Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/46957
Full metadata record
DC FieldValueLanguage
dc.contributor.authorXueying, Y.-
dc.date.accessioned2022-05-14T12:51:44Z-
dc.date.available2022-05-14T12:51:44Z-
dc.date.issued2022-
dc.identifier.citationXueying, Y. Human activity recognition based on random forest / Y. Xueying // Технологии передачи и обработки информации : материалы международного научно-технического семинара, Минск, март-апрель 2022 г. / Белорусский государственный университет информатики и радиоэлектроники. – Минск, 2022. – С. 77–81.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/46957-
dc.description.abstractWith the improvement of pattern recognition algorithm, human activity recognition (HAR) based on smart phone sensor data has become a highly concerned and rapidly developing research field. According to the basic principle of HAR, this paper proposes an activity recognition system based on random forest classifier. Data collection, data preprocessing and feature extraction are specified. The random forest classifier is summarized. The accuracy rate, TPR, FNR, PPV and FNR were used to evaluate HAR system proposed in this paper. Experimental results show that this study can accurately distinguish six basic activities, and the average accuracy of the random forest algorithm is 94,6 %.ru_RU
dc.language.isoenru_RU
dc.publisherБГУИРru_RU
dc.subjectматериалы конференцийru_RU
dc.subjecthuman activity recognitionru_RU
dc.subjectclassifierru_RU
dc.subjectrandom forest algorithmru_RU
dc.titleHuman activity recognition based on random forestru_RU
dc.typeСтатьяru_RU
Appears in Collections:Технологии передачи и обработки информации : материалы международного научно-технического семинара (2022)

Files in This Item:
File Description SizeFormat 
Xueying_Human2.pdf126.43 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.