2016

УДК 621.391.82

РАЗРЕЖЕННЫЕ ЦИЛИНДРИЧЕСКИЕ И КОНИЧЕСКИЕ АНТЕННЫЕ РЕШЕТКИ

О.А. ЮРЦЕВ, С.А. ЗАВАДСКИЙ

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 11 января 2016

Приведены результаты численного моделирования разреженных цилиндрических и конических антенных решеток. Рассматривается зависимость диаграммы направленности и коэффициента направленного действия от степени разрежения решеток.

Ключевые слова: коническая и цилиндрическая антенные решетки, разрежение по случайному закону, равномерный закон распределения.

Введение

Плоские разреженные антенные решетки теоретически исследованы весьма подробно. Рассмотрены решетки с детерминированным и случайным расположением излучателей в апертуре [1-6]. В известных работах исследованы средние значения диаграммы направленности (ДН) и коэффициента направленного действия (КНД) и их флуктуации. При этом использован аппарат теории вероятности. Разреженные антенные решетки используются как системы с уменьшенным числом излучателей и, следовательно, с уменьшенной стоимостью. КНД таких решеток меньше, чем у неразреженных решеток, что является их недостатком. Задача уменьшения числа излучателей особенно остро стоит в цилиндрических и конических решетках. Это связано с тем, что в таких решетках используется конформное сканирование, и для его обеспечения число излучателей делается значительно больше, чем требуется для формирования одного луча ДН. Цилиндрические и конические решетки с уменьшенным числом излучателей (разреженные решетки) в известной литературе не рассмотрены. В настоящей статье рассматриваются разреженные цилиндрические и конические решетки, в которых по случайному закону удалена часть излучателей, а также рассматриваются конические антенные решетки с эквидистантным и неэквидистантным расположением излучателей в различных кольцах (строках). В процессе конформного сканирования активная часть решетки, формирующая луч ДН, перемещается по цилиндрической или конической поверхности решетки. При этом размещение излучателей в этой области при сканировании не должно сильно изменяться. Поэтому в статье используется случайный закон расположения излучателей с равномерным законом распределения. Для анализа закономерностей в решетках используется численный метод. Это позволяет определять не только средние ДН и КНД, но и конкретные случайные реализации ДН и КНД, соответствующие случайным размещения излучателей. Анализ отдельных случайных реализаций важен потому, что при изготовлении случайной решетки практическая конструкция будет представлять собой одну из возможных реализаций. В этом случае надо знать ее характеристики и параметры. Знание зависимости электрических параметров ДН отдельной случайной реализации расположения излучателей позволяет также выбирать наиболее оптимальную реализацию решетки по какому-либо параметру (уровню боковых лепестков, КНД и т.д.).

Методика численного анализа

В качестве элементарного излучателя решетки использован гипотетический излучатель с задаваемой шириной главного лепестка ДН ($2\theta_{0,5}^1$) и задаваемым уровнем максимального бокового лепестка (F_{bm}^1). Основные геометрические параметры решетки: R_{max} , R_{min} – нижний и верхний радиусы конуса, на поверхности которого размещены излучатели конической решетки (при $R_{max} = R_{min}$ решетка становится цилиндрической); Nk – число излучателей в кольце решетки (кольцо решетки – это строка), N_z – число колец в решетке (число излучателей в столбце решетки); Dk – расстояние между излучателями в кольце на нижнем основании конуса решетки (в строке решетки), D_z – расстояние между кольцами вдоль оси конуса (в столбце); Nd=0 – число удаленных излучателей для разрежения решетки (задается в %).

Для расчета ДН использован принцип суперпозиции [7]: поля всех излучателей решетки в точке наблюдения со сферическими координатами *R*, θ , ϕ складываются с учетом их амплитуд и фаз. Формула, определяющая электрическое поле решетки в некоторой точке наблюдения, учитывающая сказанное, с точностью до постоянной величины имеет вид:

$$E(R,\theta,\phi) = \sum_{n=1}^{N_z} \sum_{m=1}^{N_k} Anm \cdot e^{i\Psi nm} e^{-ikRnm} / Rnm, \qquad (1)$$

где *Anm*, Ψnm – амплитуда и фаза возбуждения излучателя, стоящего на пересечении строки с номером *n* с столбца с номером *m*; $k = \frac{2\pi}{\lambda}$, λ – длина волны; *Rnm* – расстояние между указанным излучателем и точкой наблюдения, в которой определяется поле решетки.

