Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/54317
Full metadata record
DC FieldValueLanguage
dc.contributor.authorQing Bu-
dc.contributor.authorWei Wan-
dc.contributor.authorLeonov, I.-
dc.coverage.spatialМинскen_US
dc.date.accessioned2024-02-22T06:55:24Z-
dc.date.available2024-02-22T06:55:24Z-
dc.date.issued2023-
dc.identifier.citationQing Bu. Hidden Object Masking using Deep Learning / Qing Bu, Wei Wan, I. Leonov // Pattern Recognition and Information Processing (PRIP'2023) = Распознавание образов и обработка информации (2023) : Proceedings of the 16th International Conference, October 17–19, 2023, Minsk, Belarus / United Institute of Informatics Problems of the National Academy of Sciences of Belarus. – Minsk, 2023. – P. 320–323.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/54317-
dc.description.abstractImage inpainting, the process of filling in missing or damaged regions within images, has witnessed a significant evolution in recent years, driven primarily by deep learning methodologies. This paper provides an overview of modern architectures used for image inpainting, and addresses how they can be applied to protect sensitive information.en_US
dc.language.isoenen_US
dc.publisherBSUen_US
dc.subjectматериалы конференцийen_US
dc.subjectimage inpaintingen_US
dc.subjectWGANen_US
dc.subjectgenerative adversarial networken_US
dc.subjectWGAINen_US
dc.subjectimage imputationen_US
dc.titleHidden Object Masking using Deep Learningen_US
dc.typeArticleen_US
Appears in Collections:Pattern Recognition and Information Processing (PRIP'2023) = Распознавание образов и обработка информации (2023)

Files in This Item:
File Description SizeFormat 
Qing_Bu_Hidden.pdf347.45 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.