https://libeldoc.bsuir.by/handle/123456789/58700
Title: | Transformer-based denoising method for medical images |
Authors: | Zhao Di Gourinovitch, A. B. |
Keywords: | материалы конференций;information technology;medicine;noise reduction;transformer method;diagnostics |
Issue Date: | 2024 |
Publisher: | БГУИР |
Citation: | Zhao Di. Transformer-based denoising method for medical images / Zhao Di, A. B. Gourinovitch // Информационные технологии и системы 2024 (ИТС 2024) = Information Technologies and Systems 2024 (ITS 2024) : материалы международной научной конференции, Минск, 20 ноября 2024 г. / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: Л. Ю. Шилин [и др.]. – Минск, 2024. – С. 194-195. |
Abstract: | Biomedical image segmentation is essential for accurate disease diagnosis. However, issues like noise and artifacts in medical images can hinder effective diagnosis. This paper presents a Transformer-based method for medical image segmentation denoising, which uses self-attention to remove noise and retain image details, thus enhancing diagnostic accuracy. |
URI: | https://libeldoc.bsuir.by/handle/123456789/58700 |
Appears in Collections: | ИТС 2024 |
File | Description | Size | Format | |
---|---|---|---|---|
Zhao_Di_Transformer.pdf | 741.27 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.