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Abstract

In the sea of super-strong interacting gravitons, non-forehead col-

lisions with gravitons deflect photons, and this deflection may differ

for soft and hard radiations. As a result, the Hubble diagram would

not be a universal function and it will have a different view for such

sources as supernovae in visible light and gamma-ray bursts. Obser-

vations of these two kinds are compared here with the limit cases of

the Hubble diagram.

Keywords: galaxies: distances and redshifts - cosmology: observations - cos-
mology: theory - cosmology: distance scale – gamma-ray bursts: general

1 Introduction

After the remarkable observations of supernovae 1a dimming [1, 2], the stan-
dard cosmological model has been changed, and such the new terms as dark
energy and an acceleration of the expansion are now commonly known. Now

1

Би
бл
ио
те
ка

 БГ
УИ
Р 

http://arxiv.org/abs/astro-ph/0609518v4


another cosmological tool - gamma-ray bursts observations - makes its de-
but, but there exists some contradiction with supernova observations [3]: the
Hubble diagrams for these two kinds of sources are not identical. In the
model by the author [4] based on the conjecture about an existence of the
sea of super-strong interacting gravitons, supernova observational data may
be explained without dark energy. I would like to show here that this ap-
parent contradiction between two kinds of observations may be resolved in
my model in a very simple manner: soft and hard radiation sources may
have different Hubble diagrams in it, and for an arbitrary set of sources, the
Hubble diagram is a multivalued function of a redshift.

2 Limit cases of the Hubble diagram in the

graviton background

In the standard cosmological model, the luminosity distance depends on 1)
a redshift which conditions a loss of photon energies and 2) a history of
expansion which defines how big is a surface on which photons fall. In the
model by the author [4] (there is not any expansion in it), the first factor is
the same, but there are the two new factors: 2’) the geometrical distance r
is a non-linear function of a redshift z and 3’) non-forehead collisions with
gravitons leads to an additional relaxation of any photonic flux. Namely, the
luminosity distance is

DL = a−1 ln(1 + z) · (1 + z)(1+b)/2,

where a = H/c, H is the Hubble constant and c is the light velocity. The
theoretical value of relaxation factor b has been found in the assumption
that in any case of a non-forehead collision of a graviton with a photon, the
latter leaves a photon flux detected by a remote observer (the assumption
of a narrow beam of rays - but it is not a well-chosen name): b = 2.137. It
is obvious that this assumption should be valid for a soft radiation when a
photon deflection angle is big enough and collisions are rare.

It is easy to find a value of the factor b in another marginal case - for a
very hard radiation. Due to very small ratios of graviton to photon momenta,
photon deflection angles will be small, but collisions will be frequent because
the cross-section of interaction is a bilinear function of graviton and photon
energies in this model. It means that in this limit case b → 0.
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For an arbitrary source spectrum, a value of the factor b should be still
computed, and it will not be a simple task. It is clear that 0 ≤ b ≤ 2.137,
and in a general case it should depend on a rest-frame spectrum and on a
redshift. It is important that the Hubble diagram is a multivalued function
of a redshift: for a given z, b may have different values.

Theoretical distance moduli µ0(z) = 5 log DL + 25 are shown in Fig. 1
for b = 2.137 (solid), b = 1 (dot) and b = 0 (dash). If this model is true, all
observations should lie in the stripe between lower and upper curves. For Fig.

Figure 1: Hubble diagrams µ0(z) with b = 2.137 (solid), b = 1 (dot) and
b = 0 (dash); supernova observational data (circles, 82 points) are taken from
Table 5 of [5], gamma-ray burst observations are taken from [6] (x, 24 points)
and from [7] (+, 12 points for z > 2.6).

1, supernova observational data (circles, 82 points) are taken from Table 5 of
[5], gamma-ray burst observations are taken from [6] (x, 24 points) and from
[7] (+, 12 points for z > 2.6). As it was recently shown by Cuesta et al. [3],
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the Hubble diagram with b = 1 (in the language of this paper) gives the best
fit to the full sets of gamma-ray burst observations of [6, 7] and it takes place
in the standard FLRW cosmology plus the strong energy condition. Twelve
observational points of [7] belong to the range z > 2.6, and one can see (Fig.
1) that these points peak up the curve with b = 0 which corresponds in this
model to the case of very hard radiation in the non-expanding Universe with
a flat space. In a frame of models without expansion, any red-shifted source
may not be brighter than it is described with this curve.

Figure 2: The difference µc(z) − µ0(z) for b = 1 (solid) and b = 1.1 (dot).

