УДК 537.311.33

ВЫРАЩИВАНИЕ И СВОЙСТВА МОНОКРИСТАЛЛОВ AgIn5S8

И.В. БОДНАРЬ, Х.Т.М. АЛРЕКАБИ, Т.Г. БАРУГУ

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 10 июня 2016

Методом Бриджмена выращены монокристаллы соединения AgIn₅S₈, определены их состав и структура. Дилатометрическим методом в интервале 80–700 К измерено относительное удлинение монокристаллов и рассчитаны коэффициенты теплового линейного расширения (α_L). По полученным значениям α_L проведен расчет температур Дебая (Θ_D) и среднеквадратичных динамических смещений атомов ($\sqrt{u^2}$) в соединении AgIn₅S₈. Абсолютным методом измерена теплопроводность монокристаллов AgIn₅S₈ в температурном интервале 300–600 К. Установлено, что теплопроводность во всем измеренном интервале температур описывается степенной зависимостью вида T^{-n} , где n < 1.

Ключевые слова: монокристаллы, структура, параметр элементарной ячейки, электропроводность, тепловое расширение.

Введение

Соединение AgIn₅S₈ образуется на разрезе Ag₂S–In₂S₃ и относится к дефектным полупроводникам с концентрацией вакансий в катионной подрешетке ~ 25 % [1]. В связи с наличием значительного количества дефектов электрические свойства этого соединения практически не изменяются при различных радиационных воздействиях. Они также слабо зависят от содержания в них посторонних примесей и сверхстехиометрических атомов, что делает это соединение перспективным материалом для использования его в различных приборах опто- и микроэлектроники [2–4].

В настоящей работы представлены результаты исследования электропроводности, теплового расширения и теплопроводности монокристаллов соединения AgIn₅S₈.

Методика эксперимента

Монокристаллы AgIn₅S₈ получали в два этапа. Предварительно двухтемпературным методом синтезировали поликристаллические слитки по следующей методике. Кварцевую ампулу размещали в двухзонной горизонтальной печи, температуру зон которой можно регулировать независимо друг от друга, а металлические компоненты и сера находятся в разных частях кварцевой ампулы. Металлические компоненты (серебро и индий, чистотой > 99,999 %), взятые в соотношениях, соответствующих составу соединения AgIn₅S₈ = 1:5:8, загружали в кварцевую лодочку, которую располагали в одном конце кварцевой ампулы. В противоположном ее конце находилась сера, взятая с избытком от стехиометрии, необходимым для создания давления ее паров над расплавом ~ 2,0 атм. Ампулу вакуумировали до давления ~ 10^{-3} Па, отпаивали и размещали в двухзонной печи, где температуру поддерживали 1360 К, температуру «холодной» зоны, в которой находилась сера, постепенно повышали со скоростью ~ 50 К/ч до ~ 780 К и выдерживали в течение ~ 2 ч для обеспечения протекания химической реакции между парами серы и металлическими компонентами. По истечении указанного

времени проводили направленную кристаллизацию расплава путем понижения температуры «горячей» зоны печи со скоростью 50 К/ч до 1000 К и печь отключали от сети.

Монокристаллы AgIn₅S₈ выращивали методом Бриджмена. Полученные слитки измельчали и перегружали в двойные кварцевые ампулы, из которых внутренняя ампула заканчивалась цилиндрическим капилляром, который обеспечивал формирование монокристаллической затравки. После вакуумирования внутренней ампулы ее помещали во вторую кварцевую ампулу большего диаметра, которую также вакуумировали. К наружной ампуле снизу приваривали кварцевый стержень, служивший держателем.

