Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/51589
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSilenkova, D. S.-
dc.contributor.authorZatsepina, M. I.-
dc.coverage.spatialМинскru_RU
dc.date.accessioned2023-05-26T06:43:34Z-
dc.date.available2023-05-26T06:43:34Z-
dc.date.issued2023-
dc.identifier.citationSilenkova, D. S. Neural network ChatGPT: a helping hand or a new competitor? / Silenkova D. S., Zatsepina M. I. // Электронные системы и технологии : сборник материалов 59-й научной конференции аспирантов, магистрантов и студентов БГУИР, Минск, 17–21 апреля 2023 г. / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: Д. В. Лихаческий [и др.]. – Минск, 2023. – С. 1181–1183.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/51589-
dc.description.abstractSince artificial intelligence attracts more attention in recent years, we analyzed one of the most advanced neural networks called Chat GPT. It was determined that neural networks are a type of artificial intelligence that simulate the work of the human brain and constantly adapt to new data inputs in order to become more efficient. The history, types and examples of neural networks are mentioned. The GPT-2 Output Detector which was developed to detect fake news and biased information generated by AI was described. The working principles of Chat GPT, benefits and risks connected with the use of this neural network are given in details. Different prospects of Chat GPT development are proposed.ru_RU
dc.language.isoenru_RU
dc.publisherБГУИРru_RU
dc.subjectматериалы конференцийru_RU
dc.subjectartificial intelligenceru_RU
dc.subjectneural networksru_RU
dc.subjectChat GPTru_RU
dc.subjectlanguage processingru_RU
dc.subjectspeech recognitionru_RU
dc.subjectpredictive analysisru_RU
dc.subjectimage and video recognitionru_RU
dc.titleNeural network ChatGPT: a helping hand or a new competitor?ru_RU
dc.typeArticleru_RU
Appears in Collections:Электронные системы и технологии : материалы 59-й конференции аспирантов, магистрантов и студентов (2023)

Files in This Item:
File Description SizeFormat 
Silenkova_Neural_network.pdf693.45 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.