Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/54282
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLeonov, I.-
dc.coverage.spatialМинскen_US
dc.date.accessioned2024-02-16T06:30:27Z-
dc.date.available2024-02-16T06:30:27Z-
dc.date.issued2023-
dc.identifier.citationLeonov, I. Performance Analysis for Sequential Statistical Discrimination of Gaussian Random Fields / I. Leonov // Pattern Recognition and Information Processing (PRIP'2023) = Распознавание образов и обработка информации (2023) : Proceedings of the 16th International Conference, October 17–19, 2023, Minsk, Belarus / United Institute of Informatics Problems of the National Academy of Sciences of Belarus. – Minsk, 2023. – P. 212–214.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/54282-
dc.description.abstractStochastic processes stand as a versatile tool for modeling and understanding random phenomena. These processes describe system evolution while taking into account randomness and uncertainty. Nowadays, stochastic processes find application in a variety of domains, such as modeling financial markets, monitoring manufacturing procedures and predicting disease spread. This paper proposes a sequential procedure for testing hypotheses concerning the correlational structure of random fields and their trends.en_US
dc.language.isoenen_US
dc.publisherBSUen_US
dc.subjectматериалы конференцийen_US
dc.subjectrandom fielden_US
dc.subjectsequential decision ruleen_US
dc.subjectGaussian random fielden_US
dc.subjectsequential analysisen_US
dc.titlePerformance Analysis for Sequential Statistical Discrimination of Gaussian Random Fieldsen_US
dc.typeArticleen_US
Appears in Collections:Pattern Recognition and Information Processing (PRIP'2023) = Распознавание образов и обработка информации (2023)

Files in This Item:
File Description SizeFormat 
Leonov_Performance.pdf261.76 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.