Выращивание монокристаллов проводили в вертикальной однозонной печи с заданным температурным градиентом. Температуру в печи повышали со скоростью 250 К/ч до ~ 1360 К и для гомогенизации расплава выдерживали при этой температуре 2 ч, после чего проводили направленную кристаллизацию расплава, понижая температуру печи со скоростью ~ 2 К/ч до полного затвердевания расплава. Для гомогенизации полученных слитков их отжигали при 1020 К в течение ~ 170 ч. Выращенные в таких условиях монокристаллы имели диаметр ~16 и длину ~ 35 мм, были однородными, что было установлено методами микроренгоспектрального и рентгеновского анализов.

Состав монокристаллов AgIn₅S₈ определяли методом микрозондового рентгеноспектрального анализа на установке «Stereoscan-360». В качестве анализатора рентгеновского спектра использовался рентгеновский спектрометр «AVALON-8000». Структуру и параметры элементарной ячейки полученных кристаллов устанавливали рентгеновским методом. Дифрактограммы записывали на автоматически управляемом с помощью ЭВМ рентгеновском дифрактометре ДРОН–3 М в СиКα-излучении с графитовым монохроматором. Образцы для рентгеновских измерений готовили путем растирания кристаллов с последующим прессованием их в специальном держателе. Для снятия механических напряжений, возникающих при растирании кристаллов, проводили их отжиг в вакууме при 650 К в течение ~2 ч.

Измерения уд. электропроводности (σ) и эффекта Холла проводили по стандартной методике, описанной в [5, 6]. Образцы для измерений готовили в виде параллелепипедов с размерами 8×2×1 мм³. В качестве контактов использовали индий. Все измерения проводили в вакууме в интервале температур 80–350 К. Измерения теплового расширения проводили на кварцевом дилатометре в интервале

Измерения теплового расширения проводили на кварцевом дилатометре в интервале температур 80–700 К [7] на образцах монокристаллов, средними размерами 10×4 ×3 мм³. Перед измерениями установку вакуумировали, что препятствовало окислению образца. Температуру измеряли хромель-алюмелевой термопарой. Нагревание образцов вели со скоростью ~ 3–5 К/мин. Такие скорости нагрева позволяли получать воспроизводимые результаты. Погрешность измерений составляла ±5 %.

Теплопроводность измеряли абсолютным методом [8], в интервале температур 300–500 К. Образцы представляли собой параллелепипеды размеры которых аналогичны размерам, которые использовались при измерении теплового расширения. Для создания теплового контакта между образцом, холодильником и нагревателем использовали серебряную пасту.

Результаты и их обсуждение

Данные микрозондовых рентгеноспектральных измерений показали, что содержание элементов в выращенных монокристаллах $AgIn_5S_8$ следующее: Ag : In : S = 7,06 : 35,50 : 57,44, что согласуется с заданным составом в исходной шихте Ag : In : S = 7,14 : 35,71 : 57,15 (ат. %).

Проведенные рентгеновские исследования показали, что на дифрактограмме AgIn₅S₈ присутствуют индексы отражения, характерные для кубической структуры шпинели (рис. 1). Параметр элементарной ячейки, рассчитанный методом наименьших квадратов, равен $a = 10,827\pm0,005$ Å.

Рис. 1. Дифрактограмма тройного соединения AgIn₅S₈

Проведенные электрические измерения показали, что выращенные монокристаллы обладают *n*-типом проводимости. Концентрация свободных носителей заряда составляет ~ 10^{19} см⁻³. На рис. 2 представлена температурная зависимость уд. электропроводность (σ) монокристаллов AgIn₅S₈. Видно, что в исследуемом интервале температур σ практически остается величиной постоянной.

Рис. 2. Температурная зависимость уд. электропроводности монокристаллов $AgIn_5S_8$

На рис. 3 показана температурная зависимость холловской подвижности (µ) для указанных монокристаллов. Видно, что в интервале 80–120 К подвижность изменяется незначительно, выше 120 К происходит ее резкое понижение, что характерно для кристаллов полупроводниковых материалов.

