, and also a solution of the equation Rz &) = 0 (R(z, =&) = 0), then, by
formula (2.57), it generates the solutions T =4 and T = —i of Eq. (2.35). We consider Eqs. (2.37), (2.38)
with

THz) 4120, w(z)220, R(zz) 20 (R{z,-&)£0). (2.40)
Thus, formulas (2.37), (2.38) establish the relation between solutions of Eq. (P5) with p4+ v =1, v* = 2,
p? = =25 =1, § # 0 and solutions of Eq. (2.35) under conditions {2.40).

Example 1. The solution w = =1 of Eq. (P5) witha = +%/2 = 1/8, = —p*/2 = -1/8 v =1,
& #£ () generates two solutions T = 1 and T = =1 of Eq. {2.35) with g = 1/2 using formula (2.37) with
v=p=1/2 Vice versa, Eq. (238) withT =1, T = =1 yields w = =1.

Other formulas relating the solutions of Eqgs. (P3) and (P5) (under certain constraints on the parameters
in these equations) are given in [23], [24].

Remark 2. Solutions of Eq. (2.5) define a class of separable solutions of the complex sine-Gordon
equation, alzo known as the Pohlmeyer-Lund-Regge-Getmanov model. More detailed information about
ather applications can be found in [26]. The system of two differential equations associated with the strongly
shunted Josephson model [27] can also be reduced to system (2.4) [22]. System (2.4) can be derived from
the system of two differential equations |describing the class of axially symmmetric stationary solutions of the
Einstein equations) 28] (see also [20]) by performing in it scale transformations of the unknown functions
and the independent variable.

3. Analysis of solutions of the system of differential equations
corresponding to random matrix type models with Bessel
kernel

It was found in [30] that the distribution of distances between levels that arise under scaling the Laguerre
and Jacobi ensembles of Hermitian matrices can be expressed in terms of the Fredholm determinant of an
integral operator with a kernel expressed trough the second-order Bessel functions. We obtain a system of
partial differential equations related to the logarithmic derivative of this Fredbolm determinant when the
base domain is a union of intervals. In the case of a single interval, the system degenerates to the system
of ordinary differential equations

s =p+ Tiqu, (3.1)
ap' = i{u“ —a)g+ %w - %W: (3-2)
u' =g, (33)
o =pa (3.4)

with unknown functions p, g, w, v of the independent wariable s and with a constant parameter .
System (3.1)=(3.4) has two firat integrals
u’ + fy = daqx = du 4+ 1, (3.5)
u=4p" = (a” = 5 + 2v)g" + 2pqu + G, (3.6)
where ', Cy are arbitrary constants. Multiplying both sides of Eq. (3.1) by sﬁ and using Eqs. (3.2), (3.3),

we obtain the following relation:

wolo2 1.2 1.3
s(sq’) = Jla” —a)g+ Jplu + Bu)g + Jaq7, (3.7)
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which, in view of Eq. (3.5), takes the form
1, & :
s(sq)' = fla? —s)g + %{an‘ —du+C). (3.8)
Eliminating the unknown function p from (3.1) and (3.6), we cbtain
= Lat e gt a4 80) - 2
(29") _4u+d[r:r alg +lﬁ|[u + Hu) 1 [3.9)
Substituting the expression J.{u” 4 8v)g from (3.7) into (3.9), we find

' . 1 .1 C:
sq(sq’) = (s¢')* — Ju+ sg* + T" (3.10)

Eliminating the unknown function u from (3.8), (3.10), we obtain the equation to determine g:
z ¢ na 1 o404 1 5, &
slg” = 1)(sq') = a(sg') + Jag'(q = 2) = g\ &+ = Ca=s e (3.11)

Equation (3.11) with ; = Cy = () was obtained in [30]. By introducing in (3.11) the transformation
(according to [31])
_warl e,
wix) =1

defining the function w(z), we obtain Eq. (P5) with the parameters

£l

P ] 1 E G P
¢=_5=H(ﬂ.2+ 4‘_.92), =0 §&=-2

Theorem 7. System (3.1)-(3.4) iz & Painlevé type system.

