Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/59677
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGuo Qicheng-
dc.coverage.spatialМинскen_US
dc.date.accessioned2025-05-02T08:06:17Z-
dc.date.available2025-05-02T08:06:17Z-
dc.date.issued2025-
dc.identifier.citationGuo Qicheng. Vehicle and label detection method based on YOLOv11 / Guo Qicheng // Big Data и анализ высокого уровня = Big Data and Advanced Analytics : сборник научных статей XI Международной научно-практической конференции, Республика Беларусь, Минск, 23–24 апреля 2025 года / Белорусский государственный университет информатики и радиоэлектроники [и др.] ; редкол.: В. А. Богуш [и др.]. – Минск, 2025. – С. 340–342.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/59677-
dc.description.abstractThis paper proposes a vehicle and label detection method based on the YOLOv11 algorithm. By constructing a custom dataset of vehicles and labels, the YOLOv11 model is trained to achieve precise detection of vehicles and their rear-mounted labels. This paper details the dataset creation process, label design, model training procedure, and the selection of optimal training parameters. Finally, the algorithm's performance is evaluated using a validation set. Experimental results demonstrate that the YOLOv11-based vehicle and label detection method exhibits strong performance in terms of accuracy and real-time capability, meeting the requirements of practical applications.en_US
dc.language.isoruen_US
dc.publisherБГУИРen_US
dc.subjectматериалы конференцийen_US
dc.subjectоbject detectionen_US
dc.subjectvehiclesen_US
dc.subjectcomputer visionen_US
dc.titleVehicle and label detection method based on YOLOv11en_US
dc.typeArticleen_US
Appears in Collections:BIG DATA and Advanced Analytics = BIG DATA и анализ высокого уровня : сборник научных статей (2025)

Files in This Item:
File Description SizeFormat 
Guo_Qicheng_Vehicle.pdf549.92 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.