Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/54420
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGorodetskiy, A. E.-
dc.contributor.authorTarasova, I. L.-
dc.contributor.authorKrasavtseva, A. R.-
dc.coverage.spatialМинскen_US
dc.date.accessioned2024-02-28T08:03:05Z-
dc.date.available2024-02-28T08:03:05Z-
dc.date.issued2023-
dc.identifier.citationGorodetskiy, A. E. Logical-Linguistic and Logical-Probabilistic Methods of Image Classification in Decision-Making / A. E. Gorodetskiy, I. L. Tarasova, A. R. Krasavtseva // Pattern Recognition and Information Processing (PRIP'2023) = Распознавание образов и обработка информации (2023) : Proceedings of the 16th International Conference, October 17–19, 2023, Minsk, Belarus / United Institute of Informatics Problems of the National Academy of Sciences of Belarus. – Minsk, 2023. – P. 42–44.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/54420-
dc.description.abstractThe formation of images in the environment of choice and their classification is one of the important features that characterize the intelligence of modern robots. To do this, we are looking for logical patterns that can explain the available facts and predict the images being formed. Existing neural network methods require the use of pre-training on some training sample. Therefore, objects that are not included in the training sample cannot be classified. Also, the presence of contradictory examples in the training sample and a large noise level in the classified image has a significant impact on the decrease in classification accuracy. Purpose: Construction of new methods for searching for a set of logical connections inherent in the image, construction of classification models and development of structural and linguistic methods of classification of analyzed images. Methods: Logical-linguistic and logical-probabilistic classification methods are proposed, in which the decisive rule of classification is based on calculating the minimum sum of the squares of the differences in the values of the membership functions or probabilities of the elements of the attribute strings of reference and classified images. At the same time, to increase the accuracy of classification, the specified values of membership functions or probabilities can be multiplied by the coefficients of the significance of attributes. Result: The proposed classification algorithms were tested using computer simulation of classification using examples of image recognition in unmanned aerial vehicles, accident risk assessments when driving unmanned vehicles and risk assessments of project financing. The results of computer modeling showed that at a noise level of about 35% - 40%, the accuracy of image classification lay in the range of 78% - 95%. Practical significance: the research results can be used in various intelligent systems to improve the accuracy and speed of image classification.en_US
dc.language.isoenen_US
dc.publisherBSUen_US
dc.subjectматериалы конференцийen_US
dc.subjectimagesen_US
dc.subjectclassificationen_US
dc.subjectlogical-linguisticen_US
dc.subjectlogical-probabilistic methodsen_US
dc.subjecttestingen_US
dc.subjectcomputer modelingen_US
dc.titleLogical-Linguistic and Logical-Probabilistic Methods of Image Classification in Decision-Makingen_US
dc.typeArticleen_US
Appears in Collections:Pattern Recognition and Information Processing (PRIP'2023) = Распознавание образов и обработка информации (2023)

Files in This Item:
File Description SizeFormat 
Gorodetskiy_Logical.pdf292.69 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.