Амплитуда Anm учитывает то, что максимумы ДН всех излучателей ориентированы по нормали к поверхности цилиндра (или конуса), на котором расположены излучатели, т.е. от ДН одного излучателя. Следовательно, угол между направлением на точку наблюдения и направлением максимума ДН каждого излучателя зависит от номеров излучателя n и m. При конформном сканировании на эквивалентной плоской поверхности, касательной к поверхности цилиндра (конуса) решетки, необходимо создать равномерное фазовое распределение. При этом излучатели должны возбуждаться с некоторым фазовым распределением $\Psi^o nm$, близким в кольце к кубическому фазовому распределению. Фазовое распределение Ψnm равно сумме $\Psi^o nm + \Psi^1 nm$, где $\Psi^1 nm$ – линейное фазовое распределение в зависимости от n и m, обеспечивающее сканирование в плоскости колец и столбцов. Рис. 1 поясняет сказанное: на нем показан фрагмент конической решетки, точками обозначены места расположения излучателей.

Рис. 1. Коническая решетка

На рисунке показана точка наблюдения в пространстве $P(R, \theta, \phi)$, в которой определяется поле антенны, сферические координаты этой точки R, θ, ϕ , расстояние *Rnm* и

точка P' – проекция точки P на плоскость XY, угол раскрыва решетки в плоскости $XY - \beta$. Конформное сканирование происходит в плоскости ХУ, фазовое сканирование – в этой плоскости и в плоскости $\phi = \text{const.}$ Очевидно, что величина *Rnm* зависит от координат излучателя с номерами от *n* и *m* и от координат точки наблюдения R, θ, ϕ . Эти формулы в статье не приводятся. Выражение (1) определяет поле решетки в любой зоне пространства – дальней. промежуточной И ближней. По полю решетки определяется ДH $F(\theta, \phi) = E(R, \theta, \phi) / E \max$, а по ДН рассчитывается коэффициент направленного действия, обозначаемый далее символом D, по формуле [7]:

$$D = \frac{4\pi}{\int\limits_{\theta=0}^{\pi}\int\limits_{\phi=0}^{2\pi}F^2(\theta,\phi)\sin\theta \cdot d\phi \cdot d\theta}.$$

Приведенные формулы (1), (2), а также формулы из других источников использованы в программе численного моделирования, с помощью которой выполнены все расчеты для решеток, приводимые ниже. На рис. 1, δ показана та же решетка, что и на рис. 1, a, но с 15 % удаленных по случайному закону излучателей. Оставшиеся излучатели обозначены мелкими точками, удаленные – крупными точками.

Результаты и их обсуждение

Моделирование выполнено для решеток с различными геометрическими параметрами. Ниже все закономерности иллюстрируются на примере частных случаев, включая равномерное амплитудное распределение возбуждения излучателей и равномерное фазовое распределение $\Psi^{1}nm$, т.е. сканирование в плоскостях XY и $\phi = \text{const}$ (на графике $\phi u = \text{const}$) в статье не рассматривается. На графиках ДН приводится ДН произвольной реализации распределения излучателей в решетке при заданном числе удаленных излучателей Nd = 0.

На рис. 2, *а* показаны ДН цилиндрической решетки с параметрами $R_{max} = 300$ мм, $R_{\min} = 300$ мм, Nk = Nz = 25, Dk = Dz = 20 мм, $\lambda = 30$ мм. Амплитудное распределение возбуждения излучателей в решетке – равномерное. В решетке выполняется условие единственности главного лепестка. ДН показана в плоскостях XY и $\phi = \text{const}$. Слева на рисунке показаны ДН в решетке без удаленных излучателей (Nd=0), справа – ДН той же решетке при удалении 50 % излучателей (Nd = 50). На рис. 2, б показаны ДН решетки, в которой не выполнено условие единственности главного лепестка (Dk = Dz = 35 мм). Из полученных результатов следует вывод: при исключении части излучателей по случайному закону эквидистантная решетка превращается в неэквидистантную, но при этом побочные главные лепестки ДН в решетке с невыполненным условием единственности не пропадают, хотя несколько уменьшаются: в большей степени – в плоскости колец, в меньшей – в плоскости столбцов (при $\phi = \text{const}$). Проведенный анализ показывает, что амплитудное распределение не влияет на степень подавления побочных главных лепестков. Влияние амплитудного распределения возбуждения излучателей на параметры ДН и КНД в решетке с выполненным условием единственности иллюстрирует рис. 3. Слева показана ДН в плоскости ХУ, приведены значения ширины главного лепестка $2\theta_{0,5}^{xy}$, максимального бокового лепестка F_{bm}^{xy} и КНД решетки с теми же геометрическими параметрами, что на рис. 2, но для спадающего к краям решетки амплитудного распределения, описываемого косинусом в степени Px = 1.5 на «подставке», равной $\Delta x = 0.3$. Справа показана ДН и приведены те же электрически параметры при том же амплитудном распределении для решетки с Nd = 50 %.

