Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/10307
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKostyukova, O. I.-
dc.contributor.authorTchemisova, T. V.-
dc.date.accessioned2016-11-25T07:38:31Z-
dc.date.accessioned2017-07-27T12:23:25Z-
dc.date.available2016-11-25T07:38:31Z-
dc.date.available2017-07-27T12:23:25Z-
dc.date.issued2015-
dc.identifier.citationKostyukova, O. I. Convex SIP Problems with Finitely Representable Compact Index Sets: Immobile Indices and the Properties of the Auxiliary NLP Problem / O. I. Kostyukova, T. V. Tchemisova // Set-Valued and Variational Analysis . – 2015. - Vol. 23. - Р. 519-546.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/10307-
dc.description.abstractIn the paper, we consider a problem of convex Semi-Infinite Programming with a compact index set defined by a finite number of nonlinear inequalities. While studying this problem, we apply the approach developed in our previous works and based on the notions of immobile indices, the corresponding immobility orders and the properties of a specially constructed auxiliary nonlinear problem. The main results of the paper consist in the formulation of sufficient optimality conditions for a feasible solution of the original SIP problem in terms of the optimality conditions for this solution in a specially constructed auxiliary nonlinear programming problem and in study of certain useful properties of this finite problem.ru_RU
dc.language.isoenru_RU
dc.publisherSpringerru_RU
dc.subjectпубликации ученыхru_RU
dc.subjectSemi-Infiniteru_RU
dc.subjectoptimality conditionsru_RU
dc.subjectimmobile indicesru_RU
dc.subjectрrogrammingru_RU
dc.titleConvex SIP Problems with Finitely Representable Compact Index Sets: Immobile Indices and the Properties of the Auxiliary NLP Problemru_RU
dc.typeArticleru_RU
Appears in Collections:Публикации в зарубежных изданиях

Files in This Item:
File Description SizeFormat 
091012.docx15.03 kBMicrosoft Word XMLView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.