Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/54315
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPirshtuk, D.-
dc.coverage.spatialМинскen_US
dc.date.accessioned2024-02-22T06:24:01Z-
dc.date.available2024-02-22T06:24:01Z-
dc.date.issued2023-
dc.identifier.citationPirshtuk, D. Low-latency Human Portrait Segmentation Network Optimized for CPU Inference / D. Pirshtuk // Pattern Recognition and Information Processing (PRIP'2023) = Распознавание образов и обработка информации (2023) : Proceedings of the 16th International Conference, October 17–19, 2023, Minsk, Belarus / United Institute of Informatics Problems of the National Academy of Sciences of Belarus. – Minsk, 2023. – P. 186–192.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/54315-
dc.description.abstractIn this paper, we discuss a design of fast and lightweight neural networks for working in real-time under very strict resource constraints and describe a human portrait segmentation method with temporal consistency based on an encoder-decoder architecture with a state-of-the-art CPU optimized PP-LCNet backbone and a custom decoder. Proposed neural network can process about 150-500 frames per second using only a single CPU thread with high accuracy and can be used for virtual background replacements in video conferencing and other augmented reality cases.en_US
dc.language.isoenen_US
dc.publisherBSUen_US
dc.subjectматериалы конференцийen_US
dc.subjectportrait segmentationen_US
dc.subjectimage segmentationen_US
dc.subjectneural networksen_US
dc.subjectcomputer visionen_US
dc.subjectaugmented realityen_US
dc.titleLow-latency Human Portrait Segmentation Network Optimized for CPU Inferenceen_US
dc.typeArticleen_US
Appears in Collections:Pattern Recognition and Information Processing (PRIP'2023) = Распознавание образов и обработка информации (2023)

Files in This Item:
File Description SizeFormat 
Pirshtuk_Low_latency.pdf1.84 MBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.