Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/36834
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMozhey, N. P.-
dc.date.accessioned2019-10-22T09:40:45Z-
dc.date.available2019-10-22T09:40:45Z-
dc.date.issued2019-
dc.identifier.citationMozhey, N. P. Equiaffine Connections on Three-Dimensional Pseudo-Riemannian Spaces / N. P. Mozhey // Lobachevskii Journal of Mathematics. – 2019. – Vol. 40, № 8. – P. 1194–1203. – DOI : https://doi.org/10.1134/S1995080219080183.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/36834-
dc.description.abstractThe question of description equiaffine connections on a smooth manifold is studied. In general, the purpose of the research is quite complicated. Therefore, it is natural to consider this problem in a narrower class of pseudo-Riemannian manifolds, for example, in the class of homogeneous pseudo-Riemannian manifolds. In this paper for all three-dimensional Riemannian and pseudo-Riemannian homogeneous spaces, it is determined under what conditions the connection is equiaffine (locally equiaffine). In addition, equiaffine (locally equiaffine) connections, torsion tensors and Ricci tensors are written out in explicit form.ru_RU
dc.language.isoenru_RU
dc.publisherPleiades Publishingru_RU
dc.subjectпубликации ученыхru_RU
dc.subjectEquiaffine connectionru_RU
dc.subjectPseudo-Riemannian spaceru_RU
dc.subjectLie algebraru_RU
dc.subjectTorsion tensorru_RU
dc.subjectRicci tensorru_RU
dc.titleEquiaffine Connections on Three-Dimensional Pseudo-Riemannian Spacesru_RU
dc.typeСтатьяru_RU
Appears in Collections:Публикации в зарубежных изданиях

Files in This Item:
File Description SizeFormat 
Mozhey_Equiaffine.pdf76.61 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.