Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/37310
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChepeleva, M.-
dc.contributor.authorYatskou, M.-
dc.contributor.authorNazarov, P.-
dc.date.accessioned2019-11-16T08:20:34Z-
dc.date.available2019-11-16T08:20:34Z-
dc.date.issued2019-
dc.identifier.citationChepeleva M. The statistical stability of consensus independent component analysis for RNA-SEQ data in cancer research / Chepeleva M., Yatskou M., Nazarov P. // Информационные технологии и системы 2019 (ИТС 2019) = Information Teсhnologies and Systems 2019 (ITS 2019) : материалы международной научной конференции, Минск, 30 октября 2019 г. / Белорусский государственный университет информатики и радиоэлектроники; редкол. : Л. Ю. Шилин [и др.]. – Минск, 2019. – С. 284 – 285.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/37310-
dc.description.abstractIndependent component analysis (ICA) became a part of the standard machine learning pipeline for genomics data analysis. The approach allows to correct technical biases and batch effects in transcriptomics datasets. Separated signals are successfully used to characterize biological functions, their weights might be used for diagnostics (cancer subtypes classification) and prognostics (survival prediction). Using weights of independent components as features for downstream analysis requires high reproducibility of decomposition. Here we investigated the stability of extracted components depending on ICA parameters and validated the optimal number of parallel consensus ICA runs that provided reproducible deconvolution. Also, we estimated the effect of parallel runs on the quality of lung cancer type classification (LUSC/LUAD) and gene enrichment analysis results. Finally, we estimated the boundary values for the number of components that allows detecting biologically relevant signals in smaller patient cohorts.ru_RU
dc.language.isoruru_RU
dc.publisherБГУИРru_RU
dc.subjectматериалы конференцийru_RU
dc.subjectindependent component analysisru_RU
dc.subjectsignificant gene signaturesru_RU
dc.titleThe statistical stability of consensus independent component analysis for RNA-SEQ data in cancer researchru_RU
dc.typeСтатьяru_RU
Appears in Collections:ИТС 2019

Files in This Item:
File Description SizeFormat 
Chepeleva_The.pdf536.54 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.