Результаты измерений теплового расширения представлены на рис. 4 и 5. Из представленных рисунков видно, что на температурных зависимостях удлинения ($\Delta l/l$) и коэффициента теплового расширения (α_L) в исследованном интервале температур никаких аномалий не наблюдается, что свидетельствует об отсутствии фазовых превращений в соединении AgIn₅S₈.

Рис. 3. Температурная зависимость холловской подвижности монокристаллов AgIn₅S₈

Рис. 4. Температурная зависимость удлинения (Δl/l) монокристаллов AgIn₅S₈

Анализ полученных результатов показывает, что α_L для соединения AgIn₅S₈ очень слабо изменяется в интервале температур 90–175 К (1,56–1,90)·10⁶ К⁻¹, затем наблюдается резкий рост α_L вплоть до 12,6·10⁶ К⁻¹ (350 К), после чего температура на величину α_L оказывает слабое влияние. Такое изменение α_L связано, по-видимому, с количеством дефектов в тройном соединении AgIn₅S₈. Полученные авторами результаты для указанного соединения несколько отличаются от данных, представленных в работах [9, 10], что связано, вероятнее всего, с разными методиками измерения теплового расширения. В [9, 10] тепловое расширение измеряли рентгеновским методом и, как указано в [7], рентгеновский и дилатометрический методы определения коэффициента линейного теплового расширения дают разные по физической сущности результаты. Рентгеновским методом определяют коэффициент теплового расширения кристаллической структуры, а дилатометрическим – непосредственно материала.

Рис. 5. Температурная зависимость коэффициента теплового расширения монокристаллов $AgIn_5S_8$

Полученные значения коэффициентов теплового расширения были использованы для расчета характеристической температуры Дебая (Θ_D) и среднеквадратичных динамических смещений атомов ($\sqrt{u^2}$) по формулам $\Theta_D^{\alpha} = 14,3/\alpha^{1/2} \overline{A}^{1/2} \overline{\nabla}^{1/3}$, (1) $\overline{u}^2 = 4,3 \times 10^{-14} \frac{\left[\frac{D(\Theta/T)}{\Theta/T} + \frac{1}{4}\right]}{\overline{A}\Theta}$, (2)

где α_L – коэффициент теплового расширения, \bar{A} – средняя атомная масса, \bar{V} – средний атомный объем, $D(\theta^{\alpha}_D/T)$ – функция Дебая [11].

Данные расчетов величин $\theta^{\alpha}_{\rm D}$ и $\sqrt{\overline{u}^2}$ по выражениям (1) и (2) представлены в таблице. Видно, что с ростом температуры значения температуры Дебая уменьшаются, а среднеквадратичные динамические смещения атомов увеличиваются. Такое поведение величин $\theta^{\alpha}_{\rm D}$ и $\sqrt{u^2}$ свидетельствует об ослаблении химической связи в соединения AgIn₅S₈ с ростом температуры. На рис. 6 представлена температурная зависимость теплопроводности (χ) монокристаллов AgIn₅S₈. Как следует из рис. 6, в диапазоне 300–500 К теплопроводность AgIn₅S₈ имеет вид T^{-n} , где n < 1. Следовательно, в этом диапазоне температур теплопроводность кристалла определяется преимущественно решеточным вкладом. Отличие степенного коэффициента n от 1 свидетельствует о существенном влиянии дефектности кристалла на процессы теплопроводности, следствием чего является слабая зависимость χ от температуры.

