DC Field | Value | Language |
dc.contributor.author | Chen, Y. M. | - |
dc.coverage.spatial | Минск | en_US |
dc.date.accessioned | 2025-06-30T08:31:14Z | - |
dc.date.available | 2025-06-30T08:31:14Z | - |
dc.date.issued | 2025 | - |
dc.identifier.citation | Chen, Y. M. Methods of low data image classification with neural network / Y. M. Chen // Технологии передачи и обработки информации : материалы Международного научно-технического семинара, Минск, апрель 2025 г. / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: В. Ю. Цветков [и др.]. – Минск, 2025. – С. 162–164. | en_US |
dc.identifier.uri | https://libeldoc.bsuir.by/handle/123456789/60622 | - |
dc.description.abstract | Image classification has evolved from relying on handcrafted feature engineering to a data-driven deep learning paradigm, with recent breakthroughs extending its capabilities to zeroshot and few-shot learning scenarios. This paper introduces emerging paradigms for low-data scenarios: zero-shot learning methods, including multimodal models (e.g., CLIP) that align visual and textual embeddings for open vocabulary classification and generative frameworks for synthesizing features of unseen classes; and (2) few-shot learning strategies, such as meta-learning (e.g., MAML), metric-based networks (e.g., ProtoNet), and fast adaptation techniques (e.g., Tip-Adapter) that leverage pre-trained knowledge for fast adaptation. While these methods reduce the reliance on labeled data, challenges remain in domain adaptation, fine-grained classification, and computational efficiency. | en_US |
dc.language.iso | en | en_US |
dc.publisher | БГУИР | en_US |
dc.subject | материалы конференций | en_US |
dc.subject | Image classification | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Zero-shot learning | en_US |
dc.subject | Few-shot learning | en_US |
dc.subject | CLIP | en_US |
dc.subject | Convolutional Neural Networks | en_US |
dc.title | Methods of low data image classification with neural network | en_US |
dc.type | Article | en_US |
Appears in Collections: | Технологии передачи и обработки информации : материалы Международного научно-технического семинара (2025)
|