Из сравнения рис. 2, a и 3 следует, что амплитудное распределение существенно влияет на уровень боковых лепестков эквидистантной решетки (Nd=0), что хорошо известно [7], а влияние амплитудного распределения на уровень боковых лепестков решетки с удаленными излучателями практически отсутствует.

(2)

Рис. 2. ДН решетки с выполненным (а) и невыполненным (б) условием единственности главного лепестка

В конической решетке надо учитывать особенность, заключающуюся в следующем. Излучатели в кольцах можно разместить способом 1, когда в каждом кольце одно и то же число излучателей (решетка 1). В этом способе с уменьшением радиуса кольца уменьшается расстояние между соседними излучателями. Можно разместить излучателя способом 2 с одинаковым шагом во всех кольцах (решетка 2). В этом случае с уменьшением радиуса кольца будет уменьшаться число излучателей в нем. На рис. 4 проиллюстрировано различие ДН в плоскости колец (в плоскости ХУ) при этих двух способах на примере решетки с геометрическими параметрами: $R_{\text{max}} = 300$ мм, $R_{\text{min}} = 100$ мм, Nk = Nz = 21, на кольце с радиусом $R_{\rm max}$ расстояние между соседними излучателями Dk = 40 мм, расстояние между соседними кольцами Dz = 20 мм, $\lambda = 30$ мм, амплитудное распределение возбуждения излучателей в решетке – равномерное. Слева на рисунках схематически показаны решетки 1 и 2. В решетке 1 с размещением излучателей по способу 1 при указанных исходных данных условие единственности главного лепестка ДН не выполняется для 9 колец с наибольшими радиусами. Для остальных 12 колец это условие выполняется. В результате побочные главные лепестки указанных 9 колец разнесены по углу наблюдения и насколько подавлены за счет 12 колец с выполненным условием единственности (рис. 4, а). В решетке с размещением излучателей по способу 2 (рис. 4, б) расстояние между излучателями во всех кольцах одинаковое и равно максимальному в решетке с размещением излучателей по способу 1 (Dk = 40 мм). Поэтому, как видно, уровень боковых лепестков, включая те, которые расположены на местах побочных главных лепестков, значительно выше. Но и излучателей в рассматриваемом фрагменте решетки меньше. В решетке на рис. 4, *а* число излучателей равно $N = Nk \cdot Nz = 441$, в решетке на рис. 4, *б* число излучателей равно N = 292.

Рис. 4. Схемы размещения излучателей в конической решетке 1 (*a*), в решетке 2 (б) и соответствующие ДН в плоскости *XY*

Диаграмма направленности не улучшается, если уменьшить расстояние между излучателями в кольце и увеличить число излучателей в кольцах так, чтобы число излучателей в решетке на рис. 4, б стало равным 441. Сказанное поясняется рис. 5.

Рис. 5. Решетка 2 и ее ДН при числе излучателей в решетке, равном 441

Таким образом, в конической решетке излучатели должны быть размещены по способу 1 (рис. 4, *a*). В такой решетке число излучателей, в частности, зависит от шага (расстояния между соседними излучателями) размещения излучателей в кольце с максимальным радиусом. На рис. 4, *a* этот шаг равен $Dk = 40 \text{ мм} = 1,33\lambda$. На рис. 6 показаны ДН той же решетки с $Dk = 2\lambda = 60 \text{ мм}$ (Nk = 11) и $Dk = 4\lambda = 120 \text{ мм}$ (Nk = 7). Размеры фрагментов решеток 1 и 2, которые формируют ДН, во всех случаях одинаковы за счет того, что число излучателей в кольце при разных Dk разное. Как видно, с увеличением Dk растет уровень бокового излучения при угле наблюдения $Q > 30^\circ - 40^\circ$. Однако выигрыш в числе излучателей в решетке число излучателей в решетке N. Таблица иллюстрирует выигрыш в N и неизбежные потери – рост максимального уровня бокового излучения (*Fbm*) и уменьшение КНД. Данные, представленные

в таблице, соответствуют геометрическим параметрам $R_{\text{max}} = 300 \text{ мм}$, $R_{\text{min}} = 100 \text{ мм}$, $N_Z = 21$, $D_Z = 20 \text{ мм}$, $\lambda = 30 \text{ мм}$. Данные для решетки 1 размещены в таблице до наклонной черты. Как видно, ширина главного лепестка ДН в плоскости XY ($2Q_{0,5}^{ZY}$) практически не меняется (некоторые колебания значений КНД и $2Q_{0,5}^{ZY}$ связаны с тем, что размеры апертуры решетки немного колебались при указанных значениях Nk).