Коэффициенты теплового расширения (α L), температура Дебая (Θ D) и среднеквадратичные динамические смещения атомов ($\sqrt{u^2}$) соединения AgIn₅S₈

Т, К	$\alpha_{L} \cdot 10^{6}, K^{-1}$	$\Theta_{\rm D},{ m K}$	$\sqrt{\overline{u^2}}$,Å	Т, К	$\alpha_{L} \cdot 10^{6}, K^{-1}$	Θ _D , K	$\sqrt{u^2}$, Á
90	1,56	385	0,077	243	7,07	181	0,221
95	1,57	384	0,079	260	8,42	166	0,248
133	1,58	383	0,088	290	11,05	145	0,296
148	1,60	381	0,093	350	12,61	136	0,344
162	1,73	366	0,099	402	12,63	135	0,370
174	1,92	347	0,108	508	12,68	135	0,416
196	3,00	278	0,136	586	12,71	135	0,446
207	3,99	241	0,159	680	12,73	135	0.480
222	5,26	210	0,186				

Рис. 6. Температурная зависимость теплопроводности монокристаллов AgIn₅S₈

Заключение

На монокристаллах тройного соединения AgIn₅S₈, полученных методом Бриджмена (вертикальный вариант), проведены измерения электропроводности, теплового расширения и теплопроводности. По найденным значениям коэффициента теплового расширения рассчитаны температуры Дебая ($\theta^{\alpha}_{\rm D}$) и среднеквадратичные динамические смещения атомов ($\sqrt{\overline{u}^2}$). Показано, что с ростом температуры $\theta^{\alpha}_{\rm D}$ уменьшается, а $\sqrt{\overline{u}^2}$ увеличивается. Абсолютным методом измерена теплопроводность (χ) монокристаллов AgIn₅S₈. Теплопроводность в измеренном интервале температур описывается степенной зависимостью T^{-n} , где n < 1, что связано с процессами рассеяния на дефектах кристаллической решетки.

Работа выполнена при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (проект № Ф16–028).

GROWTH AND PROPERTIES OF AgIn₅S₈ SINGLE CRYSTALS

I.V. BODNAR, H.T.M. ALREKABE, T.G. BARUGU

Abstract

Single crystals of the AgIn₅S₈ ternary compound are grown by planar crystallization of the melt. The composition and structure of the crystals are established. The specific expansion is measured by dilatometric technique at range 80–700 K, and the coefficients of thermal expansion are calculated. From the data, the Debye temperatures (Θ_D) and the root-mean-square dynamic displacements of atoms ($\sqrt{\overline{u^2}}$) in AgIn₅S₈ compound are calculated. Thermal conductivity of AgIn₅S₈ single crystal has been measured in temperature interval 300–600 K by absolute method. It is found that the thermal conductivity in the entire measured temperature range is described by a power function of the form T^{-n} , where n < 1.

Keywords: single crystals, structure, unit cell parameter, electrical conductivity, thermal expansion.

Список литературы

- 1. Абрикосов Н.Х., Банкина В.Ф., Порецкая Л.В. и др. Полупроводниковые халькогениды и сплавы на их основе. М., 1975.
- 2. Usujima A., Takeuchi S., Endo S. et al. // Jap. J. Appl. Phys. 1981. Vol. 20, № 7. P. 505–507.
- 3. Боднарь И.В., Кудрицкая Е.А., Полушина И.К. и др. // ФТП. 1998. Т. 32, № 9. С. 1043–1046.
- 4. Боднарь И.В., Гременок В.Ф., Рудьи В.Ю. и др. // ФТП. 1999. Т. 33, № 9. С. 805-809.
- 5. Рембеза С.И. Методы измерения основных параметров полупроводников. Воронеж, 1989.
- 6. Кучис Е.В. Методы исследования эффекта Холла. М., 1974.
- 7. Новикова С.И. Тепловое расширение твердых тел. М., 1974.
- 8. Могилевский Б.М., Чудновский А.Ф. Теплопроводность полупроводников. М., 1972.
- 9. Kistaiah P., Venudhar Y.C., Murthy K.S. et al. // J. Mater. Science. 1981. T. 16, № 6. C. 1713–1716.
- 10. Orlova N.S., Bodnar I.V., Kudritskaya E.A. // Cryst. Res. Technol. 1998. T. 33, № 1. C. 37-42.
- 11. Францевич И.И. Вопросы порошковой металлургии и прочности материалов. Киев, 1956.