Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/60615
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Y. M.-
dc.contributor.authorTsviatkou, V. Y.-
dc.coverage.spatialМинскen_US
dc.date.accessioned2025-06-30T07:58:54Z-
dc.date.available2025-06-30T07:58:54Z-
dc.date.issued2025-
dc.identifier.citationChen, Y. M. Impact of color space on neural networks / Y. M. Chen, V. Y. Tsviatkou // Технологии передачи и обработки информации : материалы Международного научно-технического семинара, Минск, апрель 2025 г. / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: В. Ю. Цветков [и др.]. – Минск, 2025. – С. 73–76.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/60615-
dc.description.abstractThe choice of color space can significantly affect the performance and interpretability of neural networks in image-based tasks, but its impact remains underexplored in many deep learning applications. This study investigates how different color representations (such as RGB, HSV, LAB, and YCbCr) affect the accuracy and convergence speed of convolutional neural networks (CNNs). Through systematic experiments on benchmark datasets, we evaluate the effectiveness of these color spaces in classification and semantic segmentation tasks. Experimental results show that when using single color space on tasks like classification and semantic segmentation, traditional RGB still hasits advantages.en_US
dc.language.isoruen_US
dc.publisherБГУИРen_US
dc.subjectматериалы конференцийen_US
dc.subjectcolor spaceen_US
dc.subjectneural networken_US
dc.subjectResNeten_US
dc.subjectU-Neten_US
dc.titleImpact of color space on neural networksen_US
dc.typeArticleen_US
Appears in Collections:Технологии передачи и обработки информации : материалы Международного научно-технического семинара (2025)

Files in This Item:
File Description SizeFormat 
Chen_Impact.pdf640.16 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.