Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/60669
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, J. H.-
dc.contributor.authorXiong, S.-
dc.contributor.authorDang, Z. F.-
dc.contributor.authorMa, J.-
dc.coverage.spatialМинскen_US
dc.date.accessioned2025-07-02T10:30:47Z-
dc.date.available2025-07-02T10:30:47Z-
dc.date.issued2025-
dc.identifier.citationLiu, J. H. Russian handwriting recognition based on deep learning / J. H. Liu, S. Xiong, Z. F. Dang, J. Ma // Технологии передачи и обработки информации : материалы Международного научно-технического семинара, Минск, апрель 2025 г. / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: В. Ю. Цветков [и др.]. – Минск, 2025. – С. 112–114.en_US
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/60669-
dc.description.abstractThis paper presents a deep learning-based algorithm for Russian handwriting recognition. The algorithm combines the improved VGG network feature extraction capability and LSTM temporal modeling capability and introduces data enhancement and optimizer tuning strategies. Experimental results show that the algorithm provides significant improvement in recognition accuracy and training efficiency compared with existing methods.en_US
dc.language.isoenen_US
dc.publisherБГУИРen_US
dc.subjectматериалы конференцийen_US
dc.subjectdeep learningen_US
dc.subjecttext recognitionen_US
dc.subjectrussian languageen_US
dc.titleRussian handwriting recognition based on deep learningen_US
dc.typeArticleen_US
Appears in Collections:Технологии передачи и обработки информации : материалы Международного научно-технического семинара (2025)

Files in This Item:
File Description SizeFormat 
Liu_ Russian.pdf1.05 MBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.