DC Field | Value | Language |
dc.contributor.author | Mukha, V. S. | - |
dc.contributor.author | Malikova, I. G. | - |
dc.date.accessioned | 2020-05-29T11:25:36Z | - |
dc.date.available | 2020-05-29T11:25:36Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Mukha, V. S. On the Bayesian multidimensional-matrix polynomial empirical regression / Vladimir S. Mukha, Irina G. Malikova // Scientific research of the SCO countries: synergy and integration: мaterials of the International Conference, Beijing, May 14, 2020. – China, 2020. – P. 159-165. - DOI: https://doi.org/10.34660/INF.2020.28.63870. | ru_RU |
dc.identifier.uri | https://libeldoc.bsuir.by/handle/123456789/38988 | - |
dc.description.abstract | The problem of the parameters estima-tion for the polynomial in the input variables regression function is formu-lated and solved. The input and output variables of the regression function are multidimensional-matrices. The pa-rameters of the regression function are assumed to be random independent multidimensional matrices with Gauss-ian distribution and known mean value and dispersion matrices. The solution to this problem is a multidimensional-matrix system of the linear algebraic equations in multidimensional-matrix unknowns – function regression pa-rameters. We have considered particu-lar case of quadratic regression func-tion, for which we have obtained for-mulas for parameters calculation. The computer simulation of the quadratic regression functions is performed for the two-dimensional matrix input and output variables. | ru_RU |
dc.language.iso | en | ru_RU |
dc.publisher | Minzu University | ru_RU |
dc.subject | материалы конференций | ru_RU |
dc.subject | regression function | ru_RU |
dc.subject | parameters estimations | ru_RU |
dc.subject | maximum likelihood | ru_RU |
dc.title | On the Bayesian multidimensional-matrix polynomial empirical regression | ru_RU |
dc.type | Статья | ru_RU |
Appears in Collections: | Публикации в зарубежных изданиях
|