Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/34543
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDolbin, A. V.-
dc.contributor.authorRozaliev, V.-
dc.contributor.authorOrlova, Y.-
dc.contributor.authorFomenkov, S.-
dc.date.accessioned2019-02-27T11:38:26Z-
dc.date.available2019-02-27T11:38:26Z-
dc.date.issued2019-
dc.identifier.citationRecognition of Sarcastic Sentences in the Task of Sentiment Analysis / Dolbin A. V. [et al.] // Открытые семантические технологии проектирования интеллектуальных систем = Open Semantic Technologies for Intelligent Systems (OSTIS-2019) : материалы международной научно-технической конференции, Минск, 21 - 23 февраля 2019 г. / Белорусский государственный университет информатики и радиоэлектроники; редкол.: В. В. Голенков (гл. ред.) [и др.]. - Минск, 2019. - С. 293 - 296.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/34543-
dc.description.abstractThis article is devoted to the sarcasm recognition in the text written in a natural language. The main goal is to increase the accuracy of sentiment analysis. The sentiment level determination of a text that describes the appearance of a person was chosen as a domain area for the experiment. At first, references to the personality and elements that describes appearance from text are detected using the method of latent semantic analysis. The next step is to evaluate the attitude to a person in text using pre-labeled sentiment dictionary. At this stage, the method of recognising sarcastic sentences that contains a description of the appearance is used. The sentiment level should be re-evaluated in the person information model. The results of the experiment showed that the recognition of sarcasm based on the morphological features of words and the frequency characteristics of the sentences does not effectively increase the accuracy of sentiment level determination.ru_RU
dc.language.isoenru_RU
dc.publisherБГУИРru_RU
dc.subjectматериалы конференцийru_RU
dc.subjectsentiment analysisru_RU
dc.subjectnamed entity recognitionru_RU
dc.subjecttext miningru_RU
dc.titleRecognition of Sarcastic Sentences in the Task of Sentiment Analysisru_RU
dc.title.alternativeРаспознавание предложений содержащих сарказм в задаче анализа тональностиru_RU
dc.typeСтатьяru_RU
Appears in Collections:OSTIS-2019

Files in This Item:
File Description SizeFormat 
Dolbin_Recognition.PDF143 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.