Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/46942
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhao Di-
dc.date.accessioned2022-05-14T09:32:42Z-
dc.date.available2022-05-14T09:32:42Z-
dc.date.issued2022-
dc.identifier.citationZhao Di. Multi-class classification SVM methods / Zhao Di // Технологии передачи и обработки информации : материалы международного научно-технического семинара, Минск, март-апрель 2022 г. / Белорусский государственный университет информатики и радиоэлектроники. – Минск, 2022. – С. 85–87.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/46942-
dc.description.abstractSupport Vector Machine (SVM) was first proposed by Cortes and Vapnik in 1995. It is developed from the linear separable classification problem. The basic principle of SVM is to use a hyperplane to divide data into two categories, but in many classification problems, the sample is not linear, and the classification problem is multi-classification. We need to solve the multiclassification problem on a dichotomy basis.ru_RU
dc.language.isoenru_RU
dc.publisherБГУИРru_RU
dc.subjectматериалы конференцийru_RU
dc.subjectSupport Vector Machineru_RU
dc.subjectmulti-classificationru_RU
dc.titleMulti-class classification SVM methodsru_RU
dc.typeСтатьяru_RU
Appears in Collections:Технологии передачи и обработки информации : материалы международного научно-технического семинара (2022)

Files in This Item:
File Description SizeFormat 
Di_Multi_class.pdf85.63 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.