Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/11035
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMukha, V. S.-
dc.date.accessioned2016-12-28T06:57:30Z-
dc.date.accessioned2017-07-27T11:59:18Z-
dc.date.available2016-12-28T06:57:30Z-
dc.date.available2017-07-27T11:59:18Z-
dc.date.issued2016-
dc.identifier.citationMukha, V. S. Minimum distance from point to linear variety in Euclidean space of the two-dimensional matrices / V. S. Mukha // Computer Data Analysis and Modeling. Theoretical and applied stochastics. Proceedings of the XI International Conference (Minsk, September 6 – 10, 2016). – Minsk: Publishing center of BSU, 2016. – P. 218 – 221.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/11035-
dc.description.abstractThis work relates to the problem of linear approximation of multidimensional statistical data. Instead of the approach of regression analysis, we want to use another approach which is to minimize of the sum of the squares of the per-pendicular distances from the system of points to the approximating plane. We receive the formula of minimum distance from point to linear variety in Euclidean space of the two-dimensional matrices as a first step in solving the problem.ru_RU
dc.language.isoenru_RU
dc.publisherMinskru_RU
dc.subjectпубликации ученыхru_RU
dc.subjectlinear varietyru_RU
dc.subjectapproximation of multidimensional statistical dataru_RU
dc.subjectperpendicular distancesru_RU
dc.titleMinimum distance from point to linear variety in Euclidean space of the two-dimensional matricesru_RU
dc.typeArticleru_RU
Appears in Collections:Публикации в изданиях Республики Беларусь

Files in This Item:
File Description SizeFormat 
Minimum.pdf368.38 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.