Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/51994
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYang, Z. X.-
dc.contributor.authorChen, Z. Y.-
dc.contributor.authorH., Li-
dc.coverage.spatialМинскru_RU
dc.date.accessioned2023-06-14T06:11:39Z-
dc.date.available2023-06-14T06:11:39Z-
dc.date.issued2023-
dc.identifier.citationYang, Z. X. Human physical activity recognition algorithm based on smartphone data convolutional neural network and long short time memory / Z. X. Yang, Z. Y. Chen, H. Li // Информационная безопасность : сборник материалов 59-й научной конференции аспирантов, магистрантов и студентов БГУИР, Минск, 17–21 апреля 2023 г. / Белорусский государственный университет информатики и радиоэлектроники. – Минск, 2023. – С. 181–183.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/51994-
dc.description.abstractA deep learning framework for activity recognition based on smartphone acceleration sensor data, convolutional neural network (CNN) and long short-term memory (LSTM) is proposed in the paper. The proposed framework aims to improve the accuracy of human activity recognition (HAR) by combining the strengths of CNN and LSTM. The CNN is used to extract features from the acceleration data and the LSTM is used to model the temporal dependencies of the features. The proposed framework is evaluated on the publicly available dataset, it includes 6 different actions: walking, walking upstairs, walking downstairs, sitting, standing, laying. The physical activity recognition accuracy has reached 94 %.ru_RU
dc.language.isoenru_RU
dc.publisherБГУИРru_RU
dc.subjectматериалы конференцийru_RU
dc.subjectHARru_RU
dc.subjectCNNru_RU
dc.subjectLSTMru_RU
dc.subjectAcceleration sensorru_RU
dc.titleHuman physical activity recognition algorithm based on smartphone data convolutional neural network and long short time memoryru_RU
dc.typeArticleru_RU
Appears in Collections:Информационная безопасность : материалы 59-й научной конференции аспирантов, магистрантов и студентов (2023)

Files in This Item:
File Description SizeFormat 
Yang_Human_physical.pdf234.46 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.