The proof of Theorem 7 is based on the fact that the general solution of Eq. (3.11) can be expressed
rationally in terms of the general solution of Eq. (P5), which has no movable eritical singular points. The
other elements u, v, p of system (3.1)=(3.4) also has no movable critical singular points, because

1 o 1 C. F 5 PR |
-t = aglag') = (ag')* = an‘ - Te_. Br=dsg” —du—-u4+Cy, p=sg - 77U

4. Analysis of solutions of two systems of differential equations
related to random matrix type models

4.1. We consider the system of differential equations

§ =p—qu+as, (4.1)
v = =pg = aag, (4.2)
p = 8g — 2gv + pu + asu, (4.3)
w = —¢", (4.4)

where 5 is an independent variable and « iz an arbitrary constant parameter. If o = (1, system (4.1)=(4.4)
corresponds to & random matrix type model with the Airy kernel [32]. A peculiar feature of system
(4.1)=(4.4) is that it i= & Hamiltonian system with the Hamiltonian
: T
H:%ﬂ— H1€+|;|21:—,,'.nr;|'f.|:+|::.5|,,'.r—|::m;1.L

and has the first integral o® — 20 — g% = C, where 7 is an arbitrary constant. The following theorem holds
true.
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Theorem 8. System (4.1)=(4.4) is & Painleve type system. Its solutions can be expressed in terms of
solutions of the second Painlevé equation

¢ =2+ (34 C) +e (4.5)

Proof. Taking into account the first integral, we pass from system (4.1)=(4.4) to the following one:

g =p-qu+as, (4.6)
F=(s+Clg+q*—gqu+pu+asu, [4.7)
u' =g~ {4.8)

By differentiating both sides of Eq. (4.6) taking into account Eqgs. (4.7), (4.8), we arrive at Eq. (4.5). Setting
z =35+ { in (4.5), we obtain the second Painlevé equation

q"=2¢"+zq+a. (P2)

According to [33), any solution of Eq. (P2) is a meromorphic function, and it can have only simple
poles as singular paints. The expansion of a solution in a neighborhood of & paole can be represented as (24

7(z) = = 42 al(z ) (4.9)
k=1

where a*y = 1 and ag is an arbitrary coefficient. All the other coefficients are uniquely determined as
pobnomials in =3, @ 4, 0y, and a.

In view of expansion (4.9) with z = 5 + C and Eqa. (4.8), (4.1), v = }(u" = ¢" = C), we conclude that
the components u, p, v have no movable critical singular points too.

Example 2. System (4.1)-{4.4) with @ = =1 has a two-parametric solution family

1 1 ic [} +C,"—C o N
S — i = — . = = A,
1= i+c atC " s+C AT

4.2. The system of differential equations |34)

= —pu, (4.10)
u’ = (" = In = 1)u 4+ 2u’p, (4.11)
P’ =" =+ 1)p+ 2p'u (4.12)

corresponds to a random matrix type model related to the Dvson processes. In Eqs. (4.10)-(4.12), p, r, u
are unknown functions of the independent wariable x, and n is an arbitrary constant parameter.
It follows from Eqgs. (4.11), (4.12) that

pu” = p"u = =2up, (4.13)

hence, in view of (4.1), we obtain
pu' = plu=2r4+C, (4.14)
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where  is an arbitrary constant. By substituting p = [u" — (27 — 2n — 1)u|/2u® from (4.11) into (4.13)

and setting
w=cp | [ i) da],

we obtain the equation to determine w:
w'" = 6w’ + 2(z" - 2n - 2w’ - 2w’ +dwr + 227 = 22n+ 2) = 0. (4.15)

This equation, by the subsequent transformation = = iz, w = —iw, w = g{x) + =z, i = =1, reduces to the
equation [35)
q" = 6g’q' = 12qq'z — 4(z" —n — 1)’ ~ dgz — 4g" = 0,

whose first integral is the fourth Painleve equation

q"=£+§q:"+4rqz+2{f"—ﬂ—1h+g1 (P4)
2 2 q

where @ = n + 1 and 7 is an arhitrary constant. Thus, the following theorem holds true.