Рис. 6. ДН конической решетки 1 при разных значениях шага размещения излучателей в кольцах: $Dk = 2\lambda = 60$ мм (*a*) и $Dk = 4\lambda = 120$ мм (*б*)

Dk	λ	1,5 λ	2 λ	2,5 λ	3λ	3,5 λ
Nk	21	14	11	8	7	6
Ν	441	291	231	168	147	126
<i>Fbm</i> , дБ	-15,2/-13,6	-13,4/-11,7	-11,7/-9,9	-9,6/-8,4	-8,6/-8,2	-7,9/-7,4
КНД, дБ	23,8/20	19,6/16,9	17,2/15,3	15,7/13,6	16,5/13,2	15,5/13
$2Q_{0,5}^{ZY}$, град	3,9/4,1	3,9/4,3	3,7/4,4	4,1/4,5	3,9/4,6	3,9/4,7

Зависимость параметров решеток 1 и 3 от *Dk* и числа излучателей *N*

Решетку 1, разреженную за счет увеличения шага размещения излучателей в кольцах, целесообразно сравнить с решеткой 1, но разреженной по случайному закону. Такая решетка далее именуется решеткой 3 и показана на рис. 1, б. Результаты моделирования решетки 3 приведены в таблице после наклонной черты. Амплитудное распределение возбуждения излучателей равномерное. Во всех кольцах решетки выполнено условие единственности главного лепестка (Dk = 25 мм). Остальные геометрические параметры $R_{\text{max}} = 300$ мм, $R_{\min} = 100$ мм, $N_Z = 25$, $N_k = 25$, $D_Z = 16,66$ мм сделаны такими для того, чтобы размеры фрагмента решетки 3 были такими же, как и решетки 1 (угол раскрыва решетки в плоскости ХУ $\beta = 120^{\circ}$, высота решетки H = 400 мм). Из таблицы следует, что решетка 1 имеет преимущества перед решеткой 3 по всем параметрам. Таким образом, разреженную коническую антенную решетку целесообразно делать с одинаковым числом излучателей во всех кольцах. Разрежение ее с целью уменьшения числа излучателей и удешевления целесообразно обеспечить путем увеличения шага размещения излучателей на кольце с максимальным радиусом. В этом случае шаг в остальных кольцах уменьшается по линейному закону с ростом номера кольца. С некоторого кольца шаг в кольце обеспечивает выполнение условия единственности главного лепестка ДН. Максимальный уровень боковых лепестков меняется несущественно, если во всех кольцах не выполняется условие единственности главного лепестка ДН (во всех кольцах $Dk > \lambda$). Это хорошо видно из рис. 7 на примере решетки с параметрами $R_{\text{max}} = 500$ мм, $R_{\min} = 300$ мм, Nz = 25, Nk = 25, Dz = 20 мм. На рисунке показана ДН конической решетки плоскости XY для случая Dk = 40 мм (a) и для случая Dk = 120 мм (б). В первом случае шаг в кольцах меняется от 40 мм до 25 мм, и условие единственности не выполняется для колец с номерами 1-16, для остальных 9 колец это условие выполняется. Во втором случае шаг меняется от 120 мм до 74 мм, и условие единственности не выполняется для всех колец. Анализ показывает, что с ростом шага размещения излучателей в кольцах растет искажение ДН в плоскости $\phi = \text{const}$. Это надо учитывать при проектировании решетки и ее оптимизации.

Рис. 7. ДН конической решетки при разных значениях Dk

Заключение

Проведенный анализ показал, что в цилиндрической антенной решетке разрежение можно производить за счет удаления части излучателей по случайному закону. В конической антенной решетке такой способ не приводит к желаемому результату, и разрежение обеспечивается путем увеличения шага размещения излучателей в кольцах.

SPARSE CYLINDRICAL AND CONICAL ANTENNA ARRAYS

O.A. YURTSEV, S.A. ZAVADSKI

Abstract

Cylindrical and conical antenna arrays numerical simulation results are presented. Radiation pattern and directivity coefficient dependence from array sparseness factor is observed.

Keywords: conical and cylindrical random vacuumed antenna arrays rarefied randomly, uniform distribution law.

Список литературы

- 1. *Lo Y.T.* // IEEE Trans. 1963. Vol. AP-11, № 4. P. 511–512.
- 2. Lo Y.T. // IEEE Trans. 1964. Vol. AP-12, № 3. P. 257–269.
- 3. Заксон М.Б., Меркулов В.В. // Радиотехника и электроника. 1965. № 1. С. 7–13.
- 4. Меркулов В.В. // Радиотехника и электроника. 1966. № 5. С. 128–130.
- 5. Шифрин Я.С. Вопросы статистической теории антенн. М., 1979.
- 6. Шифрин Я.С., Назаренко В.А. // Радиотехника и электроника. 1991. № 1. С. 52–62.
- 7. Фельд Я.Н., Бененсон Л.С. Основы теории антенн. М., 2007.