DC Field | Value | Language |
dc.contributor.author | Xueying, Y. | - |
dc.contributor.author | Baryskievic, I. A. | - |
dc.date.accessioned | 2022-05-14T12:47:06Z | - |
dc.date.available | 2022-05-14T12:47:06Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Xueying, Y. Human activity recognition based on AdaBoost ensemble classifier / Y. Xueying, I. A. Baryskievic // Технологии передачи и обработки информации : материалы международного научно-технического семинара, Минск, март-апрель 2022 г. / Белорусский государственный университет информатики и радиоэлектроники. – Минск, 2022. – С. 25–30. | ru_RU |
dc.identifier.uri | https://libeldoc.bsuir.by/handle/123456789/46956 | - |
dc.description.abstract | Human activity recognition (HAR) has been widely applied in the field and has good application prospects. Various classifiers in machine learning have shown excellent performance in their own fields. In this paper, AdaBoost ensemble classifier for human activity recognition is proposed to improve the performance of human activity recognition technology by using a weighted combination of multiple classifiers. The experimental results of HAR data were evaluated, and the total classification accuracy and receiver operating characteristic (ROC) area were calculated. The results show that the AdaBoost ensemble classifier framework proposed in this paper can accurately identify six kinds of human activities, and the AdaBoost ensemble classifier algorithm can
significantly improve the HAR recognition accuracy. | ru_RU |
dc.language.iso | en | ru_RU |
dc.publisher | БГУИР | ru_RU |
dc.subject | материалы конференций | ru_RU |
dc.subject | human activity recognition | ru_RU |
dc.subject | AdaBoost | ru_RU |
dc.subject | ensemble classifier | ru_RU |
dc.title | Human activity recognition based on AdaBoost ensemble classifier | ru_RU |
dc.type | Статья | ru_RU |
Appears in Collections: | Технологии передачи и обработки информации : материалы международного научно-технического семинара (2022)
|