Theorem 9. Let w = w(z) be a solution of Eq. (4.15) with a fixed value of the parameter n. Then
the functions
1

u = exp Uw{z}dz], P=lwr+w2—f+2n+1]{2etp[fw{r}d.z]}

r=Ell—w"+ﬂw;{—2w{rE—2“—1}+21:—2‘E-']

are solutions of system (4.10)=(4.12) and have no movable critical singular points.

We note that the third-crder differential equation for the function r has been obtained in |34], and
the first integral of that eguation is the equation for the polymomial Hamiltonian |11), [36] associated
with Eq. (P4) under particular values of a, 5. However, the formulas expressing the components p, u of
aystem (4.10)=(4.12) in terms of solutions of Eq. (P4) have not been provided.

5. Analysis of solutions of two systems of differential equations
via the Painlevé test

5.1. Using the Painlevé test [37]-[39) to analyze the solutions of the system of equations [6]

¢ = —sq+ (VIN = 2u)p,

w' = =p”,

(5.1)
¥ = sp— (VN + 2w)q,
u = —QI‘!

with unknown functions g, w, p, u of the independent variable s and an arbitrary parameter N, we can
prove the following theorem.

Theorem 10. System (5.1) passes the formal Painlevé test.

System (5.1) corresponds to the random matrix type model with the Hermitian kernel.
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We have also studied the convergence problem for the formal Laurent series (satisfving system (5.1))
g=a 37 ' 4o ThapT dr, T=ag=3,
w={da® 7)) Vb +hiT b 4, (52)

p=(2a ,7) LIF NP AN of ST

v=a® 7 Tdupduyrduerieo.,

containing four arbitrary parameters sn, @ 1 % 0, @1, ex
Theorem 11. Expansions (5.2) converge in some neighborhood 0 < |s = so| < p, p > 0.
Indeed, by virtue of Theorem 10, according to [40], system (5.1) reduces by the transformations
tg=a ,+§(t), tu=a’, +a(t), tp= (22 ) "+5{t). tw=(da®) "+ @D(t), t=5-5
to the Briot-Bouquet system [41], [42], having the four-parametric holomorphic solution [43] vanishing
at zero.

Remark 3. 1. System (5.1) has the first integral [ﬁ] V2N (u = w) + 2uw = pg 4+ ', where ' is an
arbitrary constant.

2. System (5.1) iz 2 Hamiltonian system with the Hamiltonian
3
H = —spg + (V2N = m% + (V2N +2w_}§.

3. The function B(s) = =2spg+(vIN =2u)p®+ (v ZN+2w)g®, according to [6], is a solution of the third-
order differential equation [6] whose first integral (with zero integration constant) is an equation for
the polynomial Hamiltonian [11), [36] associated with Eq. (P4). However, obtaining explicit formmulas
expressing the components of system (5.1) in terms of the function f(s) seems to be impossible.

5.2. The system of differential equations

st = (35 -N)o+ (VN +a) +up,

w=p,

(5.3)
= ~(/NFa) -w) - (3 -5 -N)a.
ur=q2_.

with unknown functions g, w. p, @ of the independent variable s and arbitrary constant parameters NV, o,
is & particular case of the random matrix type model with the Lagunerre kernel [f].
Similarly to the case of system (5.1), the following theorem holds true.

Theorem 12. System (5.3) passes the formal Painleve test.
We have also studied the convergence problem for the formal Laurent series (satisfving system (5.3))

g=a 1T 1+4:I.|':I'+Elz':l'2+---, T = 8= 80,
w=—#|1a2|ﬂ'_]- Ypdg+div+dar 4,
p=agla 17) Vhbyr kbt e

(5.4)

s=—a T 4yt THoari4,
containing four arbitrary parameters s; £ 0, a £ 0, @y, be.
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In view of expansions [5.4), the following theorem holds true.
Theorem 13. Expansions (5.4) converge in some neighborhood 0 < |8 = 85| < 0, p > (0, 85 £ L

Remark 4. 1. System (5.3) has the first integral 6]

(VN[N +a)+u)p + (VNN +a)=wlg'=(a+2N)pg+wa+ VNN +a)lw=u)=C,

where C' is an arbitrary constant.

