DC Field | Value | Language |
dc.contributor.author | Dolbin, A. V. | - |
dc.contributor.author | Rozaliev, V. | - |
dc.contributor.author | Orlova, Y. | - |
dc.contributor.author | Fomenkov, S. | - |
dc.date.accessioned | 2019-02-27T11:38:26Z | - |
dc.date.available | 2019-02-27T11:38:26Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Recognition of Sarcastic Sentences in the Task of Sentiment Analysis / Dolbin A. V. [et al.] // Открытые семантические технологии проектирования интеллектуальных систем = Open Semantic Technologies for Intelligent Systems (OSTIS-2019) : материалы международной научно-технической конференции, Минск, 21 - 23 февраля 2019 г. / Белорусский государственный университет информатики и радиоэлектроники; редкол.: В. В. Голенков (гл. ред.) [и др.]. - Минск, 2019. - С. 293 - 296. | ru_RU |
dc.identifier.uri | https://libeldoc.bsuir.by/handle/123456789/34543 | - |
dc.description.abstract | This article is devoted to the sarcasm recognition in the text written in a natural language. The main
goal is to increase the accuracy of sentiment analysis. The
sentiment level determination of a text that describes the
appearance of a person was chosen as a domain area
for the experiment. At first, references to the personality
and elements that describes appearance from text are
detected using the method of latent semantic analysis. The
next step is to evaluate the attitude to a person in text
using pre-labeled sentiment dictionary. At this stage, the
method of recognising sarcastic sentences that contains a
description of the appearance is used. The sentiment level
should be re-evaluated in the person information model.
The results of the experiment showed that the recognition
of sarcasm based on the morphological features of words
and the frequency characteristics of the sentences does
not effectively increase the accuracy of sentiment level
determination. | ru_RU |
dc.language.iso | en | ru_RU |
dc.publisher | БГУИР | ru_RU |
dc.subject | материалы конференций | ru_RU |
dc.subject | sentiment analysis | ru_RU |
dc.subject | named entity recognition | ru_RU |
dc.subject | text mining | ru_RU |
dc.title | Recognition of Sarcastic Sentences in the Task of Sentiment Analysis | ru_RU |
dc.title.alternative | Распознавание предложений содержащих сарказм в задаче анализа тональности | ru_RU |
dc.type | Статья | ru_RU |
Appears in Collections: | OSTIS-2019
|