Very recently, Schaefer [8] has published a collection of 69 gamma-ray
burst observations where calculated distance moduli are model-dependent:
some cosmological model is used to calculate the luminosity distance which is
used to evaluate parameters of bursts. When one compares - after it - GRB
observations with the used cosmological model constructing the Hubble di-
agram, one is restricted to be able to check only the self-consistency of the
initial conjecture that the chosen model is true. As it is shown in Fig. 2,
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theoretical distance moduli µc(z) for a flat Universe with the concordance
cosmology with ΩM = 0.27 and w = −1, which give the best fit to obser-

Figure 3: The same as in Fig. 1 Hubble diagrams µ0(z) with b = 2.137
(solid) and b = 0 (dash); the Hubble diagrams µ0(z) with b = 1.1 of this
model (dot) and the one of the concordance model (dadot) which is the best
fit to observations [8]; GRB observational data (+, 69 points) are taken from
Table 6 (µa) of [8] by Schaefer.

vations [8], are very close to the Hubble diagram µ0(z) with b = 1.1 of this
model (the difference is not bigger than ±0.2 mag in the range z ≤ 6.6).
Because of this, I would like to compare his calculated GRB distance moduli
for a flat Universe with the concordance cosmology (see Table 6 of [8]) with
theoretical predictions of the considered model in Fig. 3. We can see that
GRB observations lie in the stripe between lower and upper curves of this
model, and the curve µ0(z) with b = 1.1 (or with some bigger b) may replace
µc(z) with a success. But this curve is not the limit case for a very hard
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radiation. Comparing GRB observational points on Fig. 1 and Fig. 3 for
the same range of z > 2.6, we see also that distance moduli of the last set
are essentially higher than the ones reported in [7] by the same author.

Improved distances to nearby type Ia supernovae (for the range z < 0.14)
can be fitted with the function µc(z) for a flat Universe with the concordance
cosmology with ΩM = 0.30 and w = −1 [9]. In Fig. 4, the difference
µc(z) − µ0(z) between this function and distance moduli in the considered
model is shown for b = 1.52 (solid), b = 1.51 (dot) and b = 1.53 (dash). For
b = 1.52, this difference has the order of ±0.001 in the considered range of
redshifts.

Figure 4: The difference µc(z)−µ0(z) for b = 1.52 (solid), b = 1.51 (dot) and
b = 1.53 (dash); µc(z) corresponds to a flat Universe with the concordance
cosmology with ΩM = 0.30 and w = −1, which gives the best fit to supernova
observations for small redshifts [9].

Results from the ESSENCE Supernova Survey together with other known
supernovae 1a observations in the bigger redshift range z < 1 can be best
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fitted in a frame of the concordance cosmology in which ΩM ≃ 0.27 and
w = −1 [10]; the function µc(z) for this case is almost indistinguishable
from distance moduli in the considered model for b = 1.405. In Fig. 5, the
difference µc(z) − µ0(z) is shown for b = 1.405 (solid), b = 1.400 (dot) and
b = 1.410 (dash). For b = 1.405, this difference is not bigger than ±0.035 for
redshifts z < 1 (the same is true for slightly different values of ΩM used in
[10], too, but for some other values of the factor b: for ΩM = 0.274 or 0.267,
b is equal to 1.400 or 1.410 correspondingly).

Figure 5: The difference µc(z) − µ0(z) for b = 1.405 (solid), b = 1.400
(dot) and b = 1.410 (dash); µc(z) corresponds to a flat Universe with the
concordance cosmology with ΩM = 0.27 and w = −1, which gives the best
fit to supernova observations for the bigger redshift range z < 1 [10].

The gold sample of supernovae [5] by Riess et al. has the best fit with
w(z) = w0+w

′

z, where w0 = −1.31 and w
′

= 1.48 (dark energy changes with
redshift); because this supernovae Hubble diagram goes below of the GRB
one [8] for z > 1, and in a frame of the considered model it is impossible,
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it may be that the GRB derived distance moduli by Schaefer [8] are not
consistent now with the supernovae observations.

3 Conclusion

The considered multivalued character of the Hubble diagram may explain
an apparent contradiction between supernovae and GRBs observations. We
have now a very poor set of GRBs with big redshifts, and it is obvious that
errors of observations are very large. When such missions as the SWIFT
satellite observe much more GRBs at high redshifts, one can get a surprising
result: observations would lie on the curve which corresponds to the non-
expanding Universe. It would be very important to get supernova data for
higher redhifts with the help of new missions to be able to do more definitive
conclusions.
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