Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/54352
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShibalko, S.-
dc.contributor.authorKharin, Y.-
dc.coverage.spatialМинскen_US
dc.date.accessioned2024-02-23T08:35:23Z-
dc.date.available2024-02-23T08:35:23Z-
dc.date.issued2023-
dc.identifier.citationShibalko, S. Parsimonious models of multivariate binary time series: statistical estimation and forecasting / S. Shibalko, Y. Kharin // Pattern Recognition and Information Processing (PRIP'2023) = Распознавание образов и обработка информации (2023) : Proceedings of the 16th International Conference, October 17–19, 2023, Minsk, Belarus / United Institute of Informatics Problems of the National Academy of Sciences of Belarus. – Minsk, 2023. – P. 296–299.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/54352-
dc.description.abstractThis paper is devoted to parsimonious models of multivariate binary time series. Consistent asymptotically normal statistical estimators for the parameters of proposed parsimonious models are constructed. Algorithms for statistical estimation of model parameters and forecasting of future states of time series are presented. Results of computer experiments on simulated and real statistical discrete-valued data are given.en_US
dc.language.isoenen_US
dc.publisherBSUen_US
dc.subjectматериалы конференцийen_US
dc.subjectbinary time seriesen_US
dc.subjectmultivariate dataen_US
dc.subjectstatistical estimationen_US
dc.subjectparsimonious modelsen_US
dc.subjectstatistical forecastingen_US
dc.titleParsimonious models of multivariate binary time series: statistical estimation and forecastingen_US
dc.typeArticleen_US
Appears in Collections:Pattern Recognition and Information Processing (PRIP'2023) = Распознавание образов и обработка информации (2023)

Files in This Item:
File Description SizeFormat 
Shibalko_Parsimonious.pdf429.35 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.