Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/45795
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGasitashvili, Z.-
dc.contributor.authorPhkhovelishvili, M.-
dc.contributor.authorArchvadze, N.-
dc.date.accessioned2021-11-04T08:39:24Z-
dc.date.available2021-11-04T08:39:24Z-
dc.date.issued2021-
dc.identifier.citationGasitashvili, Z. New Algorithm for Building Effective Model from Prediction Models Using Parallel Data / Gasitashvili Z., Phkhovelishvili M., Archvadze N. // Pattern Recognition and Information Processing (PRIP'2021) = Распознавание образов и обработка информации (2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus / United Institute of Informatics Problems of the National Academy of Sciences of Belarus. – Minsk, 2021. – P. 25–28.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/45795-
dc.description.abstractBuilding much more effective new hybrid models from prediction models, using parallel data is discussed. The algorithm for selection of model pairs and its advantage over any best prediction model is provided. The advantage of prediction models with higher number of pairs over lower number of pairs is shown and the algorithm of taking into consideration the “approximate coincidence” of predictions is discussed when selecting pairs.ru_RU
dc.language.isoenru_RU
dc.publisherUIIP NASBru_RU
dc.subjectматериалы конференцийru_RU
dc.subjectconference proceedingsru_RU
dc.subjectparallel dataru_RU
dc.subjectprediction modelsru_RU
dc.subjectapproximate accuracyru_RU
dc.subjectprobablity of prediction successru_RU
dc.titleNew Algorithm for Building Effective Model from Prediction Models Using Parallel Dataru_RU
dc.typeСтатьяru_RU
Appears in Collections:Pattern Recognition and Information Processing (PRIP'2021) = Распознавание образов и обработка информации (2021)

Files in This Item:
File Description SizeFormat 
Gasitashvili_New.pdf1.06 MBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.