Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/45820
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKrylova, N.-
dc.contributor.authorRed'kov, V. M.-
dc.date.accessioned2021-11-05T08:01:12Z-
dc.date.available2021-11-05T08:01:12Z-
dc.date.issued2021-
dc.identifier.citationKrylova, N. KCC-invariants-based geometrization of a theory of electromagnetic and spinor fields on the background of the Schwarzschild spacetime / N. Krylova, V. Red’kov // Nano-Desing, Tehnology, Computer Simulations=Нанопроектирование, технология, компьютерное моделирование (NDTCS-2021) : тезисы докладов XIX Международного симпозиума, Минск, 28-29 октября 2021 года / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: В. А. Богуш [и др.]. – Минск, 2021. – P. 37–38.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/45820-
dc.description.abstractWe apply the KCC-geometrical approach to study the radial equation systems arising in two quantum- mechanical problems, i.e. electromagnetic and spinor fields on the background of the Schwarzschild spacetime. The stability analysis in terms of the second invariant demonstrate the difference in the behavior of geodesics at r → ∞ for these two problems that may be associated with different structure of solution (discrete and continuous spectra). The vanishing of the 3-d, 4-th and 5-th invariants means that, in geometrical terms, there exists a nonlinear connection on the tangent bundle, with zero torsion and curvature.ru_RU
dc.language.isoenru_RU
dc.publisherБГУИРru_RU
dc.subjectматериалы конференцийru_RU
dc.subjectconference proceedingsru_RU
dc.subjectSchwarzschild spacetimeru_RU
dc.subjectKCC-invariantsru_RU
dc.titleKCC-invariants-based geometrization of a theory of electromagnetic and spinor fields on the background of the Schwarzschild spacetimeru_RU
dc.typeСтатьяru_RU
Appears in Collections:NDTCS 2021

Files in This Item:
File Description SizeFormat 
Krylova_KCC_invariants.pdf460.59 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.