Доклады БГУИР

2016

УДК 621.391

МЕТОДИКА УГЛОВОГО ОПТИЧЕСКОГО СКАНИРОВАНИЯ ПЛОСКИХ ПОВЕРХНОСТЕЙ ДЛЯ СИСТЕМ ТЕХНИЧЕСКОГО ЗРЕНИЯ

В.А. БОГУШ

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 26 февраля 2016

Предложена методика углового оптического сканирования плоских поверхностей с субпиксельной обработкой изображений, полученных с фотоприемной КМОП-матрицы сканера.

Ключевые слова: оптическое сканирование, субпиксельная обработка.

Введение

Для развития технологий технического зрения актуальна проблема повышения разрешения изображений, формируемых в результате оптического сканирования. Известные методы и алгоритмы решения данной проблемы не учитывают особенности построения систем оптического сканирования (считывание изображений с плоских поверхностей, возможность согласования моментов считывания фотоприемной КМОП-матрицы с ее ориентацией относительно направления и скоростью перемещения оптоэлектронной системы). В качестве исходных данных в этих методах рассматривается одно изображение, либо несколько изображений, относительный пиксельный сдвиг между которыми точно неизвестен (не нормирован) [1–5]. В этой связи актуальна задача разработки методики оптического сканирования плоских поверхностей и субпиксельной обработки формируемых изображений, учитывающих данные особенности.

Угловое сканирование плоских поверхностей с последующей субпиксельной обработкой

В основе методики оптического сканирования плоских поверхностей предлагается использовать управление угловой ориентацией фотоприемной КМОП-матрицы для обеспечения возможности считывания изображения одного и того же участка плоской поверхности с различных частей фотоприемной КМОП-матрицы с некоторым полупиксельным смещением по вертикали и горизонтали. Моменты времени считывания изображений с фотоприемной матрицы могут быть выбраны таким образом, что энергия, сосредоточенная в каждом пикселе изображения, считанного с фотоприемной матрицы в один момент времени, равномерно распределится по четырем пикселям изображения, считанного в другой момент времени. Это дает возможность получения изображения высокого разрешения в результате субпиксельной обработки двух изображений низкого разрешения, полученных в различные моменты времени в результате углового сканирования, на основе алгоритма доменной интерполяции.

Если второе изображение сдвинуто относительно первого изображения влево и вверх на полпикселя, алгоритм субпиксельной обработки двух изображений низкого разрешения на основе доменной интерполяции состоит из следующих шагов.

1. Обработка первого исходного изображения низкого разрешения.

1.1. Выбор пикселя $i_1(y,x)$ первого исходного изображения $I_1 = \|i_1(y,x)\|_{(y=\overline{0,Y-1},x=\overline{0,X-1})}$ низкого разрешения при $y = \overline{1,Y-2}, x = \overline{1,X-2}.$

№ 2 (96)

1.2. Для пикселя $i_1(y, x)$ исходного изображения I_1 вычисляется суммарная яркость $S_1(y, x)$ соответствующего домена $\{i_2(y-1, x-1), i_2(y-1, x), i_2(y, x-1), i_2(y, x)\}$ второго исходного изображения $I_2 = \|i_2(y, x)\|_{(y=\overline{0}, Y-1, x=\overline{0}, X-1)}$ с помощью выражения:

$$s_1(y,x) = \sum_{m=-1}^{0} \sum_{n=-1}^{0} i_2(y-m,x-n)$$
 при $y = \overline{1,Y-2}, x = \overline{1,X-2}.$

1.3. Вычисляются значения пикселей домена $\{\tilde{i}_1(2y,2x), \tilde{i}_1(2y+1,2x), \tilde{i}_1(2y,2x+1), \tilde{i}_1(2y+1,2x+1)\}$ первого промежуточного изображения $\tilde{I}_1 = \|\tilde{i}_1(y,x)\|_{(y=0,2Y-1,x=0,2X-1)}$ с помощью выражения

$$\widetilde{i}_{1}(2y+m,2x+n) = 4i_{1}(y,x)\frac{i_{2}(y-1+m,x-1+n)}{s_{1}(y,x)} \text{ при } m = \overline{0,1}, \ n = \overline{0,1}, \ y = \overline{1,Y-2}, \ x = \overline{1,X-2}.$$

2. Обработка второго исходного изображения $I_2 = \|i_2(y, x)\|_{(y=\overline{0,Y-1},x=\overline{0,X-1})}$ низкого разрешения канала (повторяются все шаги обработки первого исходного изображения I_1 для второго изображения I_2).

3. Попиксельное усреднение промежуточных изображений первого \tilde{I}_1 и второго \tilde{I}_2 с помощью выражения $\hat{i}(y,x) = \frac{\tilde{i}_1(y,x) + \tilde{i}_2(y,x)}{2}$ при $y = \overline{1,2Y-1}$, $x = \overline{1,2X-1}$.

