DC Field | Value | Language |
dc.contributor.author | Wan, Z. W. | - |
dc.coverage.spatial | Минск | ru_RU |
dc.date.accessioned | 2023-06-14T05:44:19Z | - |
dc.date.available | 2023-06-14T05:44:19Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Wan, Z. W. Human physical activity recognition algorithm based on smartphone sensor data and convolutional neural network / Z. W. Wan // Информационная безопасность : сборник материалов 59-й научной конференции аспирантов, магистрантов и студентов БГУИР, Минск, 17–21 апреля 2023 г. / Белорусский государственный университет информатики и радиоэлектроники. – Минск, 2023. – С. 176–177. | ru_RU |
dc.identifier.uri | https://libeldoc.bsuir.by/handle/123456789/51990 | - |
dc.description.abstract | Human activity recognition (HAR) is a prominent application of advanced Machine Learning (ML) and Artificial
Intelligence (AI) techniques that utilizes computer vision to understand the semantic meanings of heterogeneous human actions. This paper describes a supervised learning method that can distinguish human actions based on data collected from practical human movements. This study proposes a HAR classification model based on a Convolutional Neural Network (CNN) and uses the collected human action signals. The model was tested on the WISDM dataset, which resulted in a 92 % classification accuracy. This approach will help to conduct further researches on the recognition of human activities based on their biomedical signals. | ru_RU |
dc.language.iso | en | ru_RU |
dc.publisher | БГУИР | ru_RU |
dc.subject | материалы конференций | ru_RU |
dc.subject | Human activity recognition | ru_RU |
dc.subject | machine learning | ru_RU |
dc.subject | convolutional neural network | ru_RU |
dc.title | Human physical activity recognition algorithm based on smartphone sensor data and convolutional neural network | ru_RU |
dc.type | Article | ru_RU |
Appears in Collections: | Информационная безопасность : материалы 59-й научной конференции аспирантов, магистрантов и студентов (2023)
|