Skip navigation
Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEremeev, A.-
dc.contributor.authorKozhukhov, A.-
dc.contributor.authorGuliakina, N.-
dc.contributor.authorЕремеев, А.-
dc.contributor.authorКожухов, А.-
dc.contributor.authorГулякина, Н.-
dc.identifier.citationEremeev, A. Implementation of intelligent forecasting subsystem of real-time / A. Eremeev, A. Kozhukhov, N. Guliakina // Открытые семантические технологии проектирования интеллектуальных систем = Open Semantic Technologies for Intelligent Systems (OSTIS-2019) : материалы международной научно-технической конференции, Минск, 21 - 23 февраля 2019 г. / Белорусский государственный университет информатики и радиоэлектроники; редкол.: В. В. Голенков (гл. ред.) [и др.]. - Минск, 2019. - С. 201 - 204.ru_RU
dc.description.abstractThe paper describes architecture of intelligent forecasting subsystem of real-time based on multiagent temporal differences reinforcement learning, statistical module and monitoring module with milestone anytime algorithm. Analysis of anytime algorithms were made in terms of using into the forecasting subsystem type of intelligent decision support system of real-time for improving performance and reducing response and execution time. The considered tools can be used to implement the possibility of self-learning and adaptation both in the intelligent systems of real-time created on their basis, and in the actual tools for creating such systems. The work was supported by BRFFR projects 17-07-00553 a, 18-51-00007 Bel a, F16R-102.ru_RU
dc.subjectматериалы конференцийru_RU
dc.subjectartificial intelligenceru_RU
dc.subjectintelligent systemru_RU
dc.subjectreal timeru_RU
dc.subjectreinforcement learningru_RU
dc.subjectdecision supportru_RU
dc.subjectanytime algorithmru_RU
dc.titleImplementation of intelligent forecasting subsystem of real-timeru_RU
dc.title.alternativeРеализация интеллектуальной подсистемы прогнозирования реального времениru_RU
Appears in Collections:OSTIS-2019

Files in This Item:
File Description SizeFormat 
Eremeev_Implementation.PDF155,97 kBAdobe PDFView/Open
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.