Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/54408
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGonchar, A. V.-
dc.contributor.authorTuzikov, A. V.-
dc.contributor.authorFur, K. V.-
dc.contributor.authorAndrianov, A. M.-
dc.coverage.spatialМинскen_US
dc.date.accessioned2024-02-27T09:49:18Z-
dc.date.available2024-02-27T09:49:18Z-
dc.date.issued2023-
dc.identifier.citationApplication of semi-supervised GAN in combination with JT-VAE for generation of small molecules with high binding affinity to the KasA enzyme of Mycobacterium tuberculosis / A. V. Gonchar [et al.] // Pattern Recognition and Information Processing (PRIP'2023) = Распознавание образов и обработка информации (2023) : Proceedings of the 16th International Conference, October 17–19, 2023, Minsk, Belarus / United Institute of Informatics Problems of the National Academy of Sciences of Belarus. – Minsk, 2023. – P. 114–117.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/54408-
dc.description.abstractSemi-supervised generative adversarial neural network trained on molecular graph embeddings produced by Junction Tree Variational Autoencoder was implemented and applied for de novo design of new potential inhibitors of Mycobacterium tuberculosis protein KasA.en_US
dc.language.isoenen_US
dc.publisherBSUen_US
dc.subjectматериалы конференцийen_US
dc.subjectmycobacterium tuberculosis (Mtb)en_US
dc.subjectgenerative adversarial neural network (GAN)en_US
dc.subjectvirtual screeningen_US
dc.titleApplication of semi-supervised GAN in combination with JT-VAE for generation of small molecules with high binding affinity to the KasA enzyme of Mycobacterium tuberculosisen_US
dc.typeArticleen_US
Appears in Collections:Pattern Recognition and Information Processing (PRIP'2023) = Распознавание образов и обработка информации (2023)

Files in This Item:
File Description SizeFormat 
Gonchar_Application.pdf357.55 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.