Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/37244
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKhinevich, Nadia-
dc.contributor.authorZavatski, Sergey-
dc.contributor.authorKholyavo, Victor-
dc.contributor.authorBandarenka, Hanna-
dc.date.accessioned2019-11-14T13:12:21Z-
dc.date.available2019-11-14T13:12:21Z-
dc.date.issued2019-
dc.identifier.citationBimetallic nanostructures on porous silicon with controllable surface plasmon resonance / N. Khinevich [and others] // The European Physical Journal Plus. – 2019. – Vol. 134, Issue 2. – P. 75. – DOI: https://doi.org/10.1140/epjp/i2019-12567-4.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/37244-
dc.description.abstractThe most intensive surface plasmon resonance (SPR) band is typical for the metallic particles of 10–150nm diameters. The SPR band of such nanoparticles is usually narrow and allows using just one laser (i.e. limited range of excitation wavelength) to achieve the maximal enhancement of electromagnetic field near metallic nanostructures caused by surface plasmon oscillations. It hinders usability of plasmonic nanostructures in some application including surface enhanced Raman scattering (SERS) spectroscopy. To overcome this hurdle enlarged metallic nanostructures are fabricated resulting in a broadening of the SPR band due to additional oscillation modes. However, the SPR bands of the enlarged particles are characterized by less intensity and weak enhancement at different wavelengths. In this paper, we proposed an alternative way for the SPR band broadening by use of bimetallic nanostructures on a sculptured template. Plasmonic substrates were fabricated by sequential copper electroplating and silver electroless deposition on porous silicon. Presented data implies that variation in morphology and ratio of the silver/copper nanostructures allow to control position of their SPR band from blue to near-infrared (IR) range. It is shown that SERS-spectroscopy with the fabricated nanostructures provide equal detection limits of rhodamine 6G under red and near-IR excitation wavelengths.ru_RU
dc.language.isoenru_RU
dc.publisherSpringer Nature, Switzerland AGru_RU
dc.subjectпубликации ученыхru_RU
dc.subjectBimetallic nanostructuresru_RU
dc.subjectsurface enhanced Raman scatteringru_RU
dc.titleBimetallic nanostructures on porous silicon with controllable surface plasmon resonanceru_RU
dc.typeСтатьяru_RU
Appears in Collections:Публикации в изданиях других стран

Files in This Item:
File Description SizeFormat 
Khinevich_Bimetallic.pdf155,89 kBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.