2. The function sff(s) = (s—a-=2N)pg+ {\‘m+ u)p® 4 (/N[N 4+ o] = w)g”, according to |6,
is a solution of a third-order differential equation whose first integral (with zero integration constant) is
& solution of the second-order second degree differential equation for the polynomial Hamiltonian [11], [36]
associated with Eq. (P5) under special parameter values. However, it is impossible to obtain the explicit
formulas allowing to express the components of system (5.3) in terms of the function R(s).

6. On reducing a bilinear differential equation to a Painlevé type

equation

In [44]-[46], hierarchies of bilinear partial differemtial equations for the Fredhobm determinants (corre-
sponding to random matrix type models) of integral operators with given kernels were obtained. The first

equation in one of the hierarchies is
(At -a(4s- 3)) s +60092 =0, (6.1)

where

o o @
[£11 ¢
.-‘-..1_= E x,; H_IL n= 1_.3_.

=1

and f is an unknown function of the independent variables 1, T2, ..., 2o
Eq. (fi.1) is associated with the set

E = Ulim 1. 2] C R

=l

The transformation g1 = f{r), 7= £1 4+ Ta 4+ - - - 4+ T2y, reduces Eq. (6.1) to the equation [47)

# ¥ 2 JQJ (] d:.l'?]
rg"1=2rgh 4 qtbrgi =0, qi=—" ¢"v= 53,

having the first integral
v g 2w 2,
¢+ 4q = g+ —qg = C, (6.2)

where  is an arbitrary constant. The transformation g = Ag, 7 = p=, Ap = 1, p? = r, allows writing
Eq. (6.2) in the form [48]

g.l.-'! + d,q"a _ 2zgf2 + 2qq" — (a - EE) =0, (6.3)

where @ is an arhitrary parameter, =% = 1.
Equation (6.3) is an equation for the polynomial Hamiltonian associated with Eq. (P2).
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7. Conclusions

In this paper we have addressed the problem of constructing solutions of systems of differential equations
associated with certain random matrix type models. For such systems, we have obtain new classes of
solutions, which are expressed in terms of solutions of the Painlevé [I-V equations. We have shown that
the solutions of two systems of ordinary differential equations associated with the random matrix type
maodels with Laguerre and Hermitian kernels pass the formal Painlevé test. We have obtained new formulas
relating the solutions of the fifth and third Painlevé equations with respective parameters

a=%1 A== y=0, Swtp=1 &0

and
ﬂ=[1—2p]-.-':_ b={1—2p]r7:_ :=E. d 51 a
A3 : di ' 8’ 8

A vital problem is studying the solutions of systems of ordinary differential equations corresponding
to random matrix type models with different kernels via the Painlewvé test.

O interest is the question of the existence of self-similar reductions of Painlevé type partial differential
equations of orders higher than that of Eq. (6.1)) from the hierarchy of bilinear differential equations.

Among numerous publications devoted to the study of asymptotic properties of solotions of differential
equations for random matrix type models, we note the studies [49]=[51], which are based on the Riemann
problem, as well as [52|, which is related to the study of the asvmptotic properties of solutions of the second
discrete Painleve equation.

As regards the applications of random matrices mentioned at the beginning of this paper. we especially
emphasize the important role of them and Painlevé equations in statistical physics [53].

The subject and possible directions for further studies closely related to the random matrix type models
are outlined in the survey [54], which containe a rather comprehensive reference list.

Remark 5. Syvstem (2.27), (2.28) coincides with the system from [55] up to notation if we replace the
independent variable r with —z or the parameter v with — in that system.

In [21], the Bicklund transformation for solutions of Eq. (P5) with § # (0 was obtained using sys-
tem (2.27), (2.28).
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