Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/38988
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMukha, V. S.-
dc.contributor.authorMalikova, I. G.-
dc.date.accessioned2020-05-29T11:25:36Z-
dc.date.available2020-05-29T11:25:36Z-
dc.date.issued2020-
dc.identifier.citationMukha, V. S. On the Bayesian multidimensional-matrix polynomial empirical regression / Vladimir S. Mukha, Irina G. Malikova // Scientific research of the SCO countries: synergy and integration: мaterials of the International Conference, Beijing, May 14, 2020. – China, 2020. – P. 159-165. - DOI: https://doi.org/10.34660/INF.2020.28.63870.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/38988-
dc.description.abstractThe problem of the parameters estima-tion for the polynomial in the input variables regression function is formu-lated and solved. The input and output variables of the regression function are multidimensional-matrices. The pa-rameters of the regression function are assumed to be random independent multidimensional matrices with Gauss-ian distribution and known mean value and dispersion matrices. The solution to this problem is a multidimensional-matrix system of the linear algebraic equations in multidimensional-matrix unknowns – function regression pa-rameters. We have considered particu-lar case of quadratic regression func-tion, for which we have obtained for-mulas for parameters calculation. The computer simulation of the quadratic regression functions is performed for the two-dimensional matrix input and output variables.ru_RU
dc.language.isoenru_RU
dc.publisherMinzu Universityru_RU
dc.subjectматериалы конференцийru_RU
dc.subjectregression functionru_RU
dc.subjectparameters estimationsru_RU
dc.subjectmaximum likelihoodru_RU
dc.titleOn the Bayesian multidimensional-matrix polynomial empirical regressionru_RU
dc.typeСтатьяru_RU
Appears in Collections:Публикации в зарубежных изданиях

Files in This Item:
File Description SizeFormat 
Mukha_On.pdf676.8 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.