Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/37245
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKostyukova, O. I.-
dc.contributor.authorTchemisova, T. V.-
dc.date.accessioned2019-11-14T13:16:59Z-
dc.date.available2019-11-14T13:16:59Z-
dc.date.issued2018-
dc.identifier.citationKostyukova, O. I. Optimality conditions for linear copositive programming problems with isolated immobile indices / Kostyukova O. I., Tchemisova T. V. // Optimization : A Journal of Mathematical Programming and Operations Research. – 2018. – [б/н]. – DOI: 10.1080/02331934.2018.1539482.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/37245-
dc.description.abstractIn the present paper, we apply our recent results on optimality for convex semi-infinite programming to a problem of linear copositive programming (LCP). We prove explicit optimality conditions that use concepts of immobile indices and their immobility orders and do not require the Slater constraint qualification to be satisfied. The only assumption that we impose here is that the set of immobile indices consists of isolated points and hence is finite. This assumption is weaker than the Slater condition; therefore, the optimality conditions obtained in the paper are more general when compared with those usually used in LCP. We present an example of a problem in which the new optimality conditions allow one to test the optimality of a given feasible solution while the known optimality conditions fail to do this. Further, we use the immobile indices to construct a pair of regularized dual copositive problems and show that regardless of whether the Slater condition is satisfied or not, the duality gap between the optimal values of these problems is zero. An example of a problem is presented for which the standard strict duality fails, but the duality gap obtained by using the regularized dual problem vanishes.ru_RU
dc.language.isoenru_RU
dc.publisherTaylor & Francisru_RU
dc.subjectconvex programmingru_RU
dc.subjectsemi-infinite programmingru_RU
dc.subjectcopositive programmingru_RU
dc.subjectconstraint qualificationsru_RU
dc.subjectimmobile indexru_RU
dc.subjectoptimality conditionsru_RU
dc.subjectstrong dualityru_RU
dc.titleOptimality conditions for linear copositive programming problems with isolated immobile indicesru_RU
dc.typeСтатьяru_RU
Appears in Collections:Публикации в зарубежных изданиях

Files in This Item:
File Description SizeFormat 
Kostyukova_Optimality.pdf152.21 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.