ВЛИЯНИЕ ЧАСТОТНОЙ ЗАВИСИМОСТИ ЗАТУХАНИЯ СИГНАЛА НА КАЧЕСТВО РЕШЕНИЯ ЗАДАЧ ГИДРОЛОКАЦИИ

Белорусский государственный университет информатики и радиоэлектроники г. Минск, Республика Беларусь

Чан Тай Чонг

Гейстер С.Р – д-р. техн. наук, проф.

Рассмотрена частотная зависимость коэффициента затухания акустической волны при распространении в воде. Анализируется влияние затухания на спектральную и временную структуры принятого сигнала.

На качество гидролокации влияет затухание акустической волны при распространении в воде. Затухание влияет как на дальность действия локатора, так и на качество формирования изображений дна.

Затухание акустической волны при распространении в водной среде обусловлено двумя основными причинами: расширение фронта волны и потери из-за поглощения и рассеяния на неоднородностях.

Основными причинами поглощения акустических волн является вязкость морской воды, теплопроводность и релаксационные процессы, обусловленные растворенными в воде солями. В [1] приведена формула частотной зависимости коэффициента поглощения, установленной Маршем и Мункиным:

$$\beta(f, \mathbf{\psi}) = \left(\frac{A_I S f_T(T^0) f^2}{\left(f_T(T^0)\right)^2 + f^2} + \frac{B_{VP} f^2}{f_T(T^0)}\right) \times \left(1 - 6.54 \times 10^{-3} P\right) \times 8.686, \ \left[\partial E_{M}\right]$$

где *S* - соленость, [‰]; *f* - линейная частота, $[\kappa \Gamma \mu]$; $A_I = 2,34 \times 10^{-6}$ - постоянная релаксации; $B_{VP} = 3,38 \times 10^{-6}$ - постоянная вязкости воды; *P* - гидростатическое давление, $[M\Pi a]$; T^0 - температура среды, $\begin{bmatrix} 0 \\ - \\ F_T \end{bmatrix}$; $f_T (T^0)$ - частота релаксации, зависящая от температуры и определяемая как

$$f_T(T^0) = 21.9 \times 10^{\left(6 - \frac{1520}{T^0 + 273}\right)}, [\kappa \Gamma \mu].$$

Анализ сигнала проведем для трассы распространения «точка излучения – элемент отражения - точка приема». Амплитудно-частотную характеристику (АЧХ) трассы распространения в свободном пространстве можно представить выражением [2]:

$$G_{SR}(\omega, r, \psi) = |G_{SR}(\omega, r, \psi)| \exp\left(-i\frac{\omega r}{c_{\nu}(\psi)}\right)$$

где ψ - вектор параметров водной среды распространения (T^0 , P, S и пр.); $c_v(\psi)$ - скорость звука, зависящая от параметров водной среды, [m/c]; $r = r_{zs} + r_{ot}$ - сумма расстояний от источника излучения до элемента поверхности дна (r_{zs}) и от элемента дна до приемной антенны (r_{ot}), [m].

Модуль АЧХ среды можно представить в виде:

 $|G_{SR}(\omega, r, \psi)| = K_P(r) D_{SR}(\omega, r_{zs}, \psi) D_{SR}(\omega, r_{ot}, \psi),$

в котором $K_P(r)$ учитывает уменьшение амплитуды за счет расширения фронта, а сомножитель $D_{SR}(\omega, r, \psi) = D_{SR}(\omega, r_{zs}, \psi) D_{SR}(\omega, r_{ot}, \psi)$ является некомплексным и учитывает затухание сигнала на разных частотах из-за вязкости и теплопроводности.

С учетом ограничений спектр сигнала в точке приема $G_s(\omega, r, \psi)$ можно представить выражением:

$$G_{s}(\omega, r, \mathbf{\psi}) = G_{0}(\omega - \omega_{0})G_{SR}(\omega, r, \mathbf{\psi}),$$

где $G_0(\omega)$ - спектр зондирующего сигнала (3С).

Временная структура сигнала в точке приема $u_s(t,r)$ определяется обратным преобразованием Фурье от его спектра.

Проиллюстрируем влияние частотной зависимости коэффициента затухания примерами моделирования при условиях: коэффициенты электроакустического и акустоэлектрического преобразований при передаче и приеме единичные, ЗС на входе электроакустического преобразователя – линейно-частотно-модулированный с амплитудой $E_0 = 1B$, начальной фазой $\varphi_0 = 0$, несущей частотой $f_0 = 75\kappa\Gamma q$, шириной спектра $\Delta f_M = 7,5\kappa\Gamma q$, и длительностью $T_0 = 0,02c$. На рис. 1 представлены полученные путем расчета временные и спектральные структуры сигнала, отраженного от объекта на глубине z = 1500M, с затуханием акустических волн в морской воде из-за вязкости и теплопроводности. Важно отметить, что параметры среды по мере движения акустической волны вниз (в глубину) и обратно изменялись. При расчетах это учитывалось в модели затухания путем использования кусочно-ступенчатых аппроксимаций параметров $T_0(z)$, S(z), P(z), $c_v(\psi, z)$ в соответствии с глубиной z.

Глубина, М	Параметры			
	Температура, ⁰ С	Соленость, ‰	Давление, МПа	Скорость звука, м/с
0-100	23	34,8	0,613	1531
100-200	20	34,85	1,632	1524
200-300	17	34,85	2,652	1517
300-400	14	34,7	3,671	1509
400-500	10	34,4	4,69	1497
500-600	7,5	34,4	5,709	1489
600-700	6	34,3	6,73	1485
700-800	5	34,4	7,75	1482
800-900	4	34,4	8,77	1482
900-1000	2,5	34,4	9,79	1482
1000-1100	2,5	34,7	10,81	1484
1100-1200	2,5	34,7	11,83	1479
1200-1300	2,5	34,7	12,8	1481
1300-1400	2,5	34,7	13,86	1482
1400-1500	2.5	34.7	14.88	1484

Параметры морской среды в зависимости от глубины

Рис.1 - Отраженный сигнала: а) спектральная структура; б) временная структура

Потери поглощения и рассеяния являются частотно зависимыми и приводят к искажениям спектральной и, соответственно, временной структуры сигналов. Это вызывает снижение дальности действия и качества изображений.

Список использованных источников:

1. Яковлев А.Н., Каблов Г.П. Гидролокаторы ближнего действия. – Л.: Судостроение, 1983. – 200с.

 Гейстер С.Р., Быков Р.В., Джеки А. М. Эволюция временной и спектральной структур акустического сигнала выстрела (взрыва) при распространении в воздухе / С.Р. Гейстер, Р.В. Быков, А. М Джеки // Вестник Военной академии Республики Беларусь. – 2007. - №4(17). – С. 67 – 75.

3. Шокальский Ю.М. Океанография. – Л.: Гидрометеоиздат, 1959. – 537с.