В результате формируется изображение $\hat{I} = \|\hat{i}(y, x)\|_{(y=0,2Y-1,x=0,2X-1)}$ повышенного разрешения (в пределе разрешение повышается до 2 раз). Вычислительная сложность данного алгоритма оценивается примерно в 27 операций на пиксель результирующего изображения.

Оценка эффективности углового сканирования плоских поверхностей с последующей субпиксельной обработкой

В таблице приведены значения среднеквадратической ошибки MSE, пикового отношения сигнал-шум PSNR и ненормированной ошибки Е для исходного изображения высокого разрешения и результирующих изображений высокого разрешения, полученных с помощью алгоритмов доменной, линейной и бикубической интерполяции. Значения данных параметров определяются с помощью выражений $MSE = \frac{1}{YX} \sum_{y=0}^{Y-1} \sum_{x=0}^{X-1} (i(y,x) - \hat{i}(y,x))^2$,

параметров определяются с помощью выражений $MSE = \frac{1}{YX} \sum_{y=0}^{Y-1} \sum_{x=0}^{X-1} (i(y,x) - \hat{i}(y,x))^2$, $PSNR = 10 \lg \left(\frac{255^2}{MSE}\right), E = \sum_{y=0}^{Y-1} \sum_{x=0}^{X-1} |i(y,x) - \hat{i}(y,x)|$, где i(y,x) – пиксели эталонного изображения,

использованного для получения изображений низкого разрешения; | · | – операция по модулю.

Из таблицы следует, что доменная интерполяция обеспечивает уменьшение среднеквадратической ошибки примерно в 4 и 2 раза (увеличение отношения сигнал-шум примерно на 6 дБ и 2,5 дБ) по сравнению с линейной и бикубической интерполяцией соответственно.

Метод интерполяции	MSE	PSNR	Е
Доменная	48,33	31,29	779588,00
Линейная	204,78	25,02	1166396,00
Бикубическая	93,40	28,43	968598,00

Характеристики метолов	субпиксельной	обработки
	-,	

Для оценки локализации ошибок на изображениях высокого разрешения, восстановленных из изображений низкого разрешения с помощью субпиксельной обработки, использованы гистограммы модулей разностей соседних пикселей по столбцам для исходного изображения и изображений, восстановленных с помощью доменной, линейной и

бикубической интерполяции (рис. 1). Гистограммы, приведенные на рис. 1, получены для 8-битных тестовых изображений с помощью схемы, показанной на рис. 2.

Рис. 1. Гистограммы модулей разностей соседних пикселей по столбцам для исходного изображения (*a*) и изображений, восстановленных с помощью доменной (*б*), линейной (*в*) и бикубической интерполяции (*г*) (по горизонтали – яркость пикселей, по вертикали – частота повторений)

в

Из рис. 1 следует, что доменная интерполяция приводит к наименьшему сглаживанию (увеличению мощности нулевых и близких к нулю компонент гистограмм разностей значений пикселей в столбцах и строках – увеличение числа нулевых компонент до 5 и 3 раз меньше по сравнению с усреднением и бикубической интерполяцией). Аналогичные результаты получаются для гистограмм модулей разностей соседних пикселей по строкам для изображений, восстановленных с помощью доменной, линейной и бикубической интерполяции.

Рис. 2. Схема формирования гистограмм разностей

Заключение

Предложена методика углового оптического сканирования плоских поверхностей с управлением угловой ориентацией фотоприемной КМОП-матрицы для считывания изображения одного и того же участка плоской поверхности с различных частей фотоприемной КМОП-матрицы с некоторым полупиксельным смещением по вертикали и горизонтали, обеспечивающим получение изображений высокого разрешения в результате субпиксельной обработки. Показано, что при использовании алгоритма субпиксельной обработки на основе доменной интерполяции обеспечивается уменьшение среднеквадратической ошибки примерно в 4 и 2 раза (увеличение отношения сигнал-шум примерно на 6 дБ и 2,5 дБ) по сравнению с линейной и бикубической интерполяцией соответственно.

METHOD OF THE ANGLE OPTICAL SCANNING OF THE FLAT SURFACES FOR THE TECHNICAL VISION SYSTEMS

V.A. BOGUSH

Abstract

The technique of the angle optical scan of the flat surfaces with sub-pixel processing of images obtained with the photodetector CMOS matrix scanner is proposed.

Keywords: optical scan, sub-pixel processing.

Список литературы

- 1. Shinde S., Dewangan M. // International Journal of Computer Science & Engineering Survey (IJCSES). 2012. Vol. 3, № 2. P. 47–56.
- 2. Chen W.A, Guo L., Xia W. // Journal of computers. 2013. 2013. Vol. 8, № 8. P. 1893–1897.
- 3. Irani M., Peleg S. // Journal of Computer Vision, Graphics, and Image Processing. 1991. Vol. 53 (3). P. 231-239.
- 4. *Jiang Z., Wong T.T., Bao H. //* Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2003. Vol. 2. P. 549–554.
- 5. Freeman W.T., Jones T.R., Pasztor E.C. // IEEE Computer Graphics and Applications. 2002. Vol. 22 (2). P. 56-65.